Carnegie Mellon

Network Programming: Part |

15-213: Introduction to Computer Systems
21t Lecture, March 31, 2016

Instructors:
Seth Copen Goldstein, Franz Franchetti, Ralf Brown, and Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

A Client-Server Transaction

m Most network applications are based on the client-server
model:
= A server process and one or more client processes
= Server manages some resource
= Server provides service by manipulating resource for clients
= Server activated by request from client (vending machine analogy)

1. Client sends request

Client) Server

Resource

process / process

4. Client 3. Server sends response 2. Server
handles handles
response request

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Hardware Organization of a Network Host

CPU chip

register file

1r

—
=

Mi

ALU

=

system bus

/0
bridge

)

memory bus

|

main
memory

Expansion slots

<

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

<

USB

controller

T

T

<

graphics
adapter

mouse keyboard

l

monitor

1/0O bus {L

H

>

\/

disk
controller

network
adapter

A

Y

I

[network]

Carnegie Mellon

Hardware Organization of a Network Host

CPU chip

register file

:> ALU
=

iI system bus
//

memory bus

|

/0
bridge

Ml /‘—j>

(—>

)

main
memory

Expansion slots

<

1/0 bus
Lo L v

H

>

) (@ L)
USB graphics disk network
antroIIe{ adapter controller adapter
mouse keyboard monitor I

G

‘ disk \
)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

network]
/)

Carnegie Mellon

Computer Networks

m A network is a hierarchical system of boxes and wires
organized by geographical proximity

= SAN (System Area Network) spans cluster or machine room
= Switched Ethernet, Quadrics QSW, ...

= LAN (Local Area Network) spans a building or campus
= Ethernet is most prominent example

= WAN (Wide Area Network) spans country or world
= Typically high-speed point-to-point phone lines

m Aninternetwork (internet) is an interconnected set of

networks

" The Global IP Internet (uppercase
of an internet (lowercase “i”)

IIIH

) is the most famous example

m Let’s see how an internet is built from the ground up

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Lowest Level: Ethernet Segment

host host host

100 Mb/s m 100 Mb/s

port
m Ethernet segment consists of a collection of hosts connected
by wires (twisted pairs) to a hub

m Spans room or floor in a building

m Operation
= Each Ethernet adapter has a unique 48-bit address (MAC address)
= E.g.,00:16:ea:e3:54:e6
" Hosts send bits to any other host in chunks called frames

= Hub slavishly copies each bit from each port to every other port

= Every host sees every bit

= Note: Hubs are on their way out. Bridges (switches, routers) became cheap enough
to replace them ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next Level: Bridged Ethernet Segment

A

host

host

hub |

[] 100 Mb/s (*, .

B

host

host

host

m Spans building or campus

host host
X
100 Mb/s (b | 100 Mb/s [, '
| bridge | hub
1 Gb/s
host host
d) 100 Mb/s[]
;J l_
Y
host host host
C

Carnegie Mellon

m Bridges cleverly learn which hosts are reachable from which

ports and then selectively copy frames from port to port

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Conceptual View of LANs

m For simplicity, hubs, bridges, and wires are often shown as a
collection of hosts attached to a single wire:

host | | host |**:| host

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Next Level: internets

m Multiple incompatible LANs can be physically connected by
specialized computers called routers

m The connected networks are called an internet (lower case)

host host | *** | host host host | *** | host

LAN 1 and LAN 2 might be completely different, totally incompatible
(e.qg., Ethernet, Fibre Channel, 802.11%*, T1-links, DSL, ...)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Logical Structure of an internet

m Ad hoc interconnection of networks
= No particular topology
= Vastly different router & link capacities

m Send packets from source to destination by hopping through
networks
= Router forms bridge from one network to another
= Different packets may take different routes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

The Notion of an internet Protocol

m How is it possible to send bits across incompatible LANs
and WANs?

m Solution: protocol software running on each host and

router

= Protocol is a set of rules that governs how hosts and routers should
cooperate when they transfer data from network to network.

