Carnegie Mellon

Dynamic Memory Allocation:
Basic Concepts

15-213: Introduction to Computer Systems
19t Lecture, March 24, 2016

Instructors:
Franz Franchetti & Seth Copen Goldstein, Ralf Brown, and Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Carnegie Mellon

Today

m Basic concepts
m Implicit free lists

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2



Carnegie Mellon

Dynamic Memory Allocation

m Programmers use Application
dynamic memory Dynamic Memory Allocator
allocators (such as Hea
mal loc) to acquire VM P
at run time.
= For data structures whose User stack
size is only known at ‘
time.
runtime f Top of heap
m Dynamic memory " (brk ptr)

Heap (via mal 10oC)
allocators manage an

area of process virtual Uninitialized data (.bss)
memory known as the Initialized data (. data)
heap. Program text (. text)

0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition



Carnegie Mellon

Dynamic Memory Allocation

m Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free
m Types of allocators

= Explicit allocator: application allocates and frees space
= E.g., mallocand freeinC

= Implicit allocator: application allocates, but does not free space
= E.g. garbage collection in Java, ML, and Lisp

m Will discuss simple explicit memory allocation today

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4



The mal 1oc Package

#i1nclude <stdlib.h>

void *malloc(size_t size)
= Successful:

= Returns a pointer to a memory block of at least S1ze bytes
aligned to an 16-byte boundary (on x86-64)

» [fs1ze == O, returns NULL
= Unsuccessful: returns NULL (0) and sets errno

void free(void *p)
= Returns the block pointed at by p to pool of available memory
= p must come from a previous call tomalloc or realloc

Other functions
= calloc: Version of mal loc that initializes allocated block to zero.
= realloc: Changes the size of a previously allocated block.
= sbrk: Used internally by allocators to grow or shrink the heap

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5



mal loc Example

#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int i1, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int));
iIT (p == NULL) {
perror(‘'malloc');
ex1t(0);
+

/* Initialize allocated block */
for (1=0; i<n; 1++)
pLi] = 1;

/* Return allocated block to the heap */
free(p);
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6



Carnegie Mellon

Assumptions Made in This Lecture

m Memory is word addressed.
m Words are int-sized.

\ v ) Q ,_I
Allocated block Free block
(4 words) (3 words) Free word

Allocated word

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7



Carnegie Mellon

Allocation Example

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8



Constraints

m Applications
® Can issue arbitrary sequence of mal loc and free requests
" free request must be toamalloc’d block

m Allocators

= Can’t control number or size of allocated blocks

= Must respond immediately to mal locC requests
= j.e., can’t reorder or buffer requests

= Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory

= Must align blocks so they satisfy all alignment requirements
= 16-byte (x86-64) alignment on Linux boxes

= Can manipulate and modify only free memory

" Can’t move the allocated blocks once they are mal loc’d

= j.e., compaction is not allowed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9



Carnegie Mellon

Performance Goal: Throughput

m Given some sequence of mal loc and free requests:
RyR,..,R,..,R .

m Goals: maximize throughput and peak memory utilization
" These goals are often conflicting

m Throughput:
" Number of completed requests per unit time
= Example:
= 5000 malloc calls and 5,000 free calls in 10 seconds

= Throughput is 1,000 operations/second

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10



Carnegie Mellon

Performance Goal: Peak Memory Utilization

m Given some sequence of mall loc and free requests:
= R,Ry,..Ry...,R

m Def: Aggregate payload P,
= malloc(p) results in a block with a payload of p bytes

= After request R, has completed, the aggregate payload P, is the sum of
currently allocated payloads

m Def: Current heap size H,
= Assume H, is monotonically nondecreasing
= i.e., heap only grows when allocator uses sbrk

m Def: Peak memory utilization after k+1 requests
= U,=(maxP;) / H,

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11



Carnegie Mellon

Fragmentation

m Poor memory utilization caused by fragmentation
" jnternal fragmentation
= external fragmentation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12



Internal Fragmentation

m For a given block, internal fragmentation occurs if payload is
smaller than block size

