Carnegie Mellon

Synchronization: Basics

15-213: Introduction to Computer Systems
24t Lecture, April, 12, 2016

Instructors:
Seth Copen Goldstein, Franz Franchetti, Ralf Brown, and Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Today

Threads review
Sharing

[|
[|
m Mutual exclusion
[|

Semaphores

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Process: Traditional View

m Process = process context + code, data, and stack

Process context Code, data, and stack
Program context: Sp —s stack
Data registers
Condition codes shared libraries
Stack pointer (SP) brk —
Program counter (PC) r . run-time heap
Kernel context: read/write data
VM structures PC—> read-only code/data
Descriptor table

brk pointer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Process: Alternative View

m Process = thread + code, data, and kernel context

Thread Code, data, and kernel context
Program context: shared libraries
Data registers brk —
Condition codes run-time heap
Stack pointer (SP) read/write data
Program counter (PC) PC — read-only code/data
0
stack

A 4

SP Kernel context:
VM structures
Descriptor table

brk pointer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Process with Two Threads

SP

SP

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thread 1

Program context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

stack

v

Thread 2

Program context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

stack

o

Code, data, and kernel context

shared libraries

brk —

run-time heap

read/write data

PC —

read-only code/data

Kernel context:
VM structures
Descriptor table

brk pointer

Carnegie Mellon

Shared Variables in Threaded C Programs

m Question: Which variables in a threaded C program are
shared?

= The answer is not as simple as “global variables are shared” and
“stack variables are private”

m Def: A variable X is shared if and only if multiple threads
reference some instance of X.

m Requires answers to the following questions:
= What is the memory model for threads?
" How are instances of variables mapped to memory?
= How many threads might reference each of these instances?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Threads Memory Model

m Conceptual model:
= Multiple threads run within the context of a single process
= Each thread has its own separate thread context

= Thread ID, stack, stack pointer, PC, condition codes, and GP registers

= All threads share the remaining process context
= Code, data, heap, and shared library segments of the process virtual address space
= QOpen files and installed handlers

m Operationally, this model is not strictly enforced:
= Register values are truly separate and protected, but...
= Any thread can read and write the stack of any other thread

The mismatch between the conceptual and operation model
is a source of confusion and errors

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Example Program to lllustrate Sharing

char **ptr; /* global var */ void *thread(void *vargp)
{
int main() long myid = (long)vargp;
{ static int cnt = 0;
long i;
pthread t tid; printf("[%lId]: %s (cnt=%d)\n",
char *msgs[2] = { myid, ptr[myid], ++cnt);
"Hello from foo", return NULL;
"Hello from bar" } /
¥ 7
Peer threads reference main thread’s stack
ptr = msgs; indirectly through global ptr variable
for i=0;1<2;i++)
Pthread create(&tid,
NULL,
thread,
(void ®i);
Pthread exit(NULL);
} sharing.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Mapping Variable Instances to Memory

m Global variables

= Def: Variable declared outside of a function
= Virtual memory contains exactly one instance of any global variable

m Local variables
= Def: Variable declared inside function without static attribute
= Each thread stack contains one instance of each local variable

m Local static variables
= Def: Variable declared inside function with the static attribute

= Virtual memory contains exactly one instance of any local static
variable.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Mapping Variable Instances to Memory

Global var: 1 instance (ptr [data])

4

char **ptr; I+ global var */

iInt main()
{
long I;
pthread t tid;
char *msgs[2] ={

Local vars: 1 instance (1 .m, msgs.m)

Local var: 2 instances (
myid.pO [peerthread 0’s stack],
myid.pl [peerthread 1’s stack]

~/

"Hello from foo",
"Hello from bar"

h

ptr = msgs;
for (1=0;1<2;i++)
Pthread create(&tid,
NULL,

thread,

void *thread(vojd *vargp)

{
long myid = (long)vargp;
static int cnt = 0;

printf("[%ld]: %s fcnt=%d)\n",
myid, ptr[myid], ++cnt);
return NULL;

(void *®)i);
Pthread exit(NULL);
} sharing.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

T
Local static var: 1 instance (cnt [data])

10

Shared Variable Analysis

m Which variables are shared?

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes
cnt no yes yes
i.m yes no no
msgs.-m yes yes yes
myid.pO no yes no
myid.pl no no yes
char **ptr; /* global */
int main() { /* thread routine */
int i1; void *thread(void *vargp)
pthread t tid; {
char *msgs[2] = {“Hello from foo", int myid = (int)vargp;
"Hello from bar'}; static iInt cnt = O;
ptr = msgs;
for (i = 0; 1 < 2; 1++) printf(C'[%d]: %s (svar=%d)\n",
Pthread create(&tid,.., (void *)i1); myid, ptr[myid], ++cnt);

Pthread_exit(NULL); }

Carnegie Mellon

Shared Variable Analysis

m Which variables are shared?

