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Today

m Basic concepts
m Implicit free lists
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Dynamic Memory Allocation

m Programmers use Application
dynamic memory Dynamic Memory Allocator
allocators (such as Hea
mal loc) to acquire VM P
at run time.
= For data structures whose User stack
size is only known at ‘
time.
runtime f Top of heap
m Dynamic memory " (brk ptr)

Heap (via mal 10oC)
allocators manage an

area of process virtual Uninitialized data (.bss)
memory known as the Initialized data (. data)
heap. Program text (. text)

0
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Dynamic Memory Allocation

m Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free
m Types of allocators

= Explicit allocator: application allocates and frees space
= E.g., mallocand freeinC

= Implicit allocator: application allocates, but does not free space
= E.g. garbage collection in Java, ML, and Lisp

m Will discuss simple explicit memory allocation today

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4



The mal 1oc Package

#i1nclude <stdlib.h>

void *malloc(size_t size)
= Successful:

= Returns a pointer to a memory block of at least S1ze bytes
aligned to an 16-byte boundary (on x86-64)

» [fs1ze == O, returns NULL
= Unsuccessful: returns NULL (0) and sets errno

void free(void *p)
= Returns the block pointed at by p to pool of available memory
= p must come from a previous call tomalloc or realloc

Other functions
= calloc: Version of mal loc that initializes allocated block to zero.
= realloc: Changes the size of a previously allocated block.
= sbrk: Used internally by allocators to grow or shrink the heap
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mal loc Example

#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i1, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
iIT (p == NULL) {
perror(‘'malloc');
ex1t(0);
+

/* Initialize allocated block */
for (1=0; i<n; 1++)
pLi] = 1;

/* Return allocated block to the heap */
free(p);
}
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Assumptions Made in This Lecture

m Memory is word addressed.
m Words are int-sized.

\ v ) Q ,_I
Allocated block Free block
(4 words) (3 words) Free word

Allocated word
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Allocation Example

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)
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Constraints

m Applications
® Can issue arbitrary sequence of mal loc and free requests
" free request must be toamalloc’d block

m Allocators

= Can’t control number or size of allocated blocks

= Must respond immediately to mal locC requests
= j.e., can’t reorder or buffer requests

= Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory

= Must align blocks so they satisfy all alignment requirements
= 16-byte (x86-64) alignment on Linux boxes

= Can manipulate and modify only free memory

" Can’t move the allocated blocks once they are mal loc’d

= j.e., compaction is not allowed
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Performance Goal: Throughput

m Given some sequence of mal loc and free requests:
RyR,..,R,..,R .

m Goals: maximize throughput and peak memory utilization
" These goals are often conflicting

m Throughput:
" Number of completed requests per unit time
= Example:
= 5000 malloc calls and 5,000 free calls in 10 seconds

= Throughput is 1,000 operations/second
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Performance Goal: Peak Memory Utilization

m Given some sequence of mall loc and free requests:
= R,Ry,..Ry...,R

m Def: Aggregate payload P,
= malloc(p) results in a block with a payload of p bytes

= After request R, has completed, the aggregate payload P, is the sum of
currently allocated payloads

m Def: Current heap size H,
= Assume H, is monotonically nondecreasing
= i.e., heap only grows when allocator uses sbrk

m Def: Peak memory utilization after k+1 requests
= U,=(maxP;) / H,
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Fragmentation

m Poor memory utilization caused by fragmentation
" jnternal fragmentation
= external fragmentation
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Internal Fragmentation

m For a given block, internal fragmentation occurs if payload is
smaller than block size

Block
e
- N
Internal Internal
fragmentation fragmentation

m Caused by
= Qverhead of maintaining heap data structures
= Padding for alignment purposes

= Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

m Depends only on the pattern of previous requests
" Thus, easy to measure
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External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

pl = malloc(4)
p2 = malloc(5)
p3 = malloc(6)
free(p2)

p4 = malloc(6) Oops! (what would happen now?)

m Depends on the pattern of future requests
" Thus, difficult to measure
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Implementation Issues

m How do we know how much memory to free given just a
pointer?

m How do we keep track of the free blocks?

m What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

m How do we pick a block to use for allocation -- many
might fit?

m How do we reinsert freed block?
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Knowing How Much to Free

m Standard method
= Keep the length of a block in the word preceding the block.
= This word is often called the header field or header
= Requires an extra word for every allocated block

pO
l
pO = malloc(4) 5

block size payload

free(po)
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Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

m Method 2: Explicit list among the free blocks using pointers

/\

5 -~ 4 6 2

m Method 3: Segregated free list

m Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key
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Today

m Basic concepts
m Implicit free lists
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Method 1: Implicit List

m For each block we need both size and allocation status
" Could store this information in two words: wasteful!
m Standard trick

= |f blocks are aligned, some low-order address bits are always O
" |nstead of storing an always-0 bit, use it as a allocated/free flag
" When reading size word, must mask out this bit