Block
e
- N
Internal Internal
fragmentation fragmentation

m Caused by
= Qverhead of maintaining heap data structures
= Padding for alignment purposes

= Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

m Depends only on the pattern of previous requests
" Thus, easy to measure

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13



Carnegie Mellon

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

pl = malloc(4)
p2 = malloc(5)
p3 = malloc(6)
free(p2)

p4 = malloc(6) Oops! (what would happen now?)

m Depends on the pattern of future requests
" Thus, difficult to measure

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14



Carnegie Mellon

Implementation Issues

m How do we know how much memory to free given just a
pointer?

m How do we keep track of the free blocks?

m What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

m How do we pick a block to use for allocation -- many
might fit?

m How do we reinsert freed block?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15



Carnegie Mellon

Knowing How Much to Free

m Standard method
= Keep the length of a block in the word preceding the block.
= This word is often called the header field or header
= Requires an extra word for every allocated block

pO
l
pO = malloc(4) 5

block size payload

free(po)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16



Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

m Method 2: Explicit list among the free blocks using pointers

/\

5 -~ 4 6 2

m Method 3: Segregated free list

m Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17



Carnegie Mellon

Today

m Basic concepts
m Implicit free lists

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18



Carnegie Mellon

Method 1: Implicit List

m For each block we need both size and allocation status
" Could store this information in two words: wasteful!
m Standard trick

= |f blocks are aligned, some low-order address bits are always O
" |nstead of storing an always-0 bit, use it as a allocated/free flag
" When reading size word, must mask out this bit

1 word
A
/ ™~
Size a a = 1: Allocated block
a = 0: Free block
Format of
allocated and Payload Size: block size
free blocks o
Payload: application data
(allocated blocks only)
Optional
padding

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19



Carnegie Mellon

Detailed Implicit Free List Example

of 8/0 16/1 32/0 16/1 ‘ o/1|
heap
' Double-word Allocated blocks: shaded
aligned Free blocks: unshaded

Headers: labeled with size in bytes/allocated bit

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20



Implicit List: Finding a Free Block

m First fit:
= Search list from beginning, choose first free block that fits:

p = start;
while ((p < end) && \\ not passed end
(p & D |1 \\ already allocated

(p <= len))) \\ too small
p=p+ Cp & -2); \\ goto next block (word addressed)

= Can take linear time in total number of blocks (allocated and free)
® |n practice it can cause “splinters” at beginning of list

m Next fit:
= Like first fit, but search list starting where previous search finished
= Should often be faster than first fit: avoids re-scanning unhelpful blocks
= Some research suggests that fragmentation is worse

m Best fit:
= Search the list, choose the best free block: fits, with fewest bytes left over
= Keeps fragments small—usually improves memory utilization
= Will typically run slower than first fit

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21



Implicit List: Allocating in Free Block

m Allocating in a free block: splitting

= Since allocated space might be smaller than free space, we might want
to split the block

N N —

4 4 6 2
1
p

addblock(p, 4)

void addblock(ptr p, Int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even
int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length

iIT (newsize < oldsize)
*(p+tnewsize) = oldsize - newsize; // set length In remaining
} // part of block

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22



Carnegie Mellon

Implicit List: Freeing a Block

m Simplest implementation:

= Need only clear the “allocated” flag
void free block(ptr p) { *p = *p & -2 }

= But can lead to “false fragmentation”

T &

free(p)

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23



Implicit List: Coalescing

m Join (coalesce) with next/previous blocks, if they are free

= Coalescing with next block

4 4 4 2 2 .
t logically
free(p) ///’__\\\m///’__\\\il/”’_____z?~<://,//"gone
4 4 6 2 2
void free_block(ptr p) {
*p = *p & -2; // clear allocated flag
next = p + *p; // find next block
IT ((Cnext & 1) == 0)
*p = *p + *next; // add to this block if
} // not allocated

= But how do we coalesce with previous block?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24



Carnegie Mellon

Implicit List: Bidirectional Coalescing

m Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
" |mportant and general technique!

