
Carnegie Mellon

1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronization: Basics

15-213: Introduction to Computer Systems
24th Lecture, April, 12, 2016

Instructors:
Seth Copen Goldstein, Franz Franchetti, Ralf Brown, and Brian Railing

Carnegie Mellon

2 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Threads review
 Sharing
 Mutual exclusion
 Semaphores

Carnegie Mellon

3 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process: Traditional View
 Process = process context + code, data, and stack

shared libraries

run-time heap

0

read/write data

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and stack

read-only code/data

stack
SP

PC

brk

Process context

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Carnegie Mellon

4 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process: Alternative View
 Process = thread + code, data, and kernel context

shared libraries

run-time heap

0

read/write data

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and kernel context

read-only code/data

stack
SP

PC

brk

Thread

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Carnegie Mellon

5 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process with Two Threads

shared libraries

run-time heap

0

read/write data

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and kernel context

read-only code/data stack
SP PC

brk

Thread 1

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

stack
SP

Thread 2

Carnegie Mellon

6 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variables in Threaded C Programs
 Question: Which variables in a threaded C program are

shared?
 The answer is not as simple as “global variables are shared” and

“stack variables are private”

 Def: A variable x is shared if and only if multiple threads

reference some instance of x.

 Requires answers to the following questions:
 What is the memory model for threads?
 How are instances of variables mapped to memory?
 How many threads might reference each of these instances?

Carnegie Mellon

7 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads Memory Model
 Conceptual model:
 Multiple threads run within the context of a single process
 Each thread has its own separate thread context

 Thread ID, stack, stack pointer, PC, condition codes, and GP registers

 All threads share the remaining process context
 Code, data, heap, and shared library segments of the process virtual address space
 Open files and installed handlers

 Operationally, this model is not strictly enforced:
 Register values are truly separate and protected, but…
 Any thread can read and write the stack of any other thread

The mismatch between the conceptual and operation model
is a source of confusion and errors

Carnegie Mellon

8 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Program to Illustrate Sharing
char **ptr; /* global var */

int main()
{
 long i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };

 ptr = msgs;
 for (i = 0; i < 2; i++)
 Pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 Pthread_exit(NULL);
}

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

Peer threads reference main thread’s stack
indirectly through global ptr variable

sharing.c

Carnegie Mellon

9 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Variable Instances to Memory
 Global variables
 Def: Variable declared outside of a function
 Virtual memory contains exactly one instance of any global variable

 Local variables
 Def: Variable declared inside function without static attribute
 Each thread stack contains one instance of each local variable

 Local static variables
 Def: Variable declared inside function with the static attribute
 Virtual memory contains exactly one instance of any local static

variable.

Carnegie Mellon

10 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

char **ptr; /* global var */

int main()
{
 long i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };

 ptr = msgs;
 for (i = 0; i < 2; i++)
 Pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 Pthread_exit(NULL);
}

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

Mapping Variable Instances to Memory
Global var: 1 instance (ptr [data])

Local static var: 1 instance (cnt [data])

Local vars: 1 instance (i.m, msgs.m)

Local var: 2 instances (
 myid.p0 [peer thread 0’s stack],
 myid.p1 [peer thread 1’s stack]
)

sharing.c

Carnegie Mellon

11 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variable Analysis
 Which variables are shared?

 Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:
 ptr, cnt, and msgs are shared
 i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr
cnt
i.m
msgs.m
myid.p0
myid.p1

yes yes yes
no yes yes
yes no no
yes yes yes
no yes no
no no yes

char **ptr; /* global */
int main() {
 int i;
 pthread_t tid;
 char *msgs[2] = {“Hello from foo",
 "Hello from bar"};
 ptr = msgs;
 for (i = 0; i < 2; i++)
 Pthread_create(&tid,…, (void *)i);
 Pthread_exit(NULL);

/* thread routine */
void *thread(void *vargp)
{
 int myid = (int)vargp;
 static int cnt = 0;

 printf("[%d]: %s (svar=%d)\n",
 myid, ptr[myid], ++cnt);
}

Carnegie Mellon

12 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variable Analysis
 Which variables are shared?

 Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:
 ptr, cnt, and msgs are shared
 i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr
cnt
i.m
msgs.m
myid.p0
myid.p1

yes yes yes
no yes yes
yes no no
yes yes yes
no yes no
no no yes

Carnegie Mellon

13 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Threads
 Shared variables are handy...