= Smooths out the differences between the different networks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

OSI| Model

OSI Model

Data Layer
Application

MNetwork Process to
Application

Presentation
Data Data Representation
and Encryption

Session
Data Interhost Communication

Host Layvers

Wiiug

Tra nségorth
TCP Seg ments End-to-End Connections
and Reliability

AN A A A

Packets Patll:ql:i!n:ﬂm?'ll;lltfun

and IP (Logical Addressing) /

Data Link
MAC and LLC
(Phyiscal addressing)

IP

Frames Frames

Media Lavers

Wires

_ /

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

What Does an internet Protocol Do?

m Provides a naming scheme
= Aninternet protocol defines a uniform format for host addresses

= Each host (and router) is assigned at least one of these internet
addresses that uniquely identifies it

m Provides a delivery mechanism
= Aninternet protocol defines a standard transfer unit (packet)
= Packet consists of header and payload

= Header: contains info such as packet size, source and destination
addresses

= Payload: contains data bits sent from source host

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Transferring internet Data Via Encapsulation

LAN1

(1) data
internet packet

(2) data PH | FH1
LAN1 frame

(3) data PH | FH1

(4)

PH: Internet packet header
IfrHr:\tlaM’ﬁEmer@@dze{ystems: A Programmer’s Perspective, Ihird edition

Host A Host B LAN2
client server
(8) | data
protocol protocol
software software
(7) | data PH | FH2
LAN1 LAN2
adapter adapter
Router Y
(6) data PH | FH2
LAN1 LAN2
adapter adapter
) LAN2 frame
data PH | FH1 data PH | FH2 | (5)

protocol
software

14

Carnegie Mellon

Other Issues

m We are glossing over a number of important questions:

= What if different networks have different maximum frame sizes?
(segmentation)

" How do routers know where to forward frames?

How are routers informed when the network topology changes?
= What if packets get lost?

m These (and other) questions are addressed by the area of
systems known as computer networking

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Global IP Internet (upper case)

m Most famous example of an internet

m Based on the TCP/IP protocol family
= |P (Internet Protocol) :

= Provides basic naming scheme and unreliable delivery capability
of packets (datagrams) from host-to-host

= UDP (Unreliable Datagram Protocol)

= Uses IP to provide unreliable datagram delivery from
process-to-process

= TCP (Transmission Control Protocol)

= Uses IP to provide reliable byte streams from process-to-process
over connections

m Accessed via a mix of Unix file I/O and functions from the
sockets interface

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Hardware and Software Organization
of an Internet Application

Internet client host Internet server host
Client User code Server
Sockets interface ¥ ¥
(system calls) v v
TCP/IP Kernel code TCP/IP
Hardware interface ¥ ¥
(interrupts) v v
Network | Hardware Network
adapter | and firmware adapter
[Global IP Internet]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

A Programmer’s View of the Internet

1. Hosts are mapped to a set of 32-bit /P addresses
= 128.2.203.179

2. The set of IP addresses is mapped to a set of identifiers
called Internet domain names
= 128.2.203.179 is mapped to www.cs.cmu.edu

3. A process on one Internet host can communicate with a
process on another Internet host over a connection

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Aside: IPv4 and IPv6

m The original Internet Protocol, with its 32-bit addresses, is
known as Internet Protocol Version 4 (IPv4)

m 1996: Internet Engineering Task Force (IETF) introduced
Internet Protocol Version 6 (IPv6) with 128-bit addresses
" |ntended as the successor to |IPv4

m As of 2015, vast majority of Internet traffic still carried by
IPv4

" Only 4% of users access Google services using IPv6.

m We will focus on IPv4, but will show you how to write
networking code that is protocol-independent.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

(1) IP Addresses

m 32-bit IP addresses are stored in an /P address struct

= |P addresses are always stored in memory in network byte order
(big-endian byte order)

" Truein general for any integer transferred in a packet header from one
machine to another.

= E.g., the port number used to identify an Internet connection.

/* Internet address structure */
struct 1n_addr {
uint32_t s addr; /* network byte order (big-endian) */

}:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Dotted Decimal Notation

m By convention, each byte in a 32-bit IP address is represented
by its decimal value and separated by a period
= [P address: Ox8002C2F2 = 128.2. . 242

m Use getaddrinfo and getnameinfo functions (described
later) to convert between IP addresses and dotted decimal
format.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

(2) Internet Domain Names

unnamed root
.net .edu .80V .com First-level domain names
mit cmu berkeley amazon Second-level domain names
cS ece WWW Third-level domain names
/ \ 176.32.98.166
ics pdi
whaleshark WWW

128.2.210.175 128.2.131.66

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Domain Naming System (DNS)

m The Internet maintains a mapping between IP addresses and
domain names in a huge worldwide distributed database called
DNS

m Conceptually, programmers can view the DNS database as a
collection of millions of host entries.

