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Moore’s Law Origins 

April 19, 1965 
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Moore’s Law Origins 

• Moore’s Thesis 
– Minimize price per device  
– Optimum number of 

devices / chip increasing 
2x / year 

• Later 
– 2x / 2 years 
– “Moore’s Prediction” 

1965: 50 

1970: 1000 
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Moore’s Law: 50 Years 
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More on Moore’s Law 
You can buy this for $10 today. 

More than 590,800,000x 
improvement in $-cc3 

In 1983 dollars, the equivalent  
• cost >$100,000.00 
• Fit in 297 boxes 
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      =    ? 

Eniac → PS/4 
• How much would enough Eniac’s weigh 

to equal 2.8Kg of PS/4 computing? 
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Eniac → PS/4 
• How much would enough Eniac’s weigh 

to equal 2.8Kg of PS/4 computing? 
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A little perspective. 
Empire State Building 
weighs ~2.7x108 Kg ? 
1000 Empire State Buildings of Eniac’s!!! 

Alternatively, more than all 
the buildings in Pittsburgh! 



Eniac → PS/4 
• From 1946 to 2014 
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Eniac PS/4 Improvement 

Ops/sec 5x103 2x1010 106 

Cost 6x106 $ 4x102 $ 104 

Power 1.5x105 W 1x102 W 103 

Volume 6.5x102 m3 4.5x10-3 m3 105 

Weight 2.7x105 Kg 2.8 Kg 105 

An improvement of 
1024 ops/sec-$-Kg-m3-W 
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Understanding Exponentials 
• Key to future forcasting 
• Very Very hard for humans to do 
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Understanding Exponentials 
• Key to future forcasting 
• Very Very hard for humans to do 
• Example: Kasparov Vs. Deep Blue 

– 1989: Kasparov destroys deep blue 
– 1996: Deep Blue wins one game 
– 1997: Deep Blue wins tournament 
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Understanding Exponentials 
• Key to future forcasting 
• Very Very hard for humans to do 
• Example: Kasparov Vs. Deep Blue 

– 1989: Kasparov destroys deep blue 
– 1996: Deep Blue wins one game 
– 1997: Deep Blue wins tournament 

• Particularly hard in the beginning 
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What Moore’s Law Has Meant 

• 1976 Cray 1 
– 250 M Ops/second 
– ~170,000 chips 
– 0.5B transistors 
– 5,000 kg, 115 KW 
– $9M 
– 80 manufactured 

• 2014 iPhone 6 
– > 4 B Ops/second 
– ~10 chips 
– > 3B transistors 
– 120 g, < 5 W 
– $649 
– 10 million sold in first 3 days 
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What Moore’s Law Could Mean 

Kurzweil, The Singularity is Near, 2005 15213 s'16 © Bryant 17 



What Moore’s Law Could Mean 
• 2015 Consumer 

Product • 2065 Consumer Product 
 
 

 
– Portable 
– Low power 
– Will drive markets & 

innovation 
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Requirements for Future Technology 
• Must be suitable for portable, low-power 

operation 
– Consumer products 
– Internet of Things components 
– Not cryogenic, not quantum 

• Must be inexpensive to manufacture 
– Comparable to current semiconductor technology 

• O(1) cost to make chip with O(N) devices 

• Need not be based on transistors 
– Memristors, carbon nanotubes, DNA transcription, ... 
– Possibly new models of computation 
– But, still want lots of devices in an integrated system 
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Moore’s Law: 100 Years 

1017 devices! 
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Chips Have Gotten Bigger 
Intel 4004 

1970 
2,300 transistors 

12 mm2 

Apple A8 
2014 

2 B transistors 
89 mm2 

IBM z13 
205 

4 B transistors 
678 mm2 
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Chip Size Trend 
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Chip Size Extrapolation 
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Extrapolation: The iPhone 31s 
Apple A59 

2065 
1017 transistors 

173 cm2 
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Transistors Have Gotten Smaller 

– Area A 
– N devices 
– Linear Scale L 

L 
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Linear Scaling Trend 

1/2x every 5 years  
2x transistor density every 2.5 years 
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Decreasing Feature Sizes 