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes
cnt no yes yes
i.m yes no no
msgs.m yes yes yes
myid.pO no yes no
myid.pl no no yes

m Answer: A variable X is shared iff multiple threads
reference at least one instance of X. Thus:

m ptr, cnt, and msgs are shared
= 1 and myid are not shared

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Synchronizing Threads

m Shared variables are handy...

m ...but introduce the possibility of nasty synchronization
errors.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

badcnt.c: Improper Synchronization

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)

{
long niters;
pthread ttid1, tid2;

niters = atoi(argv[1]);

Pthread create(&tid1, NULL,
thread, &niters);

Pthread create(&tid2, NULL,
thread, &niters);

Pthread join(tidl, NULL);

Pthread join(tid2, NULL);

[* Check result */
If (cnt !'= (2 * niters))
printf("BOOM! cnt=%ld\n", cnt);
else
printf("OK cnt=%lId\n", cnt);
exit(0);

}

badcnt.c

[* Thread routine */
void *thread(void *vargp)

{

long i, niters =
*((long *)vargp);

for (i =0; i < niters; i++)
cnt++;

return NULL;
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

linux> ./badcnt 10000
OK cnt=20000

linux> ./badcnt 10000
BOOM! cnt=13051

1 1nux>

cnt should equal 20,000.

What went wrong?

14

Carnegie Mellon

Assembly Code for Counter Loop

C code for counter loop in thread i

for (1 = 0; 1 < niters; 1++)
cnt++;

Asm code for thread i

movqg (%rdi), %rcx \

Festq %rcx,%rcx - Head

jle L2 !

movl $0, %eax)
L3 ‘

movqg cnt(%rip),%rdx L; : Load cnt

addg $1, %rdx ' U : Update cnt

movg %rdx, cnt(%rip) || Si:Storecnt
[addqg $1, %rax] ‘

cmpg %rcx, %rax .y

jne 13 , T, : Tail
L2:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Concurrent Execution

m Keyidea: In general, any sequentially consistent interleaving
is possible, but some give an unexpected result!

= |. denotes that thread i executes instruction |
= %rdx;is the content of %rdx in thread i’s context

i (thread) instr, %rdx, %rdx, cnt

Y
L
f—

Thread 1
critical section

=)

Y

0

1 -
1 Thread 2
critical section

=)

N

N

N
1
NININ|[=|

N

NININR|=|I=(=O|IO|O

=ININIINININ(==] =
—I—IMC\I,-IU?CF
1

Y
Y
]

OK

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Concurrent Execution (cont)

m Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2

i (thread) instr, %rdx, %rdx, cnt

1 H, - - 0
1 L, 0 - 0
1 U, 1 - 0
2 H, - - 0
2 L, - 0 0
1 S, 1 - 1
1 T, 1 - 1
2 u, - 1 1
2 S, - 1 1
2 T, - 1 1 Oops!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Concurrent Execution (cont)

m How about this ordering?

i (thread) instr, %rdx, %rdx, cnt

Y
L

=
o

0

=)

N

N

N

Y

=)

Y

=

N(=R(ERIRINININN|=
—H|wnclw|clr x|
[
=

Oops!

N

m We can analyze the behavior using a progress graph

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Progress Graphs

Thread 2 A progress graph depicts
the discrete execution
® ° ° ° ° ° state space of concurrent
T, (L S) threads.
17 ~2
7 ¢ ¢ ¢ ¢ ¢ Each axis corresponds to
S, the sequential order of
¢ ° ° ° ° ° instructions in a thread.
U, .
Each point corresponds to
7 ° ° ° ° ° a possible execution state
L, (Inst,, Inst,).
o o o o o o

E.g., (L,, S,) denotes state
where thread 1 has

® ° ® ® * *— Thread1 completed L, and thread
2 has completed S,.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Trajectories in Progress Graphs

Thread 2
A trajectory is a sequence of legal
¢ o o o O state transitions that describes one
T, x possible concurrent execution of the
threads.
o o o [[
S, T Example:
i ° ¢ ° ¢ x H1, L1, U1, H2, L2, S1,T1, U2, S2, T2
— —
o o

o T *— Thread 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Trajectories in Progress Graphs

Thread 2
A trajectory is a sequence of legal
. o state transitions that describes one
T, x possible concurrent execution of the
threads.
A
S, Example:
* H1, L1, Ul, H2, L2, S1,T1,U2,S2, T2
U,
—
L,
o o O
H,
" *— Thread 1

H, L, U, S Ty

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Critical Sections and Unsafe Regions