= Each host entry defines the mapping between a set of domain names and IP
addresses.

" |In a mathematical sense, a host entry is an equivalence class of domain
names and IP addresses.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Properties of DNS Mappings

m Can explore properties of DNS mappings using nslookup

= Qutput edited for brevity

m Each host has a locally defined domain name localhost
which always maps to the loopback address 127 .0.0.1

I 1nux> nslookup localhost
Address: 127.0.0.1

m Use hosthame to determine real domain name of local host:

1 1nux> hostname
whaleshark.i1cs.cs.cmu.edu

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Properties of DNS Mappings (cont)

m Simple case: one-to-one mapping between domain name and IP
address:

1 1nux> nslookup whaleshark.ics.cs.cmu.edu
Address: 128.2.210.175

m Multiple domain names mapped to the same IP address:

I 1nux> nslookup cs.mit.edu
Address: 18.62.1.6

1 1nux> nslookup eecs.mit.edu
Address: 18.62.1.6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Properties of DNS Mappings (cont)

m Multiple domain names mapped to multiple IP addresses:

1 1nux> nslookup www.twitter.com
Address: 199.16.156.6

Address: 199.16.156.70

Address: 199.16.156.102
Address: 199.16.156.230

1inux> nslookup twitter.com
Address: 199.16.156.102
Address: 199.16.156.230
Address: 199.16.156.6
Address: 199.16.156.70

m Some valid domain names don’t map to any IP address:

I inux> nslookup i1cs.cs.cmu.edu
*** Can"t find ics.cs.cmu.edu: No answer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

(3) Internet Connections

m Clients and servers communicate by sending streams of bytes
over connections. Each connection is:

" Point-to-point: connects a pair of processes.
" Full-duplex: data can flow in both directions at the same time,

= Reliable: stream of bytes sent by the source is eventually received by
the destination in the same order it was sent.

m A socket is an endpoint of a connection
" Socket address is an IPaddress:port pair

m A portis a 16-bit integer that identifies a process:

= Ephemeral port: Assigned automatically by client kernel when client
makes a connection request.

= Well-known port: Associated with some service provided by a server
(e.g., port 80 is associated with Web servers)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Well-known Ports and Service Names

m Popular services have permanently assigned well-known
ports and corresponding well-known service names:
= echo server: 7/echo
= ssh servers: 22/ssh
= email server: 25/smtp
= Web servers: 80/http

m Mappings between well-known ports and service names
is contained in the file /etc/services on each Linux

machine.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Anatomy of a Connection

m A connection is uniquely identified by the socket
addresses of its endpoints (socket pair)

= (cliaddr:cliport, servaddr:servport)

Client socket address Server socket address
128.2.194.242:51213 :80
L/ \ Server
Connection socket pair (port 80)
(128.2.194.242:51213, :80)
Client host address Server host address
128.2.194.242
51213 is an ephemeral port 80 is a well-known port
allocated by the kernel associated with Web servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Using Ports to Identify Services

Server host 128.2.194.242

Client host Service request for
128.2.194.242:80

(i.e., the Web server)
Client

Web server
(port 80)

Kernel

) 4

Echo server
(port 7)

Service request for
128.2.194.242:7

) (i.e., the echo server)
Client

Web server
(port 80)

Kernel

) 4

Echo server
(port 7)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Sockets Interface

m Set of system-level functions used in conjunction with
Unix 1/0O to build network applications.

m Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of the
Internet protocols.

m Available on all modern systems
= Unix variants, Windows, OS X, |I0S, Android, ARM

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Sockets

m What is a socket?
= To the kernel, a socket is an endpoint of communication

= To an application, a socket is a file descriptor that lets the
application read/write from/to the network

= Remember: All Unix I/O devices, including networks, are
modeled as files

m Clients and servers communicate with each other by
reading from and writing to socket descriptors

