
Carnegie Mellon

1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Network Programming: Part I

15-213: Introduction to Computer Systems
21st Lecture, March 31, 2016

Instructors:
Seth Copen Goldstein, Franz Franchetti, Ralf Brown, and Brian Railing

Carnegie Mellon

2 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Client-Server Transaction
 Most network applications are based on the client-server

model:
 A server process and one or more client processes
 Server manages some resource
 Server provides service by manipulating resource for clients
 Server activated by request from client (vending machine analogy)

Client
process

Server
process

1. Client sends request

3. Server sends response 4. Client
handles

response

2. Server
handles
request

Resource

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

Carnegie Mellon

3 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hardware Organization of a Network Host

main
memory

I/O
bridge MI

ALU

register file

CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor
disk

I/O bus

Expansion slots

network
adapter

network

Carnegie Mellon

4 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hardware Organization of a Network Host

main
memory

I/O
bridge MI

ALU

register file

CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor
disk

I/O bus

Expansion slots

network
adapter

network

Carnegie Mellon

5 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Computer Networks
 A network is a hierarchical system of boxes and wires

organized by geographical proximity
 SAN (System Area Network) spans cluster or machine room

 Switched Ethernet, Quadrics QSW, …
 LAN (Local Area Network) spans a building or campus

 Ethernet is most prominent example
 WAN (Wide Area Network) spans country or world

 Typically high-speed point-to-point phone lines

 An internetwork (internet) is an interconnected set of
networks
 The Global IP Internet (uppercase “I”) is the most famous example

of an internet (lowercase “i”)

 Let’s see how an internet is built from the ground up

Carnegie Mellon

6 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lowest Level: Ethernet Segment

 Ethernet segment consists of a collection of hosts connected
by wires (twisted pairs) to a hub

 Spans room or floor in a building
 Operation

 Each Ethernet adapter has a unique 48-bit address (MAC address)
 E.g., 00:16:ea:e3:54:e6

 Hosts send bits to any other host in chunks called frames
 Hub slavishly copies each bit from each port to every other port

 Every host sees every bit
 Note: Hubs are on their way out. Bridges (switches, routers) became cheap enough

to replace them

host host host

hub
100 Mb/s 100 Mb/s

port

Carnegie Mellon

7 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next Level: Bridged Ethernet Segment

 Spans building or campus

 Bridges cleverly learn which hosts are reachable from which
ports and then selectively copy frames from port to port

host host host host host

hub hub bridge 100 Mb/s 100 Mb/s

host host

hub 100 Mb/s 100 Mb/s

1 Gb/s

host host host

bridge

host host

hub

A B

C

X

Y

Carnegie Mellon

8 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conceptual View of LANs
 For simplicity, hubs, bridges, and wires are often shown as a

collection of hosts attached to a single wire:

host host host ...

Carnegie Mellon

9 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next Level: internets
 Multiple incompatible LANs can be physically connected by

specialized computers called routers
 The connected networks are called an internet (lower case)

host host host ... host host host ...

WAN WAN

LAN 1 and LAN 2 might be completely different, totally incompatible
(e.g., Ethernet, Fibre Channel, 802.11*, T1-links, DSL, …)

router router router
LAN 1 LAN 2

Carnegie Mellon

10 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logical Structure of an internet

 Ad hoc interconnection of networks
 No particular topology
 Vastly different router & link capacities

 Send packets from source to destination by hopping through
networks
 Router forms bridge from one network to another
 Different packets may take different routes

router

router

router
router

router

router

host
host

Carnegie Mellon

11 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Notion of an internet Protocol
 How is it possible to send bits across incompatible LANs

and WANs?

 Solution: protocol software running on each host and
router
 Protocol is a set of rules that governs how hosts and routers should

cooperate when they transfer data from network to network.
 Smooths out the differences between the different networks

Carnegie Mellon

12 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

OSI Model

Wires

Frames

IP

TCP

Carnegie Mellon

13 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What Does an internet Protocol Do?
 Provides a naming scheme
 An internet protocol defines a uniform format for host addresses
 Each host (and router) is assigned at least one of these internet

addresses that uniquely identifies it

 Provides a delivery mechanism
 An internet protocol defines a standard transfer unit (packet)
 Packet consists of header and payload