Intel 4004 
1970 

2,300 transistors 
L = 72,000 nm 

Apple A8 
2014 

2 B transistors 
L = 211 nm 
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Linear Scaling Trend 
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10-6 

10-3 

10-4 

10-5 

1 millimeter (mm) 

1 micrometer (μm) 

Submillimeter Dimensions 

5μm:  Spider silk thickness 

72μm: Intel 4004 linear scale 
50μm: Average size of cell in human body 

500μm: Length of amoeba 

10μm: Thickness of sheet of plastic food wrap 

2μm:  E coli bacterium length 
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Submicrometer Dimensions 

1 micrometer (μm) 

1 nanometer 
(nm) 

10-6 

10-7 

10-8 

10-9 1nm:  Carbon nanotube diameter 

2nm:  DNA helix diameter 

9nm:  Cell membrane thickness 

211nm: Apple A8 linear scale 

30nm: Minimum cooking oil smoke particle diameter 

400-700nm: Visible light wavelengths 
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Linear Scaling Extrapolation 
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Subnanometer Dimensions 

1 nanometer 
(nm) 

1 picometer 
(pm) 

10-9 

10-10 

10-11 

10-12 

2.4pm: Electron wavelength (Compton wavelength) 

53pm: Electron-proton spacing in hydrogen (Bohr radius) 

1nm:  Carbon nanotube diameter 

543pm: Silicon crystal lattice spacing 

74pm: Spacing between atoms in hydrogen molecule 

230pm: 2065 linear scale projection 
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Reaching 2065 Goal 

• Target 
– 1017 devices 
– 400 mm2 

– L = 63 pm 
 
 
 

 

Is this possible? 
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2000 mm3 

Fabricating in 3 Dimensions 

• Parameters 
– 1017 devices 
– 100,000 logical layers 

• Each 50 nm thick 
• ~1,000,000 physical layers 

– To provide wiring and isolation 
– L = 20 nm 

• 10x smaller than today 
2065 mm3 

20 mm 

20 mm 5 mm 
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3D Fabrication Challenges 
• Yield 

– How to avoid or tolerate flaws 
• Cost 

– High cost of lithography 
• Power 

– Keep power consumption within 
acceptable limits 

– Limited energy available 
– Limited ability to dissipate heat 
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Photolithography 

– Pattern entire chip in one step 
– Modern chips require ~60 lithography steps 
– Fabricate N transistor system with O(1) 

steps 
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Fabrication Costs 

• Stepper 
– Most expensive equipment in fabrication facility 
– Rate limiting process step 

• 18s / wafer 
– Expose 858 mm2 per step 

• 1.2% of chip area 
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Fabrication Economics 
• Currently 

– Fixed number of lithography steps 
– Manufacturing cost $10–$20 / chip 

• Including amortization of facility 

• Fabricating 1,000,000 physical layers 
– Cannot do lithography on every step 

• Options 
– Chemical self assembly 

• Devices generate themselves via chemical 
processes 

– Pattern multiple layers at once 
15213 s'16 © Bryant 38 



Meeting Power Constraints 

– 2 B transistors 
– 2 GHz operation 
– 1—5 W 

– 64 B neurons 
– 100 Hz operation 
– 15—25 W 

• Liquid cooling 
• Up to 25% body’s total 

energy consumption 
Can we increase number of 
devices by 500,000x without 
increasing power requirement? 
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Challenges to Moore’s Law: 
Economic 

• Growing Capital Costs 
– State of art fab line ~$20B 
– Must have very high volumes 

to amortize investment 
– Has led to major 

consolidations 
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Dennard Scaling 
– Due to Robert Dennard, IBM, 1974 
– Quantifies benefits of Moore’s Law 

• How to shrink an IC Process 
– Reduce horizontal and vertical dimensions by k 
– Reduce voltage by k 

• Outcomes 
– Devices / chip increase by k2 

– Clock frequency increases by k 
– Power / chip constant 

• Significance 
– Increased capacity and performance 
– No increase in power 
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End of Dennard Scaling 

• What Happened? 
– Can’t drop voltage below ~1V 
– Reached limit of power / chip in 2004 
– More logic on chip (Moore’s Law), but can’t make 

them run faster 
• Response has been to increase cores / chip 
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Moore’s Law Economics 

Consumer products sustain the 
$300B semiconductor industry 

Capital + 
R&D 

Investment 

New Technology 

Product 
Design 

Sales $$ Better 
Products 
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Will it all continue? 
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Software 
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Simulation of 10 million “robots” 
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Software 

15213 s'16 

74 lines of code! 
 