- [
< »

clientfd serverfd

m The main distinction between regular file /O and socket
1/0 is how the application “opens” the socket descriptors

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Socket Address Structures

m Generic socket address:
" For address arguments to connect, bind, and accept
= Necessary only because C did not have generic (void *) pointers when
the sockets interface was designed
= For casting convenience, we adopt the Stevens convention:

typedef struct sockaddr SA;

struct sockaddr {
uintleé_t sa family; /* Protocol family */
char sa_dataf14]; /* Address data. */
};
sa family
— _J/
V

Family Specific

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Socket Address Structures

m Internet-specific socket address:

= Must cast (struct sockaddr in *)to(struct sockaddr ¥*)
for functions that take socket address arguments.

struct sockaddr_in {

uintlé_t sin_family; /* Protocol family (always AF_INET) */
uintle_t sin_port; /* Port num in network byte order */
struct iIn_addr sin_addr; /* 1P addr in network byte order */

unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */

¥

sin_port sin_addr

AF_INET O|0|O0O|]O0O|O0O|O]O]O

sa family W)

Family Specific

sin_family

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

open_clientfd

2. Start client

1. Start server

Carnegie Mellon

Sockets
Interface

open_listenfd

Client Server
getaddrinfo getaddrinfo
socket socket

bind
listen
Connectign l
request
connect --) -------- K~> accept

Client /
Server
Session

A 4

rio_writen

A 4

'

rio_readlineb

rio_readlineb

'

rio_writen

3. Exchange\
data

Await connection
request from
next client /

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

close

¥

4. Disconnect client

rio_readlineb

\ 4

close

5. Drop client

35

Client Server Sockets

_ _ 3\
(getaddrinfo getaddrinfo Inte rfa ce
socket socket
l \ open_listenfd
open_cl ientfd< bind
listen
Connection l /
request
\ connect [------------- > accept <
v v
Client / » rio writen »rio_readlinebie
Server | | . .
Session Await connection
rio_readlineb |« rio_writen request from
next client
v v
close f(----- EOF .. »rio_readlineb
\ 4
close
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Client

Server

getaddrinfo

getaddrinfo

I

!

J

Carnegie Mellon

Sockets
Interface

>open_listenfd

Await connection

request from
next client

open_clientfd< bind
listen
Connection l /
request

\ connect [------------- > accept <
v v

Client / » rio writen »rio_readlinebie
Server | |

Session rio_readlineb |« rio_writen

\4 v

close f(----- EOF .. »rio_readlineb

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

close

37

Carnegie Mellon

Sockets Interface: socket

m Clients and servers use the socket function to create a
socket descriptor:

int socket(int domain, int type, iInt protocol)

m Example:

int clientfd = Socket(AF_INET, SOCK_STREAM, 0);

/ \

Indicates that we are using Indicates that the socket
32-bit IPV4 addresses will be the end point of a
connection

Protocol specific! Best practice is to use getaddrinfo to
generate the parameters automatically, so that code is
protocol independent.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Sockets
Interface

>open_listenfd

Await connection

request from
next client

Client Server
N
(getaddrinfo getaddrinfo
socket socket
open_clientfd<
listen
Connection l /
request
\ connect [------------- > accept <
Client / » rio writen »rio_readlinebie
Server l l
Session rio_readlineb |« rio_writen
close f(----- EOF ___. »rio_readlineb

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

close

39

Sockets Interface: bi1nd

m Aserver uses bind to ask the kernel to associate the
server’s socket address with a socket descriptor:

int bind(int sockfd, SA *addr, socklen_t addrlen);

m The process can read bytes that arrive on the connection
whose endpoint is addr by reading from descriptor
sockfd.

m Similarly, writes to sockfd are transferred along
connection whose endpoint is addr .

Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Sockets
Interface

>open_listenfd

Await connection

request from
next client

Client Server
N
(getaddrinfo getaddrinfo
socket socket
open_clientfd< bind
Connection /
request
\ connect [------------- > accept <
Client / » rio writen »rio_readlinebie
Server l l
Session rio_readlineb |« rio_writen
close f(----- EOF ___. »rio_readlineb

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

close

41

Carnegie Mellon

Sockets Interface: l 1sten

m By default, kernel assumes that descriptor from socket
function is an active socket that will be on the client end
of a connection.

m A server calls the listen function to tell the kernel that a
descriptor will be used by a server rather than a client:

int listen(int sockfd, int backlog);

m Converts sockfd from an active socket to a listening
socket that can accept connection requests from clients.

m backlog is a hint about the number of outstanding
connection requests that the kernel should queue up
before starting to refuse requests.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Client Server Sockets

_ _ 3\
(getaddrinfo getaddrinfo Inte rfa ce
socket socket
l \ open_listenfd
open_cl ientfd< bind
listen
Connection l /
request
connect [-------------
\
v +
Client / » rio writen »rio_readlinebie
Server l l . .
Session Await connection
rio_readlineb [« rio_writen request from
next client
v v
close f(----- EOF ___. »rio_readlineb
\ 4
close
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Sockets Interface: accept

m Servers wait for connection requests from clients by
calling accept:

Int accept(int listenfd, SA *addr, iInt *addrlen);

m Waits for connection request to arrive on the connection
bound to 1 1stentd, then fills in client’s socket address
in addr and size of the socket address in addrlen.

m Returns a connected descriptor that can be used to
communicate with the client via Unix 1/O routines.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Client

getaddrinfo

I

socket

open_clientfd<

Connection

Server

getaddrinfo

'

socket

'

bind

'

listen

'

accept

Carnegie Mellon

Sockets
Interface

J

>open_listenfd

A

v

v
Client / » rio writen >
Server l
Session _ N
rio_readlineb |«

rio_readlineb

'

rio_writen

Await connection

request from
next client

v

close W f-----T2l_____

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

v

rio_readlineb

close

45

Carnegie Mellon

Sockets Interface: connect

m A client establishes a connection with a server by calling
connect:

int connect(int clientfd, SA *addr, socklen_t addrlen);

m Attempts to establish a connection with server at socket
address addr
= |f successful, then cl1entfd is now ready for reading and
writing.
= Resulting connection is characterized by socket pair
(X:y, addr.sin_addr:addr.sin_port)
= X is client address
= Yy is ephemeral port that uniquely identifies client process on
client host
Best practice is to use getaddrinfo to supply the
arguments addr and addrlen.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

accept lllustrated

listenfd(3)
1. Server blocks in accept,
Client l T Server waiting for connection request
clientfd on listening descriptor
listenfd
Connection listenfd(3)
request . R 2. Client makes connection request by
Client i T Server calling and blocking in connect
clientfd
listenfd(3)
3. Server returns connftd from
Client L . R I Server accept. Client returns from connect.
clientfd connfd(4) Connection is now established between

clientfd and connfd

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Connected vs. Listening Descriptors

m Listening descriptor
= End point for client connection requests
= Created once and exists for lifetime of the server

m Connected descriptor
= End point of the connection between client and server

= A new descriptor is created each time the server accepts a
connection request from a client

= Exists only as long as it takes to service client

m Why the distinction?

= Allows for concurrent servers that can communicate over many
client connections simultaneously

= E.g., Each time we receive a new request, we fork a child to
handle the request

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Client

getaddrinfo

I

socket

open_clientfd<

Connection

request
connect fb-------------

e

Server

Session _
rio_readlineb

close W f-----T2l_____

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Server

getaddrinfo

'

socket

'

bind

'

listen

'

J

Carnegie Mellon

Sockets
Interface

>open_listenfd

accept

rio_readlineb

rio writen

rio_readlineb

A

Await connection
request from
next client

49

Carnegie Mellon

Host and Service Conversion: getaddrinfo

m getaddrinfois the modern way to convert string

representations of hosthames, host addresses, ports, and
service names to socket address structures.
= Replaces obsolete gethostbyname and getservbyname funcs.

m Advantages:
= Reentrant (can be safely used by threaded programs).