 Header: contains info such as packet size, source and destination
addresses

 Payload: contains data bits sent from source host

Carnegie Mellon

14 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

LAN2

Transferring internet Data Via Encapsulation

protocol
software

client

LAN1
adapter

Host A LAN1

data (1)

data PH FH1 (4)

data PH FH2 (6)

data (8)

data PH FH2 (5)

LAN2 frame

protocol
software

LAN1
adapter

LAN2
adapter

Router
data PH (3) FH1

data PH FH1 (2)

internet packet

LAN1 frame

(7) data PH FH2

protocol
software

server

LAN2
adapter

Host B

PH: Internet packet header
FH: LAN frame header

Carnegie Mellon

15 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Other Issues
 We are glossing over a number of important questions:
 What if different networks have different maximum frame sizes?

(segmentation)
 How do routers know where to forward frames?
 How are routers informed when the network topology changes?
 What if packets get lost?

 These (and other) questions are addressed by the area of

systems known as computer networking

Carnegie Mellon

16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Global IP Internet (upper case)
 Most famous example of an internet

 Based on the TCP/IP protocol family
 IP (Internet Protocol) :

 Provides basic naming scheme and unreliable delivery capability
of packets (datagrams) from host-to-host

 UDP (Unreliable Datagram Protocol)
 Uses IP to provide unreliable datagram delivery from

process-to-process
 TCP (Transmission Control Protocol)

 Uses IP to provide reliable byte streams from process-to-process
over connections

 Accessed via a mix of Unix file I/O and functions from the

sockets interface

Carnegie Mellon

17 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hardware and Software Organization
of an Internet Application

TCP/IP

Client

Network
adapter

Global IP Internet

TCP/IP

Server

Network
adapter

Internet client host Internet server host

Sockets interface
(system calls)

Hardware interface
(interrupts)

User code

Kernel code

Hardware
and firmware

Carnegie Mellon

18 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Programmer’s View of the Internet

1. Hosts are mapped to a set of 32-bit IP addresses
 128.2.203.179

2. The set of IP addresses is mapped to a set of identifiers
called Internet domain names
 128.2.203.179 is mapped to www.cs.cmu.edu

3. A process on one Internet host can communicate with a
process on another Internet host over a connection

Carnegie Mellon

19 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside: IPv4 and IPv6
 The original Internet Protocol, with its 32-bit addresses, is

known as Internet Protocol Version 4 (IPv4)

 1996: Internet Engineering Task Force (IETF) introduced
Internet Protocol Version 6 (IPv6) with 128-bit addresses
 Intended as the successor to IPv4

 As of 2015, vast majority of Internet traffic still carried by
IPv4
 Only 4% of users access Google services using IPv6.

 We will focus on IPv4, but will show you how to write
networking code that is protocol-independent.

Carnegie Mellon

20 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

(1) IP Addresses
 32-bit IP addresses are stored in an IP address struct
 IP addresses are always stored in memory in network byte order

(big-endian byte order)
 True in general for any integer transferred in a packet header from one

machine to another.
 E.g., the port number used to identify an Internet connection.

/* Internet address structure */
struct in_addr {
 uint32_t s_addr; /* network byte order (big-endian) */
};

Carnegie Mellon

21 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dotted Decimal Notation
 By convention, each byte in a 32-bit IP address is represented

by its decimal value and separated by a period
 IP address: 0x8002C2F2 = 128.2.194.242

 Use getaddrinfo and getnameinfo functions (described

later) to convert between IP addresses and dotted decimal
format.

Carnegie Mellon

22 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

(2) Internet Domain Names

.net .edu .gov .com

cmu berkeley mit

cs ece

whaleshark
128.2.210.175

ics

unnamed root

pdl

www
128.2.131.66

amazon

www
176.32.98.166

First-level domain names

Second-level domain names

Third-level domain names

Carnegie Mellon

23 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Domain Naming System (DNS)
 The Internet maintains a mapping between IP addresses and

domain names in a huge worldwide distributed database called
DNS

 Conceptually, programmers can view the DNS database as a
collection of millions of host entries.
 Each host entry defines the mapping between a set of domain names and IP

addresses.
 In a mathematical sense, a host entry is an equivalence class of domain

names and IP addresses.