Thread 2
L, U, and S form a critical
! o o o o o section Wlt.h respect to the
shared variable cnt
T,
9 ° ° ° ® ° Instructions in critical
S, sections (wrt some shared
critical ! o . . o o variable) should not be
section _ interleaved
wrt U, Unsafe region
cnt 7 ® ° ° ° ® Sets of states where such
L, interleaving occurs form
! unsdfe regions
H,
@ ° ° ° ° *— Thread 1
H, L, U, S, T,
N\ J
"

critical section wrt cnt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Critical Sections and Unsafe Regions

Thread 2

not enter any unsafe region

9 ® @
S, | x Claim: A trajectory is correct (wrt
critical cnt) iff it is safe

® o — - >
T T W Def: A trajectory is safe iff it does
2

H o [) o
section .
wrt < U, Unsafe region
cht — —
unsafe
o o

¢ T *— Thread 1

critical section wrt cnt

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

badcnt.c: Improper Synchronization

/* Global shared variable */ [* Thread routine */
volatile long cnt = 0; /* Counter */ void *thread(void *vargp)
{
int main(int argc, char **argv) long i, niters =
{ _ *((long *)vargp);
long niters;

pthread_t tid1, tid2; for (i = 0; i < niters; i++)

- : s
niters = atoi(argv([1]); cnt++;

Pthread create(&tid1, NULL, _
thread, &niters); return NULL;

Pthread create(&tid2, NULL, Vriable

S LA R T
Pthread join(tid1l, NULL); cnt no yes yes
Pthread _join(tid2, NULL);

niters.m yes no no
[* Check result */ tidl.m yes no no

If (cnt !'= (2 * niters)) .
printf("BOOM! cnt=%Id\n", cnt); .1 no yes no

else .
printf("OK cnt=%lId\n", cnt); -2 No No Yes
exit(0); niters.1 No Yes No

} badent.c

niters.2 No No yes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enforcing Mutual Exclusion

m Question: How can we guarantee a safe trajectory?

m Answer: We must synchronize the execution of the threads so
that they can never have an unsafe trajectory.

= j.e., need to guarantee mutually exclusive access for each critical
section.

m Classic solution:
= Semaphores (Edsger Dijkstra)

m Other approaches (out of our scope)
= Mutex and condition variables (Pthreads)
= Monitors (Java)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Semaphores

m Semaphore: non-negative global integer synchronization variable.
Manipulated by P and V operations.

m P(s)
= |fsis nonzero, then decrement s by 1 and return immediately.
= Test and decrement operations occur atomically (indivisibly)

= |fsiszero, then suspend thread until s becomes nonzero and the thread is
restarted by a V operation.

= After restarting, the P operation decrements s and returns control to the
caller.

m V(s):
" |ncrement s by 1.
= |ncrement operation occurs atomically

= |f there are any threads blocked in a P operation waiting for s to become non-
zero, then restart exactly one of those threads, which then completes its P
operation by decrementing s.

m Semaphore invariant: (s >=0)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Semaphores

m Semaphore: non-negative global integer synchronization
variable

m Manipulated by P and V operations:
= P(s): [while (s == 0) wait(); s--; |
= Dutch for "Proberen" (test)
" V(s): [st+; |
= Dutch for "Verhogen" (increment)

m OS kernel guarantees that operations between brackets [] are
executed indivisibly

= Only one P or V operation at a time can modify s.
= Whenwhileloopin Pterminates, only that P can decrement S

m Semaphore invariant: (s >= 0)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

C Semaphore Operations

Pthreads functions:

#include <semaphore.h>
int sem _1nit(sem t *s, 0, unsigned int val);} /7* s = val */

Int sem wait(sem t *s); /* P(s) */
Int sem post(sem t *s); /* V(s) */

CS:APP wrapper functions:

#include "'csapp.h”

voild P(sem_t *s); /* Wrapper function for sem wait */
void V(sem_t *s); /* Wrapper function for sem post */

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

badcnt.c: Improper Synchronization

[* Global shared variable */ [* Thread routine */
volatile long cnt = 0; /* Counter */ void *thread(void *vargp)
{
int main(int argc, char **argv) long i, niters =
{ _ *((long *)vargp);
long niters;
pthread t tid1, tid2; for (i = 0: i < niters: i++)
niters = atoi(argv[1]); LK
Pthread create(&tid1, NULL, _
thread, &niters); return NULL;
Pthread create(&tid2, NULL, }
thread, &niters);
Pthread join(tid1, NULL);
Pthread _join(tid2, NULL);
"Gl res il How can we fix this using
If (cnt !'= (2 * niters))
printf("BOOM! cnt=%lId\n", cnt); semaphores?
else
printf(" OK cnt=%lId\n", cnt);
exit(0);
} badcnt.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Using Semaphores for Mutual Exclusion

m Basicidea:

= Associate a unique semaphore mutex, initially 1, with each shared
variable (or related set of shared variables).

