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A Client-Server Transaction

m Most network applications are based on the client-server
model:
= A server process and one or more client processes
= Server manages some resource
= Server provides service by manipulating resource for clients
= Server activated by request from client (vending machine analogy)

1. Client sends request

Client ) Server

Resource

process / process

4. Client 3. Server sends response 2. Server
handles handles
response request

Note: clients and servers are processes running on hosts
(can be the same or different hosts)
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Hardware Organization of a Network Host
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Hardware Organization of a Network Host
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Computer Networks

m A network is a hierarchical system of boxes and wires
organized by geographical proximity

= SAN (System Area Network) spans cluster or machine room
= Switched Ethernet, Quadrics QSW, ...

= LAN (Local Area Network) spans a building or campus
= Ethernet is most prominent example

= WAN (Wide Area Network) spans country or world
= Typically high-speed point-to-point phone lines

m Aninternetwork (internet) is an interconnected set of

networks

" The Global IP Internet (uppercase
of an internet (lowercase “i”)

IIIH

) is the most famous example

m Let’s see how an internet is built from the ground up
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Lowest Level: Ethernet Segment

host host host

100 Mb/s m 100 Mb/s

port
m Ethernet segment consists of a collection of hosts connected
by wires (twisted pairs) to a hub

m Spans room or floor in a building

m Operation
= Each Ethernet adapter has a unique 48-bit address (MAC address)
= E.g.,00:16:ea:e3:54:e6
" Hosts send bits to any other host in chunks called frames

= Hub slavishly copies each bit from each port to every other port

= Every host sees every bit

= Note: Hubs are on their way out. Bridges (switches, routers) became cheap enough
to replace them ;
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Next Level: Bridged Ethernet Segment
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m Bridges cleverly learn which hosts are reachable from which

ports and then selectively copy frames from port to port
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Conceptual View of LANs

m For simplicity, hubs, bridges, and wires are often shown as a
collection of hosts attached to a single wire:

host | | host |**:| host
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Next Level: internets

m Multiple incompatible LANs can be physically connected by
specialized computers called routers

m The connected networks are called an internet (lower case)

host host | *** | host host host | *** | host

LAN 1 and LAN 2 might be completely different, totally incompatible
(e.qg., Ethernet, Fibre Channel, 802.11%*, T1-links, DSL, ...)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9



Carnegie Mellon

Logical Structure of an internet

m Ad hoc interconnection of networks
= No particular topology
= Vastly different router & link capacities

m Send packets from source to destination by hopping through
networks
= Router forms bridge from one network to another
= Different packets may take different routes
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The Notion of an internet Protocol

m How is it possible to send bits across incompatible LANs
and WANs?

m Solution: protocol software running on each host and

router

= Protocol is a set of rules that governs how hosts and routers should
cooperate when they transfer data from network to network.

= Smooths out the differences between the different networks
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What Does an internet Protocol Do?

m Provides a naming scheme
= Aninternet protocol defines a uniform format for host addresses

= Each host (and router) is assigned at least one of these internet
addresses that uniquely identifies it

m Provides a delivery mechanism
= Aninternet protocol defines a standard transfer unit (packet)
= Packet consists of header and payload

= Header: contains info such as packet size, source and destination
addresses

= Payload: contains data bits sent from source host
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Transferring internet Data Via Encapsulation

LAN1

(1) data
internet packet

(2) data PH | FH1
LAN1 frame

(3) data PH | FH1

(4)

PH: Internet packet header
IfrHr:\tlaM’ﬁEmer@@dze{ystems: A Programmer’s Perspective, Ihird edition
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protocol protocol
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Other Issues

m We are glossing over a number of important questions:

= What if different networks have different maximum frame sizes?
(segmentation)

" How do routers know where to forward frames?