Carnegie Mellon

24 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Properties of DNS Mappings
 Can explore properties of DNS mappings using nslookup

 Output edited for brevity

 Each host has a locally defined domain name localhost
which always maps to the loopback address 127.0.0.1

 Use hostname to determine real domain name of local host:

linux> nslookup localhost
Address: 127.0.0.1

linux> hostname
whaleshark.ics.cs.cmu.edu

Carnegie Mellon

25 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Properties of DNS Mappings (cont)
 Simple case: one-to-one mapping between domain name and IP

address:

 Multiple domain names mapped to the same IP address:

linux> nslookup whaleshark.ics.cs.cmu.edu
Address: 128.2.210.175

linux> nslookup cs.mit.edu
Address: 18.62.1.6
linux> nslookup eecs.mit.edu
Address: 18.62.1.6

Carnegie Mellon

26 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Properties of DNS Mappings (cont)
 Multiple domain names mapped to multiple IP addresses:

 Some valid domain names don’t map to any IP address:

linux> nslookup www.twitter.com
Address: 199.16.156.6
Address: 199.16.156.70
Address: 199.16.156.102
Address: 199.16.156.230

linux> nslookup twitter.com
Address: 199.16.156.102
Address: 199.16.156.230
Address: 199.16.156.6
Address: 199.16.156.70

linux> nslookup ics.cs.cmu.edu
*** Can't find ics.cs.cmu.edu: No answer

Carnegie Mellon

27 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

(3) Internet Connections
 Clients and servers communicate by sending streams of bytes

over connections. Each connection is:
 Point-to-point: connects a pair of processes.
 Full-duplex: data can flow in both directions at the same time,
 Reliable: stream of bytes sent by the source is eventually received by

the destination in the same order it was sent.

 A socket is an endpoint of a connection
 Socket address is an IPaddress:port pair

 A port is a 16-bit integer that identifies a process:
 Ephemeral port: Assigned automatically by client kernel when client

makes a connection request.
 Well-known port: Associated with some service provided by a server

(e.g., port 80 is associated with Web servers)

Carnegie Mellon

28 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Well-known Ports and Service Names
 Popular services have permanently assigned well-known

ports and corresponding well-known service names:
 echo server: 7/echo
 ssh servers: 22/ssh
 email server: 25/smtp
 Web servers: 80/http

 Mappings between well-known ports and service names
is contained in the file /etc/services on each Linux
machine.

Carnegie Mellon

29 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Anatomy of a Connection
 A connection is uniquely identified by the socket

addresses of its endpoints (socket pair)
 (cliaddr:cliport, servaddr:servport)

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80) Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

51213 is an ephemeral port
allocated by the kernel

80 is a well-known port
associated with Web servers

Carnegie Mellon

30 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using Ports to Identify Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client

Carnegie Mellon

31 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface
 Set of system-level functions used in conjunction with

Unix I/O to build network applications.

 Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of the
Internet protocols.

 Available on all modern systems
 Unix variants, Windows, OS X, IOS, Android, ARM

Carnegie Mellon

32 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client Server

Sockets
 What is a socket?
 To the kernel, a socket is an endpoint of communication
 To an application, a socket is a file descriptor that lets the

application read/write from/to the network
 Remember: All Unix I/O devices, including networks, are

modeled as files

 Clients and servers communicate with each other by
reading from and writing to socket descriptors

 The main distinction between regular file I/O and socket

I/O is how the application “opens” the socket descriptors

clientfd serverfd

Carnegie Mellon

33 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Socket Address Structures
 Generic socket address:
 For address arguments to connect, bind, and accept
 Necessary only because C did not have generic (void *) pointers when

the sockets interface was designed
 For casting convenience, we adopt the Stevens convention:
 typedef struct sockaddr SA;

struct sockaddr {
 uint16_t sa_family; /* Protocol family */
 char sa_data[14]; /* Address data. */
};

sa_family

Family Specific

Carnegie Mellon

34 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Socket Address Structures
 Internet-specific socket address:
 Must cast (struct sockaddr_in *) to (struct sockaddr *)

for functions that take socket address arguments.