Proved:  
• Complete: will reach final shape 
• Sound: will not disconnect 
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Insatiable Demand for Computing 
• Programmable matter? 
• Simulating life 
• Many many more 
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What Comes Next? 

Combination of Hans Moravac + Larry Roberts + Gordon Bell  
WordSize*ops/s/sysprice 

From Gray Turing Award Lecture 
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 doubles every  
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Manufacturing plays a key role! 



Next Time 
• How we might fabricate chips with 

10^23 components 
• What impact this might have 
• Other technology trends 

 
• Societal impact 
• Potential solutions 
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What Comes Next? 

Combination of Hans Moravac + Larry Roberts + Gordon Bell  
WordSize*ops/s/sysprice 

From Gray Turing Award Lecture 
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Technology Shifts 
• Size of Devices 

 ⇒ Inches to Microns 
• Type of Interconnect 

 ⇒ Rods to Lithowires 
• Method of Fabrication 

 ⇒ Hammers to Light 
• Largest Sustainable System 

 ⇒ 101 to 108 
• Reliability 

 ⇒ Bad to Excellent 

• Size of Devices 
 ⇒ Inches to Microns to Nanometers 

• Type of Interconnect 
 ⇒ Rods to Lithowires to Nanowires 

• Method of Fabrication 
 ⇒ Hammers to Light to Self-Assembly 

• Largest Sustainable System 
 ⇒ 101 to 108 to 1012 

• Reliability 
 ⇒ Bad to Excellent to Unknown 
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On the cusp of Major Technology Change 
• Devices  

– very small & numerous 
– Novel characteristics 

• Scale is new: 10-100x smaller, 1000x more 

Devices/design 

Feature size 
(Nanometers) 

1000 

100 

10 

1 

1 core Processor 

CMOS @end-of-roadmap 

Nano 
Tech 

10-100x  
smaller 

1000x  more 
106       108       1010       1012 

Multi-core Processor 
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As we scale down: 
• Devices become 

– more variable 
– more faulty (defects & faults) 
– numerous 

• Fabrication becomes 
– More expensive 
– More constrained 

• Design becomes 
– More complicated 
– More expensive 

Requires: 
–Defect tolerant architectures 
–Higher level specification 
–Universal substrate 

IBM 

Nano CMOS 

MIT HP 

Karen Brown, NIST
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• Reliable Systems from reliable components 
   

 
• Functionality invested at time of manufacture 

   
  

 
• Behavior remains same as features scales down 

   
    
   

• Reliable Systems from reliable components 
 Reliable systems from unreliable components 

 
• Functionality invested at time of manufacture 

 Functionality modified after manufacture 
New manufacturing: Bottom-up assembly 

 
• Behavior remains same as features scales down 

 Expect increased variability 
 Changes in functionality 

 Restrictions on connectivity 

Future 
Manufacturing Paradigm Shift Required 
Today 

A CMOS RAM cell 

NanoRAM cell 
. 
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Building a Computing Crystal 
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Building a Computing Crystal 

            

  

Assembly ⇒ Computing Crystals 
With defects 



Samsung V-Nand Flash Example 

– Build up layers of unpatterned material 
– Then use lithography to slice, drill, etch, and deposit 

material across all layers 
– ~30 total masking steps 
– Up to 48 layers of memory cells 
– Exploits particular structure of flash memory circuits 
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Continuing the Trend 