How are routers informed when the network topology changes?
= What if packets get lost?

m These (and other) questions are addressed by the area of
systems known as computer networking
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Global IP Internet (upper case)

m Most famous example of an internet

m Based on the TCP/IP protocol family
= |P (Internet Protocol) :

= Provides basic naming scheme and unreliable delivery capability
of packets (datagrams) from host-to-host

= UDP (Unreliable Datagram Protocol)

= Uses IP to provide unreliable datagram delivery from
process-to-process

= TCP (Transmission Control Protocol)

= Uses IP to provide reliable byte streams from process-to-process
over connections

m Accessed via a mix of Unix file I/O and functions from the
sockets interface
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Hardware and Software Organization
of an Internet Application

Internet client host Internet server host
Client User code Server
Sockets interface ¥ ¥
(system calls) v v
TCP/IP Kernel code TCP/IP
Hardware interface ¥ ¥
(interrupts) v v
Network | Hardware Network
adapter | and firmware adapter
[ Global IP Internet ]
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A Programmer’s View of the Internet

1. Hosts are mapped to a set of 32-bit /P addresses
= 128.2.203.179

2. The set of IP addresses is mapped to a set of identifiers
called Internet domain names
= 128.2.203.179 is mapped to www.cs.cmu.edu

3. A process on one Internet host can communicate with a
process on another Internet host over a connection
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Carnegie Mellon

Aside: IPv4 and IPv6

m The original Internet Protocol, with its 32-bit addresses, is
known as Internet Protocol Version 4 (IPv4)

m 1996: Internet Engineering Task Force (IETF) introduced
Internet Protocol Version 6 (IPv6) with 128-bit addresses
" |ntended as the successor to |IPv4

m As of 2015, vast majority of Internet traffic still carried by
IPv4

" Only 4% of users access Google services using IPv6.

m We will focus on IPv4, but will show you how to write
networking code that is protocol-independent.
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(1) IP Addresses

m 32-bit IP addresses are stored in an /P address struct

= |P addresses are always stored in memory in network byte order
(big-endian byte order)

" Truein general for any integer transferred in a packet header from one
machine to another.

= E.g., the port number used to identify an Internet connection.

/* Internet address structure */
struct 1n_addr {
uint32_t s addr; /* network byte order (big-endian) */

}:
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Dotted Decimal Notation

m By convention, each byte in a 32-bit IP address is represented
by its decimal value and separated by a period
= [P address: Ox8002C2F2 = 128.2. . 242

m Use getaddrinfo and getnameinfo functions (described
later) to convert between IP addresses and dotted decimal
format.
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(2) Internet Domain Names

unnamed root
.net .edu .80V .com First-level domain names
mit cmu berkeley amazon Second-level domain names
cS ece WWW Third-level domain names
/ \ 176.32.98.166
ics pdi
whaleshark WWW

128.2.210.175 128.2.131.66
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Domain Naming System (DNS)

m The Internet maintains a mapping between IP addresses and
domain names in a huge worldwide distributed database called
DNS

m Conceptually, programmers can view the DNS database as a
collection of millions of host entries.

= Each host entry defines the mapping between a set of domain names and IP
addresses.

" |In a mathematical sense, a host entry is an equivalence class of domain
names and IP addresses.
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Properties of DNS Mappings

m Can explore properties of DNS mappings using nslookup

= Qutput edited for brevity

m Each host has a locally defined domain name localhost
which always maps to the loopback address 127 .0.0.1

I 1nux> nslookup localhost
Address: 127.0.0.1

m Use hosthame to determine real domain name of local host:

1 1nux> hostname
whaleshark.i1cs.cs.cmu.edu
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Properties of DNS Mappings (cont)

m Simple case: one-to-one mapping between domain name and IP
address:

1 1nux> nslookup whaleshark.ics.cs.cmu.edu
Address: 128.2.210.175

m Multiple domain names mapped to the same IP address:

I 1nux> nslookup cs.mit.edu
Address: 18.62.1.6

1 1nux> nslookup eecs.mit.edu
Address: 18.62.1.6
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Properties of DNS Mappings (cont)

m Multiple domain names mapped to multiple IP addresses:

1 1nux> nslookup www.twitter.com
Address: 199.16.156.6

Address: 199.16.156.70

Address: 199.16.156.102
Address: 199.16.156.230

1inux> nslookup twitter.com
Address: 199.16.156.102
Address: 199.16.156.230
Address: 199.16.156.6
Address: 199.16.156.70

m Some valid domain names don’t map to any IP address:

I inux> nslookup i1cs.cs.cmu.edu
*** Can"t find ics.cs.cmu.edu: No answer
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(3) Internet Connections

m Clients and servers communicate by sending streams of bytes
over connections. Each connection is:

" Point-to-point: connects a pair of processes.
" Full-duplex: data can flow in both directions at the same time,

= Reliable: stream of bytes sent by the source is eventually received by
the destination in the same order it was sent.

m A socket is an endpoint of a connection
" Socket address is an IPaddress:port pair

m A portis a 16-bit integer that identifies a process:

= Ephemeral port: Assigned automatically by client kernel when client
makes a connection request.