 …but introduce the possibility of nasty synchronization

errors.

Carnegie Mellon

14 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt.c: Improper Synchronization
/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{
 long niters;
 pthread_t tid1, tid2;

 niters = atoi(argv[1]);
 Pthread_create(&tid1, NULL,
 thread, &niters);
 Pthread_create(&tid2, NULL,
 thread, &niters);
 Pthread_join(tid1, NULL);
 Pthread_join(tid2, NULL);

 /* Check result */
 if (cnt != (2 * niters))
 printf("BOOM! cnt=%ld\n", cnt);
 else
 printf("OK cnt=%ld\n", cnt);
 exit(0);
}

/* Thread routine */
void *thread(void *vargp)
{
 long i, niters =
 *((long *)vargp);

 for (i = 0; i < niters; i++)
 cnt++;

 return NULL;
}

linux> ./badcnt 10000
OK cnt=20000
linux> ./badcnt 10000
BOOM! cnt=13051
linux>

cnt should equal 20,000.

What went wrong? badcnt.c

Carnegie Mellon

15 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Code for Counter Loop

for (i = 0; i < niters; i++)
 cnt++;

C code for counter loop in thread i

 movq (%rdi), %rcx
 testq %rcx,%rcx
 jle .L2
 movl $0, %eax
.L3:
 movq cnt(%rip),%rdx
 addq $1, %rdx
 movq %rdx, cnt(%rip)
 addq $1, %rax
 cmpq %rcx, %rax
 jne .L3
.L2:

Hi : Head

Ti : Tail

Li : Load cnt
Ui : Update cnt
Si : Store cnt

Asm code for thread i

Carnegie Mellon

16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution
 Key idea: In general, any sequentially consistent interleaving

is possible, but some give an unexpected result!
 Ii denotes that thread i executes instruction I
 %rdxi is the content of %rdx in thread i’s context

H1
L1
U1
S1
H2
L2
U2
S2
T2
T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instri cnt %rdx1

OK

-
-
-
-
-
1
2
2
2
-

%rdx2

Thread 1
critical section

Thread 2
critical section

Carnegie Mellon

17 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution (cont)
 Incorrect ordering: two threads increment the counter,

but the result is 1 instead of 2

H1
L1
U1
H2
L2
S1
T1
U2
S2
T2

1
1
1
2
2
1
1
2
2
2

-
0
1
-
-
1
1
-
-
-

0
0
0
0
0
1
1
1
1
1

i (thread) instri cnt %rdx1
-
-
-
-
0
-
-
1
1
1

%rdx2

Oops!

Carnegie Mellon

18 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution (cont)
 How about this ordering?

 We can analyze the behavior using a progress graph

H1
L1
H2
L2
U2
S2
U1
S1
T1
T2

1
1
2
2
2
2
1
1
1
2

i (thread) instri cnt %rdx1 %rdx2

0
0

0
1
1 1

1
1 1

1 Oops!
1

Carnegie Mellon

19 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Progress Graphs
A progress graph depicts
the discrete execution
state space of concurrent
 threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst1, Inst2).

E.g., (L1, S2) denotes state
where thread 1 has
completed L1 and thread
2 has completed S2. H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(L1, S2)

Carnegie Mellon

20 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trajectories in Progress Graphs

A trajectory is a sequence of legal
state transitions that describes one
possible concurrent execution of the
threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Carnegie Mellon

21 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trajectories in Progress Graphs

A trajectory is a sequence of legal
state transitions that describes one
possible concurrent execution of the
threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Carnegie Mellon

22 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Critical Sections and Unsafe Regions

L, U, and S form a critical
section with respect to the
shared variable cnt

Instructions in critical
sections (wrt some shared
variable) should not be
interleaved

Sets of states where such
interleaving occurs form
unsafe regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

Carnegie Mellon

23 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Critical Sections and Unsafe Regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

Def: A trajectory is safe iff it does
not enter any unsafe region

Claim: A trajectory is correct (wrt
cnt) iff it is safe

unsafe

safe

Carnegie Mellon

24 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt.c: Improper Synchronization
/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{
 long niters;
 pthread_t tid1, tid2;

 niters = atoi(argv[1]);
 Pthread_create(&tid1, NULL,
 thread, &niters);
 Pthread_create(&tid2, NULL,
 thread, &niters);
 Pthread_join(tid1, NULL);
 Pthread_join(tid2, NULL);