0 0 0 0 0 0 0 0
sa_family

Family Specific

struct sockaddr_in {
 uint16_t sin_family; /* Protocol family (always AF_INET) */
 uint16_t sin_port; /* Port num in network byte order */
 struct in_addr sin_addr; /* IP addr in network byte order */
 unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */
};

sin_port

AF_INET

sin_addr

sin_family

Carnegie Mellon

35 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

getaddrinfo getaddrinfo

Carnegie Mellon

36 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

getaddrinfo getaddrinfo

Carnegie Mellon

37 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

getaddrinfo getaddrinfo

Carnegie Mellon

38 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: socket

 Clients and servers use the socket function to create a
socket descriptor:

 Example:

Protocol specific! Best practice is to use getaddrinfo to
generate the parameters automatically, so that code is
protocol independent.

int socket(int domain, int type, int protocol)

int clientfd = Socket(AF_INET, SOCK_STREAM, 0);

Indicates that we are using
32-bit IPV4 addresses

Indicates that the socket
will be the end point of a

connection

Carnegie Mellon

39 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

getaddrinfo getaddrinfo

Carnegie Mellon

40 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: bind

 A server uses bind to ask the kernel to associate the
server’s socket address with a socket descriptor:

 The process can read bytes that arrive on the connection
whose endpoint is addr by reading from descriptor
sockfd.

 Similarly, writes to sockfd are transferred along
connection whose endpoint is addr.

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int bind(int sockfd, SA *addr, socklen_t addrlen);

Carnegie Mellon

41 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

getaddrinfo getaddrinfo

Carnegie Mellon

42 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: listen

 By default, kernel assumes that descriptor from socket
function is an active socket that will be on the client end
of a connection.

 A server calls the listen function to tell the kernel that a
descriptor will be used by a server rather than a client:

 Converts sockfd from an active socket to a listening

socket that can accept connection requests from clients.

 backlog is a hint about the number of outstanding
connection requests that the kernel should queue up
before starting to refuse requests.

int listen(int sockfd, int backlog);

Carnegie Mellon

43 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

getaddrinfo getaddrinfo

Carnegie Mellon

44 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: accept

 Servers wait for connection requests from clients by
calling accept:

 Waits for connection request to arrive on the connection
bound to listenfd, then fills in client’s socket address
in addr and size of the socket address in addrlen.

 Returns a connected descriptor that can be used to
communicate with the client via Unix I/O routines.

int accept(int listenfd, SA *addr, int *addrlen);

Carnegie Mellon

45 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

getaddrinfo getaddrinfo

Carnegie Mellon

46 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface: connect

 A client establishes a connection with a server by calling
connect:

 Attempts to establish a connection with server at socket
address addr
 If successful, then clientfd is now ready for reading and

writing.
 Resulting connection is characterized by socket pair
 (x:y, addr.sin_addr:addr.sin_port)

 x is client address
 y is ephemeral port that uniquely identifies client process on

client host

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

int connect(int clientfd, SA *addr, socklen_t addrlen);

Carnegie Mellon

47 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

accept Illustrated
listenfd(3)

Client
1. Server blocks in accept,
waiting for connection request
on listening descriptor
listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection request by
calling and blocking in connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from
accept. Client returns from connect.
Connection is now established between
clientfd and connfd

connfd(4)

Carnegie Mellon

48 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Connected vs. Listening Descriptors
 Listening descriptor
 End point for client connection requests
 Created once and exists for lifetime of the server

 Connected descriptor
 End point of the connection between client and server
 A new descriptor is created each time the server accepts a

connection request from a client
 Exists only as long as it takes to service client

 Why the distinction?
 Allows for concurrent servers that can communicate over many

client connections simultaneously
 E.g., Each time we receive a new request, we fork a child to

handle the request

Carnegie Mellon

49 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client /
Server
Session

Sockets
Interface

Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

getaddrinfo getaddrinfo

Carnegie Mellon

51 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Host and Service Conversion: getaddrinfo

 getaddrinfo is the modern way to convert string
representations of hostnames, host addresses, ports, and
service names to socket address structures.
 Replaces obsolete gethostbyname and getservbyname funcs.

 Advantages:
 Reentrant (can be safely used by threaded programs).
 Allows us to write portable protocol-independent code

 Works with both IPv4 and IPv6

 Disadvantages
 Somewhat complex
 Fortunately, a small number of usage patterns suffice in most cases.

Carnegie Mellon

52 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Host and Service Conversion: getaddrinfo

 Given host and service, getaddrinfo returns result
that points to a linked list of addrinfo structs, each of which
points to a corresponding socket address struct, and which
contains arguments for the sockets interface functions.