= Allows us to write portable protocol-independent code
= Works with both IPv4 and IPv6

m Disadvantages
= Somewhat complex
= Fortunately, a small number of usage patterns suffice in most cases.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Host and Service Conversion: getaddrinfo

int getaddrinfo(const char *host, /* Hostname or address */
const char *service, /* Port or service name
*/
const struct addrinfo *hints,/* Input parameters */
struct addrinfo **result); /* Output linked list */

void freeaddrinfo(struct addrinfo *result); /* Free linked list */

const char *gai_strerror(int errcode); /* Return error msg */

m Given host and service, getaddrinfo returns result
that points to a linked list of addr 1nfo structs, each of which
points to a corresponding socket address struct, and which
contains arguments for the sockets interface functions.

m Helper functions:
» freeadderinfo frees the entire linked list.
= gal_strerror converts error code to an error message.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Linked List Returned by getaddrinfo

addrinfo structs

result

Socket address structs

al_canonname
ai_addr
ail_next

NULL
ai_addr
al_next

NULL
ai_addr
NULL

m Clients: walk this list, trying each socket address in turn, until
the calls to socket and connect succeed.

m Servers: walk the list until calls to socket and bi1nd succeed.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

addrinfo Struct

struct addrinfo {
int ai_flags; /* Hints argument flags */
int ai_family; /* First arg to socket function */
int al_socktype; /* Second arg to socket function */
int ail_protocol; /* Third arg to socket function */
char *ail_canonname; /* Canonical host name */
size t al_addrlen; /* Size of ai_addr struct */
struct sockaddr *ai_addr; /* Ptr to socket address structure */
struct addrinfo *ai_next; /* Ptr to next item in linked list */
};

m Each addrinfo struct returned by getaddrinfo contains
arguments that can be passed directly to socket function.

m Also points to a socket address struct that can be passed
directly to connect and bind functions.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Host and Service Conversion: getnameinfo

m getnameinfois the inverse of getaddrinfo, converting a
socket address to the corresponding host and service.
= Replaces obsolete gethostbyaddr and getservbyport funcs.
= Reentrant and protocol independent.

int getnameinfo(const SA *sa, socklen t salen, /* In: socket addr */
char *host, size t hostlen, /* Out: host */
char *serv, size_ t servlen, /* Out: service */
int flags); /* optional flags */

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Conversion Example

#include "csapp.-h"

int main(int argc, char **argv)

{
struct addrinfo *p, *listp, hints;
char buf[MAXLINE];
int rc, flags;

/* Get a list of addrinfo records */

memset(&hints, 0, sizeof(struct addrinfo));

hints.ai_family = AF_INET; /* 1Pv4 only */

hints.ai_socktype = SOCK_STREAM; /* Connections only */

1T ((rc = getaddrinfo(argv[1l], NULL, &hints, &listp)) != 0) {
fprintf(stderr, "getaddrinfo error: %s\n', gail_strerror(rc));
exit(l);

hostinfo.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Conversion Example (cont)

/* Walk the list and display each IP address */
flags = NI_NUMERICHOST; /* Display address instead of name */
for (p = listp; p; p = p->ai_next) {
Getnameinfo(p->ai_addr, p->ai_addrlen,
buf, MAXLINE, NULL, O, flags);
printf("%s\n", buf);

}

/* Clean up */
Freeaddrinfo(listp);

ex1t(0);
ks hostinfo.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Running hostinfo

whaleshark> ./hostinfo localhost
127.0.0.1

whaleshark> ./hostinfo whaleshark.ics.cs.cmu.edu
128.2.210.175

whaleshark> ./hostinfo twitter.com
199.16.156.230

199.16.156.38

199.16.156.102

199.16.156.198

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Next time

m Using getaddrinfo for host and service conversion
m Writing clients and servers
m Writing Web servers!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

Additional slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

Basic Internet Components

m Internet backbone:

= collection of routers (nationwide or worldwide) connected by high-speed
point-to-point networks

m Internet Exchange Points (IXP):

= router that connects multiple backbones (often referred to as peers)
= Also called Network Access Points (NAP)

m Regional networks:

= smaller backbones that cover smaller geographical areas
(e.g., cities or states)

m Point of presence (POP):
®" machine that is connected to the Internet

m Internet Service Providers (ISPs):
= provide dial-up or direct access to POPs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 61

Carnegie Mellon

Internet Connection Hierarchy

Private
”peering” IXP IXP IXP
agreements
between Colocation
two backbone sites
companies Backbone =--:- Backbone Backbone Backbone
T / / \\ / \%
POP POP POP POP POP
Regional net ISP Big Business
POP POP POP PO POP PO