 /* Check result */
 if (cnt != (2 * niters))
 printf("BOOM! cnt=%ld\n", cnt);
 else
 printf("OK cnt=%ld\n", cnt);
 exit(0);
}

/* Thread routine */
void *thread(void *vargp)
{
 long i, niters =
 *((long *)vargp);

 for (i = 0; i < niters; i++)
 cnt++;

 return NULL;
}

badcnt.c

Variable main thread1 thread2

cnt no yes yes

niters.m yes no no

tid1.m yes no no

i.1 no yes no

i.2 No No Yes

niters.1 No Yes No

niters.2 No No yes

Carnegie Mellon

25 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enforcing Mutual Exclusion
 Question: How can we guarantee a safe trajectory?

 Answer: We must synchronize the execution of the threads so

that they can never have an unsafe trajectory.
 i.e., need to guarantee mutually exclusive access for each critical

section.

 Classic solution:
 Semaphores (Edsger Dijkstra)

 Other approaches (out of our scope)
 Mutex and condition variables (Pthreads)
 Monitors (Java)

Carnegie Mellon

26 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Semaphores
 Semaphore: non-negative global integer synchronization variable.

Manipulated by P and V operations.
 P(s)
 If s is nonzero, then decrement s by 1 and return immediately.

 Test and decrement operations occur atomically (indivisibly)
 If s is zero, then suspend thread until s becomes nonzero and the thread is

restarted by a V operation.
 After restarting, the P operation decrements s and returns control to the

caller.
 V(s):
 Increment s by 1.

 Increment operation occurs atomically
 If there are any threads blocked in a P operation waiting for s to become non-

zero, then restart exactly one of those threads, which then completes its P
operation by decrementing s.

 Semaphore invariant: (s >= 0)

Carnegie Mellon

27 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Semaphores
 Semaphore: non-negative global integer synchronization

variable

 Manipulated by P and V operations:
 P(s): [while (s == 0) wait(); s--;]

 Dutch for "Proberen" (test)
 V(s): [s++;]

 Dutch for "Verhogen" (increment)

 OS kernel guarantees that operations between brackets [] are
executed indivisibly

 Only one P or V operation at a time can modify s.
 When while loop in P terminates, only that P can decrement s

 Semaphore invariant: (s >= 0)

Carnegie Mellon

28 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Semaphore Operations

Pthreads functions:
#include <semaphore.h>

int sem_init(sem_t *s, 0, unsigned int val);} /* s = val */

int sem_wait(sem_t *s); /* P(s) */
int sem_post(sem_t *s); /* V(s) */

CS:APP wrapper functions:
 #include "csapp.h”

void P(sem_t *s); /* Wrapper function for sem_wait */
void V(sem_t *s); /* Wrapper function for sem_post */

Carnegie Mellon

29 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt.c: Improper Synchronization
/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{
 long niters;
 pthread_t tid1, tid2;

 niters = atoi(argv[1]);
 Pthread_create(&tid1, NULL,
 thread, &niters);
 Pthread_create(&tid2, NULL,
 thread, &niters);
 Pthread_join(tid1, NULL);
 Pthread_join(tid2, NULL);

 /* Check result */
 if (cnt != (2 * niters))
 printf("BOOM! cnt=%ld\n", cnt);
 else
 printf("OK cnt=%ld\n", cnt);
 exit(0);
}

/* Thread routine */
void *thread(void *vargp)
{
 long i, niters =
 *((long *)vargp);

 for (i = 0; i < niters; i++)
 cnt++;

 return NULL;
}

How can we fix this using
semaphores?

badcnt.c

Carnegie Mellon

30 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using Semaphores for Mutual Exclusion
 Basic idea:
 Associate a unique semaphore mutex, initially 1, with each shared

variable (or related set of shared variables).
 Surround corresponding critical sections with P(mutex) and
 V(mutex) operations.

 Terminology:
 Binary semaphore: semaphore whose value is always 0 or 1
 Mutex: binary semaphore used for mutual exclusion

 P operation: “locking” the mutex
 V operation: “unlocking” or “releasing” the mutex
 “Holding” a mutex: locked and not yet unlocked.