1 word
A
/ ™~
Size a a = 1: Allocated block
a = 0: Free block
Format of
allocated and Payload Size: block size
free blocks o
Payload: application data
(allocated blocks only)
Optional
padding
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Detailed Implicit Free List Example

of 8/0 16/1 32/0 16/1 ‘ o/1|
heap
' Double-word Allocated blocks: shaded
aligned Free blocks: unshaded

Headers: labeled with size in bytes/allocated bit
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Implicit List: Finding a Free Block

m First fit:
= Search list from beginning, choose first free block that fits:

p = start;
while ((p < end) && \\ not passed end
(p & D |1 \\ already allocated

(p <= len))) \\ too small
p=p+ Cp & -2); \\ goto next block (word addressed)

= Can take linear time in total number of blocks (allocated and free)
® |n practice it can cause “splinters” at beginning of list

m Next fit:
= Like first fit, but search list starting where previous search finished
= Should often be faster than first fit: avoids re-scanning unhelpful blocks
= Some research suggests that fragmentation is worse

m Best fit:
= Search the list, choose the best free block: fits, with fewest bytes left over
= Keeps fragments small—usually improves memory utilization
= Will typically run slower than first fit
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Implicit List: Allocating in Free Block

m Allocating in a free block: splitting

= Since allocated space might be smaller than free space, we might want
to split the block

N N —

4 4 6 2
1
p

addblock(p, 4)

void addblock(ptr p, Int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even
int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length

iIT (newsize < oldsize)
*(p+tnewsize) = oldsize - newsize; // set length In remaining
} // part of block
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Implicit List: Freeing a Block

m Simplest implementation:

= Need only clear the “allocated” flag
void free block(ptr p) { *p = *p & -2 }

= But can lead to “false fragmentation”

T &

free(p)

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it
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Implicit List: Coalescing

m Join (coalesce) with next/previous blocks, if they are free

= Coalescing with next block

4 4 4 2 2 .
t logically
free(p) ///’__\\\m///’__\\\il/”’_____z?~<://,//"gone
4 4 6 2 2
void free_block(ptr p) {
*p = *p & -2; // clear allocated flag
next = p + *p; // find next block
IT ((Cnext & 1) == 0)
*p = *p + *next; // add to this block if
} // not allocated

= But how do we coalesce with previous block?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24



Carnegie Mellon

Implicit List: Bidirectional Coalescing

m Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
" |mportant and general technique!

Header — Size a a = 1: Allocated block

a = 0: Free block

Format of _ .

allocated and Payload and Size: Total block size

padding

free blocks Payload: Application data

(allocated blocks only)
Boundary tag — Size a
(footer)
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Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4
Allocated Allocated Free Free
Block being
freed
Allocated Free Allocated Free
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Constant Time Coalescing (Case 1)

ml 1 ml 1
ml 1 ml 1
n 1 n 0
—
n n
m2 1 m2 1
m2 1 m2 1
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Constant Time Coalescing (Case 2)

ml 1 ml 1
ml 1 ml 1
n 1 n+m?2 0
—
n 1
m2 0
m2 0 n+m?2 0
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Constant Time Coalescing (Case 3)

ml 0 n+ml 0
ml 0
n 1
—
n 1 n+ml
m2 1 m2 1
m2 1 m2 1
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Constant Time Coalescing (Case 4)

ml 0 n+ml+m?2 0
ml 0
n 1
—
n 1
m2 0
m2 0 n+ml+m?2 0
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Disadvantages of Boundary Tags

m Internal fragmentation

m Can it be optimized?
= Which blocks need the footer tag?
= What does that mean?
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No Boundary Tag for Allocated Blocks (1)

ml 11 ml 01
n 10

—p
n 11 n 10
m2 ?1 m2 ?1

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)
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No Boundary Tag for Allocated Blocks (2)

m1l 11 m1l 01
n+m2 ?0
—p
n 01
m2 ?0
m2 ?0 n+m2 ?0

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)
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Summary of Key Allocator Policies

m Placement policy:
= First-fit, next-fit, best-fit, etc.
" Trades off lower throughput for less fragmentation

= Interesting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search
entire free list

m Splitting policy:
= When do we go ahead and split free blocks?
= How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
" |mmediate coalescing: coalesce each time free is called

= Deferred coalescing: try to improve performance of Free by deferring
coalescing until needed. Examples:

= Coalesce as you scan the free list formal loc

= Coalesce when the amount of external fragmentation reaches
some threshold
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Implicit Lists: Summary

m Implementation: very simple

m Allocate cost:
" |inear time worst case

m Free cost:
® constant time worst case
= even with coalescing

m Memory usage:
= will depend on placement policy
" First-fit, next-fit or best-fit

m Not used in practice for mal loc/free because of linear-
time allocation

= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators
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