Carnegie Mellon

System-Level I/O

15-213: Introduction to Computer Systems
16" Lecture, March 15, 2016

Instructors:
Franz Franchetti & Seth Copen Goldstein, Ralf Brown, and Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Mid-Semester Feedback (Selected Answers)

m Piazza reaction time, let students answer questions
m Pace and denseness of lecture and slides

m Slides posted ahead of lecture, videos
http://www.cs.cmu.edu/afs/cs/academic/class/15213-f15/www/schedule.html

https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx#folderiD=%22b9
6d90ae-9871-4fae-91e2-b1627b43e25e%22

m Exam questions, solving problems together, interactivity
m Other suggestions re office hours and recitations

m Shout-out to TAs (and you could become one next semester)

Thank you to all of you who did the survey!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

http://www.cs.cmu.edu/afs/cs/academic/class/15213-f15/www/schedule.html
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx#folderID=%22b96d90ae-9871-4fae-91e2-b1627b43e25e%22
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx#folderID=%22b96d90ae-9871-4fae-91e2-b1627b43e25e%22

Today: Unix 1/0 and C Standard 1/0

m Two sets: system-level and C level

m Robust I/0 (RIO): 15-213 special wrappers
good coding practice: handles error checking, signals, and
“short counts”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fopen fTdopen

fread TfTwrite

fscanft fprintf

sscanf sprintf |» C application program

fgets fputs b rio_readn

fFlush fseek rio_writen

fclose { Standard 1/0 RIO B - oo

functions functions rio readlineb

v?/rr)'(iaze :22&(. Unix 1/0O functions Ue i
stat close (accessed via system calls)

Carnegie Mellon

Today

m Unix1/0

m Metadata, sharing, and redirection
m RIO (robust I/0) package

m Standard 1/O

m Closing remarks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Unix I/O Overview

m A Linux file is a sequence of m bytes:
= B, B,,...,B,..,B

m-1

m Cool fact: All /0O devices are represented as files:
= /dev/sda2 (/usr disk partition)
= /dev/tty2 (terminal)

m Even the kernel is represented as a file:
= /boot/vmlinuz-3.13.0-55-generic (kernelimage)
= /proc (kernel data structures)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Unix 1/0 Overview

m Elegant mapping of files to devices allows kernel to export
simple interface called Unix I/0:
"= Opening and closing files
= open(Dand close()
= Reading and writing a file
= read() and write()
® Changing the current file position (seek)

» indicates next offset into file to read or write
= Iseek()

By [B; |[®°° B.1| Bk |Br:a|®®®

t

Current file position = k

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

File Types

m Each file has a type indicating its role in the system
= Regqular file: Contains arbitrary data
= Directory: Index for a related group of files
= Socket: For communicating with a process on another machine

m Other file types beyond our scope
= Named pipes (FIFOs)
= Symbolic links
= Character and block devices

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Regular Files

m A regular file contains arbitrary data
m Applications often distinguish between text files and binary
files
= Text files are regular files with only ASCII or Unicode characters
= Binary files are everything else
= e.g., object files, JPEG images
= Kernel doesn’t know the difference!
m Text file is sequence of text lines
= Text line is sequence of chars terminated by newline char (‘“\n’)
= Newline is O0Xa, same as ASCII line feed character (LF)
m End of line (EOL) indicators in other systems ,iage ICAUIn
= Linux and Mac 0OS: \r’ (0xa)
= line feed (LF)
= Windows and Internet protocols: ‘\r\n’ (Oxd 0Oxa)
= Carriage return (CR) followed by line feed (LF)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Directories

m Directory consists of an array of links

= Each link maps a filename to a file

m Each directory contains at least two entries
= _ (dot)is alink to itself

. . (dot dot) is a link to the parent directory in the directory
hierarchy (next slide)

m Commands for manipulating directories
= mkdir: create empty directory
= |s:view directory contents
= rmdir: delete empty directory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Directory Hierarchy

m All files are organized as a hierarchy anchored by root directory
named / (slash)

/
W
bin/ dev/ etc/ home/ usr/
T
ba|sh tt|y1 g ro@swd d romnt/ include/ bin/
N\
hello.c stdio.h sys/ vim
unistd.h

m Kernel maintains current working directory (cwd) for each process
= Modified using the cd command

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Pathnames

m Locations of files in the hierarchy denoted by pathnames

= Absolute pathname starts with ‘/* and denotes path from root
= /home/droh/hello.c

= Relative pathname denotes path from current working directory
= _./home/droh/hello.c

/ cwd: /home/bryant
bin/ dev/ etc/ home/ usr/
bash ttyl group passwd droh/ bryant/ include/ bin/