Program 
Program 

or 
Configuration 

Complex fixed chip 
+ 

Program 

Regular, tileable structures 
+ 

Configuration 

future? 
Tradeoff complexity (and 

precision) at manufacturing 
time for complexity at 

compilation time. 
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Defect Tolerant Architectures 
• Features: 

– Regular topology 
– Homogenous resources 
– Fine-grained? 
– Post-fabrication modification 

• Example from today: DRAM 
– Requires external device for testing 
– Requires external device for repair 

• Logic? FPGA 

Key is redundancy 
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FPGA 

Universal gates  
and/or 

storage elements 

Interconnection 
network 

Programmable Switches 
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Defect Tolerant Architecture 

• Extra devices, wires, and post-processing 
to route around defective elements 

• New circuit techniques 
• Radical architectures to exploit 

– Randomness 
– Reconfigurability 
– Plentiful resources 

• New testing approaches 

CalTech 
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• Aides defect tolerance 

                 Reconfigurability & DFT 

• FPGA computing fabric 
– Regular 
– periodic  
– Fine-grained 
– Homogenous 

• programs ⇒ circuits 

Place & Route 

Place & Route 
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Reconfigurable Computing 

Compiler 

General-Purpose Custom Hardware 
int reverse(int x) 
{ 
   int k,r=0; 
   for (k=0; k<64; k++) 
      r |= x&1; 
      x = x >> 1; 
      r = r << 1; 
   } 
} 
int func(int* a,int *b) 
{ 
   int j,sum=0; 
   for (j=0; *a>0; j++) 
      sum+=reverse(*b 

General-Purpose 
Custom Hardware 

Logic Blocks 

Routing Resources 
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Advantages of Reconfigurable 

• Flexibility of a processor 
• Performance of custom hardware 

Near 

You have to  
• Store and 
• Address 

   the configuration 
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Advantages of Reconfigurable 

• Flexibility of a processor 
• Performance of custom hardware 

• Reduce time to market 
• Reduce design cost 
• Built-in dynamic fault tolerance 
• Built-in self test 
• Low Power 
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Sources of Performance 
• Exploit multiple levels of parallelism 

– MIMD, SIMD 
– ILP 
– Pipeline 
– bit-level 

• Custom function units 
– Custom sizes 
– Specialized functions 

• Improved memory performance 
• Data dependent hardware generation 



Pause for a second 
• 50 more years of Moore’s law? 

– Probably not in Si, but … 
• Probably need new architectures, etc. 

 
• But, so far, 

 
    Necessity is the mother of invention 
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Exponentials Abound 

78 © 2016 Goldstein 

“Moore’s law” 

Sequencing 
Synthesizing 
$0.01/base, halving each year 

106 bases, 10x per decade 

Human 2.0 
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Big Data can look like AI 

15213 s'16 © 2016 Goldstein 79 

Big Data ML Interesting patterns 



Big Data can look like AI 

15213 s'16 © 2016 Goldstein 80 

Big Data 
ML More 

Interesting patterns 



Big Data can look like AI 
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Even Bigger 
Big Data 

ML Patterns that look like 
Creativity/Intelligence 



What is you prediction? 

82 © 2016 Goldstein 
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http://archive.ics.uci.edu/ml/datasets.html 

Image classification 

Translation getting pretty good 
Speech->text amazing 

AI-ish? 
From Forbes.com: 

 
Despite an expected dip in profit, analysts are 
generally optimistic about Fluor as it prepares to 
reports its first-quarter earnings on Thursday, 
May 1, 2014. The consensus earnings per share 
estimate is 96 cents per share. 
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“WISCONSIN appears to be in the driver’s seat en 
route to a win, as it leads 51-10 after the third 
quarter. Wisconsin added to its lead when Russell 
Wilson found Jacob Pedersen for an eight-yard 
touchdown to make the score 44-3 ... . ” 
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Rate of change is also ex! 
• After thought this should be obvious 

– Tools enable faster turnaround 
– Expectations grow 
– Standing on the shoulders of the past 

• Examples: 
– Extended Moore’s law 
– Email: “Email is for old folks” 
– Rate of patents 
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Rate of Adoption  
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Cell Phones 
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2012 estimate: >6.8Billion subscribers 
(world population ~ 7Billion) 
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Synthetic Biology 