 Helper functions:
 freeadderinfo frees the entire linked list.
 gai_strerror converts error code to an error message.

int getaddrinfo(const char *host, /* Hostname or address */
 const char *service, /* Port or service name
*/
 const struct addrinfo *hints,/* Input parameters */
 struct addrinfo **result); /* Output linked list */

void freeaddrinfo(struct addrinfo *result); /* Free linked list */

const char *gai_strerror(int errcode); /* Return error msg */

Carnegie Mellon

53 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linked List Returned by getaddrinfo

ai_canonname

result

ai_addr
ai_next

addrinfo structs

Socket address structs

NULL
ai_addr
ai_next

NULL
ai_addr
NULL

 Clients: walk this list, trying each socket address in turn, until
the calls to socket and connect succeed.

 Servers: walk the list until calls to socket and bind succeed.

Carnegie Mellon

54 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

addrinfo Struct

 Each addrinfo struct returned by getaddrinfo contains
arguments that can be passed directly to socket function.

 Also points to a socket address struct that can be passed
directly to connect and bind functions.

struct addrinfo {
 int ai_flags; /* Hints argument flags */
 int ai_family; /* First arg to socket function */
 int ai_socktype; /* Second arg to socket function */
 int ai_protocol; /* Third arg to socket function */
 char *ai_canonname; /* Canonical host name */
 size_t ai_addrlen; /* Size of ai_addr struct */
 struct sockaddr *ai_addr; /* Ptr to socket address structure */
 struct addrinfo *ai_next; /* Ptr to next item in linked list */
};

Carnegie Mellon

55 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Host and Service Conversion: getnameinfo

 getnameinfo is the inverse of getaddrinfo, converting a
socket address to the corresponding host and service.
 Replaces obsolete gethostbyaddr and getservbyport funcs.
 Reentrant and protocol independent.

int getnameinfo(const SA *sa, socklen_t salen, /* In: socket addr */
 char *host, size_t hostlen, /* Out: host */
 char *serv, size_t servlen, /* Out: service */
 int flags); /* optional flags */

Carnegie Mellon

56 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conversion Example

#include "csapp.h"

int main(int argc, char **argv)
{
 struct addrinfo *p, *listp, hints;
 char buf[MAXLINE];
 int rc, flags;

 /* Get a list of addrinfo records */
 memset(&hints, 0, sizeof(struct addrinfo));
 hints.ai_family = AF_INET; /* IPv4 only */
 hints.ai_socktype = SOCK_STREAM; /* Connections only */
 if ((rc = getaddrinfo(argv[1], NULL, &hints, &listp)) != 0) {
 fprintf(stderr, "getaddrinfo error: %s\n", gai_strerror(rc));
 exit(1);
 }
 hostinfo.c

Carnegie Mellon

57 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conversion Example (cont)

 /* Walk the list and display each IP address */
 flags = NI_NUMERICHOST; /* Display address instead of name */
 for (p = listp; p; p = p->ai_next) {
 Getnameinfo(p->ai_addr, p->ai_addrlen,
 buf, MAXLINE, NULL, 0, flags);
 printf("%s\n", buf);
 }

 /* Clean up */
 Freeaddrinfo(listp);

 exit(0);
} hostinfo.c

Carnegie Mellon

58 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Running hostinfo

whaleshark> ./hostinfo localhost
127.0.0.1

whaleshark> ./hostinfo whaleshark.ics.cs.cmu.edu
128.2.210.175

whaleshark> ./hostinfo twitter.com
199.16.156.230
199.16.156.38
199.16.156.102
199.16.156.198

Carnegie Mellon

59 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next time
 Using getaddrinfo for host and service conversion
 Writing clients and servers
 Writing Web servers!

Carnegie Mellon

60 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Additional slides

Carnegie Mellon

61 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Basic Internet Components
 Internet backbone:
 collection of routers (nationwide or worldwide) connected by high-speed

point-to-point networks

 Internet Exchange Points (IXP):
 router that connects multiple backbones (often referred to as peers)
 Also called Network Access Points (NAP)

 Regional networks:
 smaller backbones that cover smaller geographical areas

(e.g., cities or states)

 Point of presence (POP):
 machine that is connected to the Internet

 Internet Service Providers (ISPs):
 provide dial-up or direct access to POPs

Carnegie Mellon

62 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Internet Connection Hierarchy

IXP IXP

Backbone Backbone Backbone Backbone

IXP

POP POP POP

Regional net

POP POP POP

POP POP

Small Business

Big Business ISP

POP POP POP POP

Pgh employee

Cable
modem

DC employee

POP

T3

T1

ISP (for individuals)