N\

hello.c stdio.h sys/ vim

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition un i Std i h 11

Opening Files

m Opening a file informs the kernel that you are getting ready to
access that file

int fd; /* Tile descriptor */

It ((fd = open(''/etc/hosts', O RDONLY)) < 0) {
perror(‘'open');
exi1t(l);

+

m Returns a small identifying integer file descriptor
= fd == -1 indicates that an error occurred

m Each process created by a Linux shell begins life with three
open files associated with a terminal:

= (O:standard input (stdin)
= 1:standard output (stdout)
= 2:standard error (stderr)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Closing Files

m Closing a file informs the kernel that you are finished
accessing that file

int fd; /* Tile descriptor */
int retval; /* return value */

IT ((retval = close(fd)) < 0) {
perror(‘'close');
exit(l);

}

m Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

m Moral: Always check return codes, even for seemingly
benign functions such as close ()

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Reading Files

m Reading a file copies bytes from the current file position to
memory, and then updates file position

char buf[512];
int fd; /* Tile descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

IT ((hbytes = read(fd, buf, sizeof(buf))) < 0) {
perror(*'read");
exit(l);

}

m Returns number of bytes read from file ¥d into buf
= Return type Ssize_tissigned integer
"= nbytes < Oindicates that an error occurred

= Short counts (nbytes < sizeof(buf)) are possible and are not
errors!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Writing Files

m Writing a file copies bytes from memory to the current file
position, and then updates current file position

char buf[512];
int fd; /* Tile descriptor */
int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
IT ((hbytes = write(fd, buf, sizeof(buf)) < 0) {
perror(*'write");
exit(l);
by

m Returns number of bytes written from buT to file fd
"= nbytes < Oindicates that an error occurred

= As with reads, short counts are possible and are not errors!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Simple Unix I/O example

m Copying stdin to stdout, one byte at a time

#include '"csapp.h"

int main(void)

{
char c;
while(Read(STDIN_FILENO, &c, 1) !'= 0)

Write(STDOUT_FILENO, &c, 1);

ex1t(0);

+

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

On Short Counts

m Short counts can occur in these situations:
= Encountering (end-of-file) EOF on reads
= Reading text lines from a terminal
= Reading and writing network sockets

m Short counts never occur in these situations:
= Reading from disk files (except for EOF)
= Writing to disk files

m Best practice is to always allow for short counts.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Today

m Unix1/0

m Metadata, sharing, and redirection
m RIO (robust I/0) package

m Standard 1/O

m Closing remarks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

File Metadata

m Metadata is data about data, in this case file data

m Per-file metadata maintained by kernel
= accessed by users with the stat and fstat functions

/* Metadata returned by the stat and fstat functions */
struct stat {

dev_t st _dev; /* Device */

ino t st _1no; /* 1node */

mode_t st_mode; /* Protection and file type */
nlink t st _nlink; /* Number of hard links */

uid_t st _uid; /* User ID of owner */

gid t st _gid; /* Group ID of owner */

dev_t st _rdev; /* Device type (1f i1node device) */
off t st_size; /* Total size, In bytes */

unsigned long st _blksize; /* Blocksize for filesystem 1/0 */
unsigned long st _blocks; /* Number of blocks allocated */

time_t st _atime; /* Time of last access */
time_t st _mtime; /* Time of last modification */
time_ t st _ctime; /* Time of last change */

¥

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Example of Accessing File Metadata

linux> ./statcheck statcheck.c

Iint main (int argc, char **argv) type: regular, read: yes
{ 1inux> chmod 000 statcheck.c
struct stat stat; linux> _/statcheck statcheck.c
char *type, *readok; type: regular, read: no
linux> _/statcheck ..
Stat(argv[l], &stat); type: directory, read: yes
iIT (S_ISREG(stat.st_mode)) /* vetermine Ti1e twype °s

type = "regular’;
else 1T (S_ISDIR(stat.st_mode))
type = "'directory";
else
type = "other";
iIT ((stat.st_mode & S IRUSR)) /* Check read access */
readok = "'yes';
else
readok = '"'no";

printf(""type: %s, read: %s\n", type, readok);
exi1t(0);
+ statcheck.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

How the Unix Kernel Represents Open Files

m Two descriptors referencing two distinct open files.
Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A (terminal)

stdin fdo File access
stdout fd1 el File pos File size Info in
stderr fd2
fd3 refcnt=1 File type stat
- struct
fda ~ : :
\File B (disk)
e File access
File pos File size
refcnt=1 File type
File pos is maintained per open file