Manufacturing Through Computation 
• Inkjet printers 
• 3D printers 
• FPGAs 
• Modular Robots 
• Synthetic Biology 
• Programmable Matter 
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Inkjet printers 
• They print more than ink. 
• E.g.,: Epson prints 20 layer 

circuit board at 110µm pitch 
with features of 50 µm 

• Edible sushi paper printer 
• High-Q filters 
• *jet printers 

– Electroactive polymers 
– Embed electronics directly 
– Polymer electronics 

moto 



Additive Manufacturing 
• From CAD → Product with little or no 

human intervention 
• Supports 

– Tremendous geometric flexibility 
– Internal spaces & embedded components 
– Multi-material & gradient material 

structures 
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Additive Manufacturing 
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Manufacturing Through Computation 
• Inkjet printers 
• 3D printers 
• FPGAs 
• Modular Robots 
• Synthetic Biology 
• Programmable Matter 
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Robotics 

15213 s'16 © 2016 Goldstein 95 



The World is Changing 
• Technology Trends 

– Nanotechnology 
– Synthetic Biology 
– Computers 
– Robotics 

• Some Implications 
• What Should We Do? 
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Safer & Faster travel 

Clean ubiquitous Cheap Energy 
More Knowledge available to more people 

A level playing field 

Customized anything 

Dematerialization of Value 

Better Health 



Utopia? 
• Technology Trends 

– Nanotechnology 
– Synthetic Biology 
– Computers 
– Robotics 

• Some Implications 
• What Should We Do? 
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Safer & Faster travel 

Clean ubiquitous Cheap Energy 
More Knowledge available to more people 

A level playing field 

Customized anything 

Dematerialization of Value 

Better Health 



Fast Food? 
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Faster supermarket? 
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Transportation 
• Today over 3.8M Professional drivers 
• Driverless car? 
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Shopping in the future 
• Combine: 

– Robotics 
– Machine learning 
– Big data 
– Internet of things 
– 3D printers 

• Anyone left in the store? 
• Is there a store? 
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Professionals? 
• Only 55% of law school 2011 

graduating class found a job. 
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Professionals? 
• Only 55% of law school 2011 

graduating class found a job. 
• Doctors? 

15213 s'16 © 2016 Goldstein 106 



Professionals? 
• Only 55% of law school 2011 

graduating class found a job. 
• Doctors? 
• Pharamcists: Just a few years ago 

promoted as a great degree to get 
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Professionals? 
• Only 55% of law school 2011 

graduating class found a job. 
• Doctors? 
• Pharamcists: Just a few years ago 

promoted as a great degree to get. 
• Writer?  
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“WISCONSIN appears to be in the driver’s seat 
en route to a win, as it leads 51-10 after the third 
quarter. Wisconsin added to its lead when Russell 
Wilson found Jacob Pedersen for an eight-yard 
touchdown to make the score 44-3 ... . ” 

I’m not so sure. 



What Should You Do Today? 
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• Study for 213 final. 



What Should You Do Today? 
• More seriously: 

– Learn to learn 
– Be flexible 
– Expect to continue to learn 
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Technology Revolutions 
• TR1: (aka First Industrial Revolution) 

– Coal powered steam engine 
– Cotton Gin 
– Steam-powered printing presses 
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1965-? 



Technology Revolutions 
• TR1: (aka First Industrial Revolution) 

– Coal powered steam engine 
– Cotton Gin 
– Steam-powered printing presses 

• TR2: (aka Second IR) 
– Electricity/Internal Combustion Engine 
– Assembly Lines 
– Telegraph/Telephone 
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Technology Revolutions 
• TR1: (aka First Industrial Revolution) 

– Coal powered steam engine 
– Cotton Gin 
– Steam-powered printing presses 

• TR2: (aka Second IR) 
– Electricity/Internal Combustion Engine 
– Assembly Lines 
– Telegraph/Telephone 

• Third Technology Revolution 
– Renewables 
– Manufacturing without assembly 
– Computation 
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1760-1830 

1860-1910 

1965-? 