= Well-known port: Associated with some service provided by a server
(e.g., port 80 is associated with Web servers)
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Well-known Ports and Service Names

m Popular services have permanently assigned well-known
ports and corresponding well-known service names:
= echo server: 7/echo
= ssh servers: 22/ssh
= email server: 25/smtp
= Web servers: 80/http

m Mappings between well-known ports and service names
is contained in the file /etc/services on each Linux

machine.
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Anatomy of a Connection

m A connection is uniquely identified by the socket
addresses of its endpoints (socket pair)

= (cliaddr:cliport, servaddr:servport)

Client socket address Server socket address
128.2.194.242:51213 :80
L/ \ Server
Connection socket pair (port 80)
(128.2.194.242:51213, :80)
Client host address Server host address
128.2.194.242
51213 is an ephemeral port 80 is a well-known port
allocated by the kernel associated with Web servers
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Using Ports to Identify Services

Server host 128.2.194.242

Client host Service request for
128.2.194.242:80

(i.e., the Web server)
Client

Web server
(port 80)

Kernel

) 4

Echo server
(port 7)

Service request for
128.2.194.242:7

) (i.e., the echo server)
Client

Web server
(port 80)

Kernel

) 4

Echo server
(port 7)
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Sockets Interface

m Set of system-level functions used in conjunction with
Unix 1/0O to build network applications.

m Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of the
Internet protocols.

m Available on all modern systems
= Unix variants, Windows, OS X, |I0S, Android, ARM
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Sockets

m What is a socket?
= To the kernel, a socket is an endpoint of communication

= To an application, a socket is a file descriptor that lets the
application read/write from/to the network

= Remember: All Unix I/O devices, including networks, are
modeled as files

m Clients and servers communicate with each other by
reading from and writing to socket descriptors

- [
< »

clientfd serverfd

m The main distinction between regular file /O and socket
1/0 is how the application “opens” the socket descriptors
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Socket Address Structures

m Generic socket address:
" For address arguments to connect, bind, and accept
= Necessary only because C did not have generic (void *) pointers when
the sockets interface was designed
= For casting convenience, we adopt the Stevens convention:

typedef struct sockaddr SA;

struct sockaddr {
uintleé_t sa family; /* Protocol family */
char sa_dataf14]; /* Address data. */
};
sa family
— _J/
V

Family Specific
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Socket Address Structures

m Internet-specific socket address:

= Must cast (struct sockaddr in *)to(struct sockaddr ¥*)
for functions that take socket address arguments.

struct sockaddr_in {

uintlé_t sin_family; /* Protocol family (always AF_INET) */
uintle_t sin_port; /* Port num in network byte order */
struct iIn_addr sin_addr; /* 1P addr in network byte order */

unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */

¥

sin_port sin_addr

AF_INET O|0|O0O|]O0O|O0O|O]O]O

sa family W )

Family Specific

sin_family
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open_clientfd

2. Start client

1. Start server
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Sockets
Interface

open_listenfd

Client Server
getaddrinfo getaddrinfo
socket socket

bind
listen
Connectign l
request
connect --) -------- K~> accept

Client /
Server
Session

A 4

rio_writen

A 4

'

rio_readlineb

rio_readlineb

'

rio_writen

3. Exchange\
data

Await connection
request from
next client /
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¥

4. Disconnect client

rio_readlineb

\ 4

close

5. Drop client
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Client Server Sockets

_ _ 3\
( getaddrinfo getaddrinfo Inte rfa ce
socket socket
l \ open_listenfd
open_cl ientfd< bind
listen
Connection l /
request
\ connect  [------------- > accept <
v v
Client / » rio writen »rio_readlinebie
Server | | . .
Session Await connection
rio_readlineb |« rio_writen request from
next client
v v
close  f(----- EOF .. »rio_readlineb
\ 4
close
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getaddrinfo
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Sockets
Interface