Cable
DSL
T T / modem \

ISP (for individuals) Small Business Pgh employee DC employee

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Carnegie Mellon

IP Address Structure
m [P (V4) Address space divided into classes:
0123 8 16 24 31
ClassA |o| NetID Host ID
ClassB [1]0 Net ID Host ID
ClassC [1]1]0 Net ID Host ID
ClassD |1|1{1]|0| Multicast address
ClassE |1{1{1|1| Reserved for experiments

m Network ID Written in form w.x.y.z/n
= n=number of bits in host address
= E.g.,, CMU written as 128.2.0.0/16
= Class B address

m Unrouted (private) IP addresses:
10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Carnegie Mellon

Evolution of Internet

m Original Idea
= Every node on Internet would have unique IP address
= Everyone would be able to talk directly to everyone
= No secrecy or authentication
= Messages visible to routers and hosts on same LAN
= Possible to forge source field in packet header

m Shortcomings
" There aren't enough IP addresses available
= Don't want everyone to have access or knowledge of all other hosts
= Security issues mandate secrecy & authentication

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

Evolution of Internet: Naming

m Dynamic address assighment
"= Most hosts don't need to have known address
= Only those functioning as servers
= DHCP (Dynamic Host Configuration Protocol)
= Local ISP assigns address for temporary use

m Example:
= Laptop at CMU (wired connection)
= |P address 128.2.213.29 (bryant-tp4.cs.cmu.edu)
= Assigned statically
= lLaptop at home
= |P address 192.168.1.5
= Only valid within home network

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon

Evolution of Internet: Firewalls

176.3.3.3

T

216.99.99.99

Corporation X

Internet

m Firewalls

® Hides organizations nodes from rest of Internet

= Use local IP addresses within organization

= For external service, provides proxy service
1. Client request: src=10.2.2.2, dest=216.99.99.99
2. Firewall forwards: src=176.3.3.3, dest=216.99.99.99
3. Server responds: src=216.99.99.99, dest=176.3.3.3
4. Firewall forwards response: src=216.99.99.99, dest=10.2.2.2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 66

	Network Programming: Part I��15-213: Introduction to Computer Systems�21st Lecture, March 31, 2016
	A Client-Server Transaction
	Hardware Organization of a Network Host
	Hardware Organization of a Network Host
	Computer Networks
	Lowest Level: Ethernet Segment
	Next Level: Bridged Ethernet Segment
	Conceptual View of LANs
	Next Level: internets
	Logical Structure of an internet
	The Notion of an internet Protocol
	OSI Model
	What Does an internet Protocol Do?
	Transferring internet Data Via Encapsulation
	Other Issues
	Global IP Internet (upper case)
	Hardware and Software Organization �of an Internet Application
	A Programmer’s View of the Internet
	Aside: IPv4 and IPv6
	(1) IP Addresses
	Dotted Decimal Notation
	(2) Internet Domain Names
	Domain Naming System (DNS)
	Properties of DNS Mappings
	Properties of DNS Mappings (cont)
	Properties of DNS Mappings (cont)
	(3) Internet Connections
	Well-known Ports and Service Names	
	Anatomy of a Connection
	Using Ports to Identify Services
	Sockets Interface
	Sockets
	Socket Address Structures
	Socket Address Structures
	Sockets Interface
	Sockets Interface
	Sockets Interface
	Sockets Interface: socket
	Sockets Interface
	Sockets Interface: bind
	Sockets Interface
	Sockets Interface: listen
	Sockets Interface
	Sockets Interface: accept
	Sockets Interface
	Sockets Interface: connect
	accept Illustrated
	Connected vs. Listening Descriptors
	Sockets Interface
	Host and Service Conversion: getaddrinfo
	Host and Service Conversion: getaddrinfo
	Linked List Returned by getaddrinfo
	addrinfo Struct
	Host and Service Conversion: getnameinfo
	Conversion Example
	Conversion Example (cont)
	Running hostinfo
	Next time	
	Additional slides
	Basic Internet Components
	Internet Connection Hierarchy
	IP Address Structure
	Evolution of Internet
	Evolution of Internet: Naming
	Evolution of Internet: Firewalls