Just Like TR1 and TR2 
 

TR3 will: 

15213 s'16 © 2016 Goldstein 114 

• Improve productivity 
• Increase wealth (on average) 
• Cause massive disruption 

 
 



Wait one second … 
• Didn’t the industrial revolution add 

more jobs than it took away? 
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But, TR3 is different 
• Continued exponential improvement 

(E.g., Computation, Networking, Renewable energy, 
 Synthetic biology, ML&BD, Robotics, …) 
 

• Technology is able to do “uniquely 
human” cognitive and physical tasks. 
 

• Lowering the labor component of the 
marginal cost of production 
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Wait a Second! 
• Where are the exponential job losses? 
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Wait a Second! 
• Where are the exponential job losses? 
• What about new jobs? 
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Wait a Second! 
• Where are the exponential job losses? 
• What about new jobs? 
• Rate of productivity increase has slowed 
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<1% 
(1970-today) 

2% 
(1870-1970) 



Component Model of Jobs 
• Jobs are not distinct monolithic entities. 
• Jobs require skills, abilities, knowledge, 

… 
– Surgeon requires: 

• Finger dexterity 
• Reading 
• Image recognition 
• Planning 
• Active listening 
• Critical thinking 
• Assisting/caring for others 
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Component Model of Jobs 
• Jobs are not distinct monolithic entities. 
• Jobs require skills, abilities, knowledge, 

… 
– Surgeon requires: 

• Finger dexterity 
• Reading 
• Image recognition 
• Planning 
• Active listening 
• Critical thinking 
• Assisting/caring for others 
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Component Model of Jobs 
• Jobs are not distinct monolithic entities. 
• Jobs require skills, abilities, knowledge, 

… 
– Surgeon requires: 

• Finger dexterity 
• Reading 
• Image recognition 
• Planning 
• Active listening 
• Critical thinking 
• Assisting/caring for others 
• Housing codes 
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Plumber 



Component Model of Jobs 
• Jobs are not distinct. 
• Jobs require skills, abilities, 

knowledge, … 
• Jobs replaced by technology only 

when all/most components can be 
done by technology. 
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Finger Dexterity 
Empathy 

Image Recognition Planning 
Not Replaced 



Component Model of Jobs 
• Jobs are not distinct monolithic entities. 
• Jobs require skills, abilities, knowledge, … 
• Jobs replaced by technology only when 

all/most components can be done by 
technology. 
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Finger Dexterity 
Empathy 

Image Recognition Planning 
Maybe Replaced? 



Component Model of Jobs 
• Jobs are not distinct monolithic entities. 
• Jobs require skills, abilities, knowledge, … 
• Jobs replaced by technology only when 

all/most components can be done by 
technology. 
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Finger Dexterity 
Empathy 

Image Recognition Planning 
Replaced! 



Monolithic Jobs Model Prediction 
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Component Jobs Model Prediction 
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Once it starts, change will be rapid 



Technology’s Impact on Jobs 
• Substitution 
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Finger Dexterity 
Empathy 

Image Recognition Planning 



Technology’s Impact on Jobs 
• Substitution 
• Complementation 
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Finger Dexterity 
Empathy 

Image Recognition Planning 



Technology’s Impact on Jobs 
• Substitution 
• Complementation 
• Elimination 
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Technology’s Impact on Jobs 
• Substitution 
• Complementation 
• Elimination 
• Creation 
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• Substitution 
• Complementation 
• Elimination 
• Creation 
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Technology’s Impact on Jobs 



• Substitution 
• Complementation 
• Elimination 
• Creation 
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Technology’s Impact on Jobs 

High Wage 

Low Wage 
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Technology’s Impact on Jobs 

High Wage 

Low Wage 

Complementation 

Hard for Tech/ 
Hard for Humans 

Hard for Tech/ 
Easy for Humans 



• Substitution 
• Complementation 
• Elimination 
• Creation 
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Technology’s Impact on Jobs 

Productivity Inequality 
 

Income Inequality 



Wait a Second.  Hmmm. 
• Where are the exponential job losses? 