POP

DSL T1

Colocation
sites

Private
“peering”

agreements
between

two backbone
companies

often bypass
IXP

Carnegie Mellon

63 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

IP Address Structure
 IP (V4) Address space divided into classes:

 Network ID Written in form w.x.y.z/n
 n = number of bits in host address
 E.g., CMU written as 128.2.0.0/16

 Class B address

 Unrouted (private) IP addresses:
 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

Class A

Class B

Class C

Class D

Class E

0 1 2 3 8 16 24 31
0 Net ID Host ID

Host ID

Host ID Net ID

Net ID

Multicast address

Reserved for experiments

1 0

1 0 1

1 1 0 1

1 1 1 1

Carnegie Mellon

64 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Evolution of Internet
 Original Idea
 Every node on Internet would have unique IP address

 Everyone would be able to talk directly to everyone
 No secrecy or authentication

 Messages visible to routers and hosts on same LAN
 Possible to forge source field in packet header

 Shortcomings
 There aren't enough IP addresses available
 Don't want everyone to have access or knowledge of all other hosts
 Security issues mandate secrecy & authentication

Carnegie Mellon

65 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Evolution of Internet: Naming
 Dynamic address assignment
 Most hosts don't need to have known address

 Only those functioning as servers
 DHCP (Dynamic Host Configuration Protocol)

 Local ISP assigns address for temporary use

 Example:
 Laptop at CMU (wired connection)

 IP address 128.2.213.29 (bryant-tp4.cs.cmu.edu)
 Assigned statically

 Laptop at home
 IP address 192.168.1.5
 Only valid within home network

Carnegie Mellon

66 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Evolution of Internet: Firewalls

 Firewalls
 Hides organizations nodes from rest of Internet
 Use local IP addresses within organization
 For external service, provides proxy service

1. Client request: src=10.2.2.2, dest=216.99.99.99
2. Firewall forwards: src=176.3.3.3, dest=216.99.99.99
3. Server responds: src=216.99.99.99, dest=176.3.3.3
4. Firewall forwards response: src=216.99.99.99, dest=10.2.2.2

Corporation X

Firewall

Internet

10.2.2.2
1
4 2

3

176.3.3.3

216.99.99.99

	Network Programming: Part I��15-213: Introduction to Computer Systems�21st Lecture, March 31, 2016
	A Client-Server Transaction
	Hardware Organization of a Network Host
	Hardware Organization of a Network Host
	Computer Networks
	Lowest Level: Ethernet Segment
	Next Level: Bridged Ethernet Segment
	Conceptual View of LANs
	Next Level: internets
	Logical Structure of an internet
	The Notion of an internet Protocol
	OSI Model
	What Does an internet Protocol Do?
	Transferring internet Data Via Encapsulation
	Other Issues
	Global IP Internet (upper case)
	Hardware and Software Organization �of an Internet Application
	A Programmer’s View of the Internet
	Aside: IPv4 and IPv6
	(1) IP Addresses
	Dotted Decimal Notation
	(2) Internet Domain Names
	Domain Naming System (DNS)
	Properties of DNS Mappings
	Properties of DNS Mappings (cont)
	Properties of DNS Mappings (cont)
	(3) Internet Connections
	Well-known Ports and Service Names	
	Anatomy of a Connection
	Using Ports to Identify Services
	Sockets Interface
	Sockets
	Socket Address Structures
	Socket Address Structures
	Sockets Interface
	Sockets Interface
	Sockets Interface
	Sockets Interface: socket
	Sockets Interface
	Sockets Interface: bind
	Sockets Interface
	Sockets Interface: listen
	Sockets Interface
	Sockets Interface: accept
	Sockets Interface
	Sockets Interface: connect
	accept Illustrated
	Connected vs. Listening Descriptors
	Sockets Interface
	Host and Service Conversion: getaddrinfo
	Host and Service Conversion: getaddrinfo
	Linked List Returned by getaddrinfo
	addrinfo Struct
	Host and Service Conversion: getnameinfo
	Conversion Example
	Conversion Example (cont)
	Running hostinfo
	Next time	
	Additional slides
	Basic Internet Components
	Internet Connection Hierarchy
	IP Address Structure
	Evolution of Internet
	Evolution of Internet: Naming
	Evolution of Internet: Firewalls