>open_listenfd

Await connection

request from
next client

open_clientfd< bind
listen
Connection l /
request

\ connect  [------------- > accept <
v v

Client / » rio writen »rio_readlinebie
Server | |

Session rio_readlineb |« rio_writen

\4 v

close  f(----- EOF .. »rio_readlineb
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Sockets Interface: socket

m Clients and servers use the socket function to create a
socket descriptor:

int socket(int domain, int type, iInt protocol)

m Example:

int clientfd = Socket(AF_INET, SOCK_STREAM, 0);

/ \

Indicates that we are using Indicates that the socket
32-bit IPV4 addresses will be the end point of a
connection

Protocol specific! Best practice is to use getaddrinfo to
generate the parameters automatically, so that code is
protocol independent.
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Sockets
Interface

>open_listenfd

Await connection

request from
next client

Client Server
N
( getaddrinfo getaddrinfo
socket socket
open_clientfd<
listen
Connection l /
request
\ connect  [------------- > accept <
Client / » rio writen »rio_readlinebie
Server l l
Session rio_readlineb |« rio_writen
close  f(----- EOF ___. »rio_readlineb
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Sockets Interface: bi1nd

m Aserver uses bind to ask the kernel to associate the
server’s socket address with a socket descriptor:

int bind(int sockfd, SA *addr, socklen_t addrlen);

m The process can read bytes that arrive on the connection
whose endpoint is addr by reading from descriptor
sockfd.

m Similarly, writes to sockfd are transferred along
connection whose endpoint is addr .

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.
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Sockets
Interface

>open_listenfd

Await connection

request from
next client

Client Server
N
( getaddrinfo getaddrinfo
socket socket
open_clientfd< bind
Connection /
request
\ connect  [------------- > accept <
Client / » rio writen »rio_readlinebie
Server l l
Session rio_readlineb |« rio_writen
close  f(----- EOF ___. »rio_readlineb
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Sockets Interface: l 1sten

m By default, kernel assumes that descriptor from socket
function is an active socket that will be on the client end
of a connection.

m A server calls the listen function to tell the kernel that a
descriptor will be used by a server rather than a client:

int listen(int sockfd, int backlog);

m Converts sockfd from an active socket to a listening
socket that can accept connection requests from clients.

m backlog is a hint about the number of outstanding
connection requests that the kernel should queue up
before starting to refuse requests.
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Client Server Sockets

_ _ 3\
( getaddrinfo getaddrinfo Inte rfa ce
socket socket
l \ open_listenfd
open_cl ientfd< bind
listen
Connection l /
request
connect  [-------------
\
v +
Client / » rio writen »rio_readlinebie
Server l l . .
Session Await connection
rio_readlineb [« rio_writen request from
next client
v v
close  f(----- EOF ___. »rio_readlineb
\ 4
close
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Sockets Interface: accept

m Servers wait for connection requests from clients by
calling accept:

Int accept(int listenfd, SA *addr, iInt *addrlen);

m Waits for connection request to arrive on the connection
bound to 1 1stentd, then fills in client’s socket address
in addr and size of the socket address in addrlen.

m Returns a connected descriptor that can be used to
communicate with the client via Unix 1/O routines.
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Client

getaddrinfo

I

socket

open_clientfd<

Connection

Server

getaddrinfo

'

socket

'

bind

'

listen

'

accept
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Sockets
Interface

J

>open_listenfd

A

v

v
Client / » rio writen >
Server l
Session _ N
rio_readlineb |«

rio_readlineb

'

rio_writen

Await connection

request from
next client

v

close W f-----T2l_____
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Sockets Interface: connect

m A client establishes a connection with a server by calling
connect:

int connect(int clientfd, SA *addr, socklen_t addrlen);

m Attempts to establish a connection with server at socket
address addr
= |f successful, then cl1entfd is now ready for reading and
writing.
= Resulting connection is characterized by socket pair
(X:y, addr.sin_addr:addr.sin_port)
= X is client address
= Yy is ephemeral port that uniquely identifies client process on
client host
Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.
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accept lllustrated