  Around the corner. 
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Wait a Second.  Hmmm. 
• Where are the exponential job losses? 

  Around the corner. 
• What about new jobs? 

How long do they remain in human domain? 
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Complementation Creation 



What Are The New Jobs? 
• Yes, there will be traditional jobs 

which require, e.g.,  
– Creativity 
– Empathy 
– Entrepreneurship 
– Social Skills 
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Aside:  
Requires changing our 
educational goals and 

methods! 



What About New Jobs? 
• Yes, there will be traditional jobs 

which require, e.g., 
– Creativity 
– Empathy 
– Entrepreneurship 
– Social Skills 

• But, as technology improves it will 
continue to take away jobs  
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Department of Artificial Empathy? 



What About New Jobs? 
• Yes, there will be traditional jobs  

which require, e.g., 
– Creativity 
– Empathy 
– Entrepreneurship 
– Social Skills 

• But, as technology improves it will 
continue to take away jobs 

• And, those that remain are low paying.  
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Wait a Second.  Hmmm. 
• Where are the exponential job losses? 

  Around the corner. 
• What about new jobs? 

How long do they remain in human domain? 
• Rate of productivity increase has slowed 

 Not, really.   
     Average doesn’t tell the whole story. 
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Complementation 

Hard for Tech/ 
Easy for Humans 

Hard for Tech/ 
Hard for Humans 



Not Much Work Now for Horses 
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TR2: Forever ended the horse as a  
        factor of production. 



Not Much Work Now for Horses 
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With respect to human labor: 
TR3 is the last Technology Revolution 



Horror or Opportunity? 

• TR3 poses 2 existential questions for 
most everyone: 

 
– How to get the resources needed for life? 

 
– How to find meaning and dignity? 
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We Need a Change in Perspective 



Plenty of Resources 
• TR3 economy produces an abundance of 

goods and services 
 
 
– Marginal Cost of Production approaches 0$ 

–∴Price approaches 0$ 
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Plenty of Resources 
• TR3 economy produces an abundance of 

goods and services 
• Most people are unemployable 

 
– Most jobs are substituted or destroyed 
– (some are created for a limited time.) 
– (Most jobs left pay poorly) 
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Plenty of Resources 
• TR3 economy produces an abundance of 

goods and services 
• Most people are unemployable 

(Technology is just cheaper, better, … ) 
• What do they do? 
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StackOverflow 



Mini Reputation Economies 

• Members of this community: 
– Ask and answer programming questions 
– Very high quality. 
– No one is paid (in dollars) 

• The Economics: 
– Users gain reputation by participating 
– Reputation gives them privileges 
– Reputation can be traded  
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StackOverflow 

Reputation as an 
“Asset” 
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StackOverflow 

Reputation as a 
“Currency.” 



Not Just Programming 
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Many Communities 
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In each of these communities people can pursue 
their passion, finding meaning, pleasure & dignity. 



TR3 Enables Reputation Economies 
• Expanding networks enable people to 

find and connect to other people in 
their niche (no matter how weird) 
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TR3 Enables Reputation Economies 
• Expanding networks enable people to 

find and connect to other people in 
their niche (no matter how weird) 

• Computational resources provide the 
accounting systems, transactional 
mechanisms, etc. needed to track and 
trade reputation 
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TR3 Enables Reputation Economies 
• Expanding networks enable people to 

find and connect to other people in 
their niche (no matter how weird) 

• Computational resources provide the 
accounting systems, transactional 
mechanisms, etc. needed to track and 
trade reputation 

• Turning reputation into a currency 
addresses both existential questions. 
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Reputation as Money 
 

• What makes money work: 
– A metric of value 
– A method of accounting 
– Trust that it is transferable 
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Today’s Money 
 

• What makes money work: 
– A metric of value 
– A method of accounting 
– Trust that it is transferable 

 

• So today’s currency is: 
– A static token 
– Backed by the state 
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Today’s Money 
 

• What makes money work: 
– A metric of value 
– A method of accounting 
– Trust that it is transferable 

 

• So today’s currency is: 
– A static token 
– Backed by the state 

 But remember, it has 
no intrinsic value! 
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TR3 & Money 
• Currency doesn’t need to be static token. 
• Nor backed only by the state. 
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Pure reputation economy? 