= Surround corresponding critical sections with P(mutex) and
V(mutex) operations.

m Terminology:

" Binary semaphore: semaphore whose value is always 0 or 1
= Mutex: binary semaphore used for mutual exclusion

= P operation: “locking” the mutex

= V operation: “unlocking” or “releasing” the mutex

= “Holding” a mutex: locked and not yet unlocked.

= Counting semaphore: used as a counter for set of available
resources.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

goodcnt.c: Proper Synchronization

m Define and initialize a mutex for the shared variable cnt:

volatile long cnt = 0; /* Counter */
sem_t mutex; [* Semaphore that protects cnt */

Sem_init(&mutex, 0, 1); /* mutex = 1 */

C em Crsvvnmsrmel avidioaal cAacdkiaAaw sasikla D A 17,
OK cnt=2000000 BOOM! cnt=1036525 Slowdown

real O0mO0.138s Om0.007s 20X
user 0m0.120s OmO0.008s 15X
sys 0mO0.108s OmO0.000s NaN

And slower means much slower! ver

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Why Mutexes Work

Thread 2
Provide mutually exclusive
' ° ° ° ° * * g access to shared variable by
T, surrounding critical section
] with P and V operations on
V(s) semaphore S (initially set to 1)
SZ
U, Unsafe region
I'2
P(s)
H, 1 0
. . Thread 1
A H Pls) L U S V) T,
Initially

Bryantsarﬁ (;'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Why Mutexes Work

Thread 2
Provide mutually exclusive
' ¢ ¢ ¢ * * * g access to shared variable by
T, surrounding critical section
i with P and V operations on
V(s) semaphore S (initially set to 1)
S, Semaphore invariant
X creates a forbidden region
U that encloses unsafe region
2 ' and that cannot be entered by
any trajectory.
I'2
P(s)
H, 1 0
. . Thread 1
A H Pls) L U S V) T,
Initially

Bryantsarﬁ (;'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Why Mutexes Work

Thread 2
Provide mutually exclusive
' ¢ ¢ ¢ * * * g access to shared variable by
T, surrounding critical section
i with P and V operations on
V(s) semaphore S (initially set to 1)
S, Semaphore invariant
X creates a forbidden region
U that encloses unsafe region
2 ' and that cannot be entered by
any trajectory.
L, .
P(s)
H 1 0 0
. Thread 1

2
A H Ps) L U S Vs T,
Initially

Bryantsarﬁ (J'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Why Mutexes Work

Thread 2
. . 0 0 0 0 . . Provide mutually exclusive
' ¢ ¢ ¢ * * * g access to shared variable by
T, surrounding critical section
! o0 . .0 N with P and V operations on
V(s) 0 o Forbidden region o o semaphore S (initially set to 1)
S, ! ! A Semaphore invariant
| 0 e 0 a1 el e e W0 L0 creates a forbidden region
U that encloses unsafe region
2 S OO0 and that cannot be entered by
L any trajectory.
: p 0 [O [] : [} ! [} ' : [] [] 0 [0
P(s) 1 1 0 0 0 0 1 1
H,
1 A Lo 0 0 0 Ll el Thread 1
A H Pls) L U S V) T,
Initially

Bryantsarﬁ (J'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Summary

m Programmers need a clear model of how variables are
shared by threads.

m Variables shared by multiple threads must be protected
to ensure mutually exclusive access.

m Semaphores are a fundamental mechanism for enforcing
mutual exclusion.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

	Synchronization: Basics��15-213: Introduction to Computer Systems�24th Lecture, April, 12, 2016
	Today
	Process: Traditional View
	Process: Alternative View
	Process with Two Threads
	Shared Variables in Threaded C Programs
	Threads Memory Model
	Example Program to Illustrate Sharing
	Mapping Variable Instances to Memory
	Mapping Variable Instances to Memory
	Shared Variable Analysis
	Shared Variable Analysis
	Synchronizing Threads		
	badcnt.c: Improper Synchronization
	Assembly Code for Counter Loop
	Concurrent Execution
	Concurrent Execution (cont)
	Concurrent Execution (cont)
	Progress Graphs
	Trajectories in Progress Graphs
	Trajectories in Progress Graphs
	Critical Sections and Unsafe Regions
	Critical Sections and Unsafe Regions
	badcnt.c: Improper Synchronization
	Enforcing Mutual Exclusion
	Semaphores
	Semaphores
	C Semaphore Operations
	badcnt.c: Improper Synchronization
	Using Semaphores for Mutual Exclusion
	goodcnt.c: Proper Synchronization
	Why Mutexes Work
	Why Mutexes Work
	Why Mutexes Work
	Why Mutexes Work
	Summary