listenfd(3)
1. Server blocks in accept,
Client l T Server waiting for connection request
clientfd on listening descriptor
listenfd
Connection listenfd(3)
request . R 2. Client makes connection request by
Client i T Server calling and blocking in connect
clientfd
listenfd(3)
3. Server returns connftd from
Client L . R I Server accept. Client returns from connect.
clientfd connfd(4) Connection is now established between

clientfd and connfd
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Connected vs. Listening Descriptors

m Listening descriptor
= End point for client connection requests
= Created once and exists for lifetime of the server

m Connected descriptor
= End point of the connection between client and server

= A new descriptor is created each time the server accepts a
connection request from a client

= Exists only as long as it takes to service client

m Why the distinction?

= Allows for concurrent servers that can communicate over many
client connections simultaneously

= E.g., Each time we receive a new request, we fork a child to
handle the request
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Client

getaddrinfo

I

socket

open_clientfd<

Connection

request
connect  fb-------------

e

Server

Session _
rio_readlineb

close W f-----T2l_____
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'
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Sockets
Interface

>open_listenfd

accept

rio_readlineb

rio writen

rio_readlineb

A

Await connection
request from
next client
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Host and Service Conversion: getaddrinfo

m getaddrinfois the modern way to convert string

representations of hosthames, host addresses, ports, and
service names to socket address structures.
= Replaces obsolete gethostbyname and getservbyname funcs.

m Advantages:
= Reentrant (can be safely used by threaded programs).

= Allows us to write portable protocol-independent code
= Works with both IPv4 and IPv6

m Disadvantages
= Somewhat complex
= Fortunately, a small number of usage patterns suffice in most cases.
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Host and Service Conversion: getaddrinfo

int getaddrinfo(const char *host, /* Hostname or address */
const char *service, /* Port or service name
*/
const struct addrinfo *hints,/* Input parameters */
struct addrinfo **result); /* Output linked list */

void freeaddrinfo(struct addrinfo *result); /* Free linked list */

const char *gai_strerror(int errcode); /* Return error msg */

m Given host and service, getaddrinfo returns result
that points to a linked list of addr 1nfo structs, each of which
points to a corresponding socket address struct, and which
contains arguments for the sockets interface functions.

m Helper functions:
» freeadderinfo frees the entire linked list.
= gal_strerror converts error code to an error message.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52



Carnegie Mellon

Linked List Returned by getaddrinfo

addrinfo structs

result

Socket address structs

al_canonname
ai_addr
ail_next

NULL
ai_addr
al_next

NULL
ai_addr
NULL

m Clients: walk this list, trying each socket address in turn, until
the calls to socket and connect succeed.

m Servers: walk the list until calls to socket and bi1nd succeed.
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addrinfo Struct

struct addrinfo {
int ai_flags; /* Hints argument flags */
int ai_family; /* First arg to socket function */
int al_socktype; /* Second arg to socket function */
int ail_protocol; /* Third arg to socket function */
char *ail_canonname; /* Canonical host name */
size t al_addrlen; /* Size of ai_addr struct */
struct sockaddr *ai_addr; /* Ptr to socket address structure */
struct addrinfo *ai_next; /* Ptr to next item in linked list */
};

m Each addrinfo struct returned by getaddrinfo contains
arguments that can be passed directly to socket function.

m Also points to a socket address struct that can be passed
directly to connect and bind functions.
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Host and Service Conversion: getnameinfo

m getnameinfois the inverse of getaddrinfo, converting a
socket address to the corresponding host and service.
= Replaces obsolete gethostbyaddr and getservbyport funcs.
= Reentrant and protocol independent.

int getnameinfo(const SA *sa, socklen t salen, /* In: socket addr */
char *host, size t hostlen, /* Out: host */
char *serv, size_ t servlen, /* Out: service */
int flags); /* optional flags */
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Conversion Example

#include "csapp.-h"

int main(int argc, char **argv)

{
struct addrinfo *p, *listp, hints;
char buf[MAXLINE];
int rc, flags;