Header — Size a a = 1: Allocated block

a = 0: Free block

Format of _ .

allocated and Payload and Size: Total block size

padding

free blocks Payload: Application data

(allocated blocks only)
Boundary tag — Size a
(footer)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25



Carnegie Mellon

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4
Allocated Allocated Free Free
Block being
freed
Allocated Free Allocated Free

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26



Carnegie Mellon

Constant Time Coalescing (Case 1)

ml 1 ml 1
ml 1 ml 1
n 1 n 0
—
n n
m2 1 m2 1
m2 1 m2 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27



Carnegie Mellon

Constant Time Coalescing (Case 2)

ml 1 ml 1
ml 1 ml 1
n 1 n+m?2 0
—
n 1
m2 0
m2 0 n+m?2 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28



Carnegie Mellon

Constant Time Coalescing (Case 3)

ml 0 n+ml 0
ml 0
n 1
—
n 1 n+ml
m2 1 m2 1
m2 1 m2 1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29



Carnegie Mellon

Constant Time Coalescing (Case 4)

ml 0 n+ml+m?2 0
ml 0
n 1
—
n 1
m2 0
m2 0 n+ml+m?2 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30



Carnegie Mellon

Disadvantages of Boundary Tags

m Internal fragmentation

m Can it be optimized?
= Which blocks need the footer tag?
= What does that mean?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31



Carnegie Mellon

No Boundary Tag for Allocated Blocks (1)

ml 11 ml 01
n 10

—p
n 11 n 10
m2 ?1 m2 ?1

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32



Carnegie Mellon

No Boundary Tag for Allocated Blocks (2)

m1l 11 m1l 01
n+m2 ?0
—p
n 01
m2 ?0
m2 ?0 n+m2 ?0

Header: Use 2 bits (always zero due to alignment):
(previous block allocated)<<1 | (current block allocated)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33



Carnegie Mellon

Summary of Key Allocator Policies

m Placement policy:
= First-fit, next-fit, best-fit, etc.
" Trades off lower throughput for less fragmentation

= Interesting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search
entire free list

m Splitting policy:
= When do we go ahead and split free blocks?
= How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
" |mmediate coalescing: coalesce each time free is called

= Deferred coalescing: try to improve performance of Free by deferring
coalescing until needed. Examples:

= Coalesce as you scan the free list formal loc

= Coalesce when the amount of external fragmentation reaches
some threshold

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34



Implicit Lists: Summary

m Implementation: very simple

m Allocate cost:
" |inear time worst case

m Free cost:
® constant time worst case
= even with coalescing

m Memory usage:
= will depend on placement policy
" First-fit, next-fit or best-fit

m Not used in practice for mal loc/free because of linear-
time allocation

= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35



	Dynamic Memory Allocation: �Basic Concepts��15-213: Introduction to Computer Systems	�19th Lecture, March 24, 2016
	Today
	Dynamic Memory Allocation	
	Dynamic Memory Allocation
	The malloc Package
	malloc Example
	Assumptions Made in This Lecture
	Allocation Example
	Constraints
	Performance Goal: Throughput
	Performance Goal: Peak Memory Utilization
	Fragmentation
	Internal Fragmentation
	External Fragmentation
	Implementation Issues
	Knowing How Much to Free
	Keeping Track of Free Blocks
	Today
	Method 1: Implicit List
	Detailed Implicit Free List Example
	Implicit List: Finding a Free Block
	Implicit List: Allocating in Free Block
	Implicit List: Freeing a Block
	Implicit List: Coalescing
	Implicit List: Bidirectional Coalescing 
	Constant Time Coalescing
	Constant Time Coalescing (Case 1)
	Constant Time Coalescing (Case 2)
	Constant Time Coalescing (Case 3)
	Constant Time Coalescing (Case 4)
	Disadvantages of Boundary Tags
	No Boundary Tag for Allocated Blocks (1)
	No Boundary Tag for Allocated Blocks (2)
	Summary of Key Allocator Policies
	Implicit Lists: Summary