Let’s examine a transitional Economy 



TR3 & Money 
• Currency doesn’t need to be static token. 
• Nor backed only by the state. 

 
 

• Imagine that everyone can issue their 
own money backed by their reputation. 
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Computer Science Department of CMU 

CSD Dollar Seth Dollar 



 
• Certainly, I must. 
• Anyone who expects to trade with me. 
• People in my communities 
• Most anyone who expects to trade with 

someone I trade with, etc. 
• The further the separation the less likely. 
• Everyone will decide their risk tolerance. 

Seth Dollar

Who accepts Seth-Dollars? 
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• Certainly, I must. 
• Anyone who expects to trade with me. 
• People in my communities 
• Most anyone who expects to trade with 

someone I trade with, etc. 
• The further the separation the less likely. 
• Everyone will decide their risk tolerance. 

Seth Dollar

Who accepts Seth-Dollars? 
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Currency is “executable” and 
can have means to reduce risk. 



We Are All 
Members of Multiple Communities 
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How to convert     $ into    $? 



Reputation$ Addresses 
Both Existential Questions 
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Beni Loves to 
grow pumpkins 



Reputation$ Addresses 
Both Existential Questions 
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He is part of the 
“Pumpkin Network” 



Reputation$ Addresses 
Both Existential Questions 
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People “give” 
reputation 

to Beni 



Reputation$ Addresses 
Both Existential Questions 
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Beni Meier Dollar 

Beni Spends 
reputation on 
pumkin seeds 

or 
Food 

or … 



Reputation$ Addresses 
Both Existential Questions 
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As Beni pursues his passion he 
gets the resources he needs. 



Bootstrapping 
• Government will back first X$ of 

every citizen. 
– Doesn’t really cost anything. 
– Think FDIC. 
 

• Everyone’s reputation(s) will act as a 
multiplier on their currency. 
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Opportunity! 

• TR3 provides answers to: 
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We Need a Change in Perspective 

- How to get the resources needed for life? 
 

- How to find meaning and dignity? 
 



Impacts of TR3 
• Without Planning: 

– Massive disruption 
– Increased wealth inequality 
– Bad stuff 

• With Planning 
– An amazing future 

• Best chance for success is a bottom-up, 
distributed system that uses the market 
 Reinvent Money based on Reputation 
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Seth Dollar 



Impacts of TR3 
• Without Planning: 

– Massive disruption  
– Increased wealth inequality 
– Bad stuff 

• With Planning 
– An amazing future 

• Best chance for success is a bottom-up, 
distributed system that uses the market 
 Reinvent Money based on Reputation 
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TAs for Fall 2016 
• The instructors for 15/18-213/513 

need you 
please apply if you did well in 213 and want to be a TA 

You? 

https://www.ugrad.cs.cmu.edu/ta/F16/  
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https://www.ugrad.cs.cmu.edu/ta/F16/


Office Hours 
• I am there every week… 
• It is was usually not very crowded 
• Just come by to check in  

even if you do not have a question 
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Final Exams and Grade 
• Please study well 

imitate machine learning 

• Attend the Final Review 
May 1, Rashid Auditorium, 6pm 

• Remember the exam is cumulative 
http://www.cs.cmu.edu/~213/exams.html  

• Grading algorithm: (almost) no curving 
exam/lab distribution: 
http://www.cs.cmu.edu/~213/syllabus/syllabus.pdf  
weight of labs: http://www.cs.cmu.edu/~213/assignments.html  

• Double-check your scores 
get in touch with us if anything looks wrong in autolab 
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Course Evaluation 
• Please fill out the course evaluation 

you should have and will receive email about it 

• Please provide constructive comments 
this is your chance to make 213 better 

• Please be fair with your scores 
the university administration analyzes these numbers 

• TA evaluation 
https://www.ugrad.cs.cmu.edu/ta/S16/feedback 
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Thank You! 
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