/* Get a list of addrinfo records */

memset(&hints, 0, sizeof(struct addrinfo));

hints.ai_family = AF_INET; /* 1Pv4 only */

hints.ai_socktype = SOCK_STREAM; /* Connections only */

1T ((rc = getaddrinfo(argv[1l], NULL, &hints, &listp)) != 0) {
fprintf(stderr, "getaddrinfo error: %s\n', gail_strerror(rc));
exit(l);

hostinfo.c
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Conversion Example (cont)

/* Walk the list and display each IP address */
flags = NI_NUMERICHOST; /* Display address instead of name */
for (p = listp; p; p = p->ai_next) {
Getnameinfo(p->ai_addr, p->ai_addrlen,
buf, MAXLINE, NULL, O, flags);
printf("%s\n", buf);

}

/* Clean up */
Freeaddrinfo(listp);

ex1t(0);
ks hostinfo.c
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Running hostinfo

whaleshark> ./hostinfo localhost
127.0.0.1

whaleshark> ./hostinfo whaleshark.ics.cs.cmu.edu
128.2.210.175

whaleshark> ./hostinfo twitter.com
199.16.156.230

199.16.156.38

199.16.156.102

199.16.156.198
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Next time

m Using getaddrinfo for host and service conversion
m Writing clients and servers
m Writing Web servers!
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Additional slides
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Basic Internet Components

m Internet backbone:

= collection of routers (nationwide or worldwide) connected by high-speed
point-to-point networks

m Internet Exchange Points (IXP):

= router that connects multiple backbones (often referred to as peers)
= Also called Network Access Points (NAP)

m Regional networks:

= smaller backbones that cover smaller geographical areas
(e.g., cities or states)

m Point of presence (POP):
®" machine that is connected to the Internet

m Internet Service Providers (ISPs):
= provide dial-up or direct access to POPs
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Internet Connection Hierarchy

Private
”peering” IXP IXP IXP
agreements
between Colocation
two backbone sites
companies Backbone =--:- Backbone Backbone Backbone
T / / \\ / \%
POP POP POP POP POP
Regional net ISP Big Business
POP POP POP PO POP PO

Cable
DSL
T T / modem \

ISP (for individuals) Small Business Pgh employee DC employee
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IP Address Structure
m [P (V4) Address space divided into classes:
0123 8 16 24 31
ClassA |o| NetID Host ID
ClassB [1]0 Net ID Host ID
ClassC [1]1]0 Net ID Host ID
ClassD |1|1{1]|0| Multicast address
ClassE |1{1{1|1| Reserved for experiments

m Network ID Written in form w.x.y.z/n
= n=number of bits in host address
= E.g.,, CMU written as 128.2.0.0/16
= Class B address

m Unrouted (private) IP addresses:
10.0.0.0/8 172.16.0.0/12 192.168.0.0/16
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Evolution of Internet

m Original Idea
= Every node on Internet would have unique IP address
= Everyone would be able to talk directly to everyone
= No secrecy or authentication
= Messages visible to routers and hosts on same LAN
= Possible to forge source field in packet header

m Shortcomings
" There aren't enough IP addresses available
= Don't want everyone to have access or knowledge of all other hosts
= Security issues mandate secrecy & authentication
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Evolution of Internet: Naming

m Dynamic address assighment
"= Most hosts don't need to have known address
= Only those functioning as servers
= DHCP (Dynamic Host Configuration Protocol)
= Local ISP assigns address for temporary use

m Example:
= Laptop at CMU (wired connection)
= |P address 128.2.213.29 (bryant-tp4.cs.cmu.edu)
= Assigned statically
= lLaptop at home
= |P address 192.168.1.5
= Only valid within home network
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Evolution of Internet: Firewalls

176.3.3.3

T

216.99.99.99

Corporation X

Internet

m Firewalls

® Hides organizations nodes from rest of Internet

= Use local IP addresses within organization

= For external service, provides proxy service
1. Client request: src=10.2.2.2, dest=216.99.99.99
2. Firewall forwards: src=176.3.3.3, dest=216.99.99.99
3. Server responds: src=216.99.99.99, dest=176.3.3.3
4. Firewall forwards response: src=216.99.99.99, dest=10.2.2.2
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