 Counting semaphore: used as a counter for set of available
resources.

Carnegie Mellon

31 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

goodcnt.c: Proper Synchronization
 Define and initialize a mutex for the shared variable cnt:

 volatile long cnt = 0; /* Counter */
 sem_t mutex; /* Semaphore that protects cnt */

 Sem_init(&mutex, 0, 1); /* mutex = 1 */

 Surround critical section with P and V:

 for (i = 0; i < niters; i++) {
 P(&mutex);
 cnt++;
 V(&mutex);
 }

linux> ./goodcnt 10000
OK cnt=20000
linux> ./goodcnt 10000
OK cnt=20000
linux>

Warning: It’s orders of magnitude slower
than badcnt.c.

goodcnt.c

 OK cnt=2000000 BOOM! cnt=1036525 Slowdown

real 0m0.138s 0m0.007s 20X
user 0m0.120s 0m0.008s 15X
sys 0m0.108s 0m0.000s NaN

And slower means much slower!

Carnegie Mellon

32 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work
Provide mutually exclusive
access to shared variable by
surrounding critical section
with P and V operations on
semaphore s (initially set to 1)

H1 P(s) V(s) T1
Thread 1

Thread 2

L1 U1 S1

H2

P(s)

V(s)

T2

L2

U2

S2

Initially
s = 1

1 0 0 0

0

-1

Unsafe region

Carnegie Mellon

33 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work
Provide mutually exclusive
access to shared variable by
surrounding critical section
with P and V operations on
semaphore s (initially set to 1)

Semaphore invariant
creates a forbidden region
that encloses unsafe region
and that cannot be entered by
any trajectory.

H1 P(s) V(s) T1
Thread 1

Thread 2

L1 U1 S1

H2

P(s)

V(s)

T2

L2

U2

S2

Initially
s = 1

1 0 0 0

0

-1

Unsafe region

Carnegie Mellon

34 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work
Provide mutually exclusive
access to shared variable by
surrounding critical section
with P and V operations on
semaphore s (initially set to 1)

Semaphore invariant
creates a forbidden region
that encloses unsafe region
and that cannot be entered by
any trajectory.

H1 P(s) V(s) T1
Thread 1

Thread 2

L1 U1 S1

H2

P(s)

V(s)

T2

L2

U2

S2

Initially
s = 1

1 0 0 0

0

Unsafe region

0 1

0

Carnegie Mellon

35 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsafe region

Why Mutexes Work
Provide mutually exclusive
access to shared variable by
surrounding critical section
with P and V operations on
semaphore s (initially set to 1)

Semaphore invariant
creates a forbidden region
that encloses unsafe region
and that cannot be entered by
any trajectory.

H1 P(s) V(s) T1
Thread 1

Thread 2

L1 U1 S1

H2

P(s)

V(s)

T2

L2

U2

S2

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Initially
s = 1

Forbidden region

Carnegie Mellon

36 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
 Programmers need a clear model of how variables are

shared by threads.

 Variables shared by multiple threads must be protected
to ensure mutually exclusive access.

 Semaphores are a fundamental mechanism for enforcing
mutual exclusion.

	Synchronization: Basics��15-213: Introduction to Computer Systems�24th Lecture, April, 12, 2016
	Today
	Process: Traditional View
	Process: Alternative View
	Process with Two Threads
	Shared Variables in Threaded C Programs
	Threads Memory Model
	Example Program to Illustrate Sharing
	Mapping Variable Instances to Memory
	Mapping Variable Instances to Memory
	Shared Variable Analysis
	Shared Variable Analysis
	Synchronizing Threads		
	badcnt.c: Improper Synchronization
	Assembly Code for Counter Loop
	Concurrent Execution
	Concurrent Execution (cont)
	Concurrent Execution (cont)
	Progress Graphs
	Trajectories in Progress Graphs
	Trajectories in Progress Graphs
	Critical Sections and Unsafe Regions
	Critical Sections and Unsafe Regions
	badcnt.c: Improper Synchronization
	Enforcing Mutual Exclusion
	Semaphores
	Semaphores
	C Semaphore Operations
	badcnt.c: Improper Synchronization
	Using Semaphores for Mutual Exclusion
	goodcnt.c: Proper Synchronization
	Why Mutexes Work
	Why Mutexes Work
	Why Mutexes Work
	Why Mutexes Work
	Summary