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

File Sharing

m Two distinct descriptors sharing the same disk file through
two distinct open file table entries

" E.g., Calling open twice with the same f1lename argument

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A (disk)
stdin fdo File access
stdout fd1 . S i
File size
stderr fd2 File pos -
fd 3 refcnt=1 File type
fd 4 : :
\File B (disk)
/
File pos
refcnt=1
Different logical but same physical file

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

How Processes Share Files: fork

m A child process inherits its parent’s open files
= Note: situation unchanged by exec functions (use fcntl to change)

m Before fork call:

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A (terminal)

stdin fdo File access
stdout fd1 = . S i
File size
stderr fd2 File pos -
fd 3 refcnt=1 File type
fd 4 ~ : :
\File B (disk)
e File access
File pos File size
refcnt=1 File type

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

How Processes Share Files: fork

m A child process inherits its parent’s open files
m After Tork:

® Child’s table same as parent’s, and +1 to each refcnt

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

Parent File A (terminal)
fd 0 / File access
fd1l — . o .
File size

td 2 File pos !
fd 3 refcnt=2 File type
fd 4 ~ : :

e File access
fdo o .
fd1 File pos File size
fd 2 refont=2 File type
fd3 :
fd 4

File is shared between processes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

/0O Redirection

m Question: How does a shell implement 1/0 redirection?
linux> Is > foo.txt

m Answer: By calling the dup2(oldfd, newfd) function
= Copies (per-process) descriptor table entry oldfd to entry newfd

Descriptor table Descriptor table
before dup2(4,1) after dup2(4,1)
fdo fd O

fdi|a fd1|b

fd 2 fd 2

fd 3 fd 3

fda|b fda|b

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

/O Redirection Example

m Step #1: open file to which stdout should be redirected
= Happens in child executing shell code, before exec

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A
stdin fdo File access
stdout fd1 = X TP
File size
stderr fd2 File pos X
fd 3 refcnt=1 File type
fd 4 ~ : :
e File access
File pos File size
refcnt=1 File type

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

/0 Redirection Example (cont.)
m Step #2: calldup2(4,1)

= cause fd=1 (stdout) to refer to disk file pointed at by fd=4

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A
stdin fdo File access
stdout fd1 N - ‘e ci
File size
stderr fd2 b File pos :
fd 3 refcnt=0 File type
fd 4 ~ : :
File B
e File access
File pos File size
refcnt=2 File type
Two descriptors point to the same file ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Warm-Up: I/O and Redirection Example

#include "csapp.h"
int main(int argc, char *argvl])
{
int fd1, fd2, fd3;
char cl, c2, c3;
char *fname = argv|[1l];
fdl = Open(fname, O RDONLY, 0);
fd2 = Open(fname, O RDONLY, 0);
fd3 = Open(fname, O RDONLY, 0);
Dup2(fd2, fd3);
Read(fdl, &cl, 1);
Read(fd2, &c2, 1);
Read(fd3, &c3, 1);
printf("'cl = %c, c2 = %c, c3 = %c\n', cl, c2, c3);
return O;
} ffilesl.c

m What would this program print for file containing “abcde”?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Warm-Up: I/O and Redirection Example

#include "csapp.h"
int main(int argc, char *argvl])
{
int fd1, fd2, fd3;
char cl, c2, c3;
char *fname = argv|[1l];
fdl Open(fname, O RDONLY,
fd2 Open(fname, O RDONLY,
fd3 Open(fname, O RDONLY,

0);
0);
0);

cl =a, c2=a, c3=0Db

Dup2(fd2, fd3); <
Read(fdl, &cl, 1);
Read(fd2, &c2, 1);
Read(fd3, &c3, 1);
printf(''cl = %c, c2 =
return O;

%c, c3 =

}

dup2(oldfd, newfd)

%c\n'', cl, c2, c3);

ffilesl.c

m What would this program print for file containing “abcde”?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

29

Carnegie Mellon

Master Class: Process Control and 1/O

#include '"'csapp.h"
int main(int argc, char *argvl])
{
int fdi;
int s = getpid() & Ox1;
char cl, c2;
char *fname = argv|[1l];
fdl = Open(fname, O RDONLY, 0);
Read(fdl, &cl, 1);
it (fork()) { 7* Parent */
sleep(s);
Read(fdl, &c2, 1);
printf(*'Parent: cl = %c, c2 =
} else { /7* Child */
sleep(1-s);
Read(fdl, &c2, 1);

}

return O;

}

printf(C"'Child: cl1l = %c, c2 = %c\n", cl, c2);

%c\n', cl, c2);

ffiles2.c

m What would this program print for file containing “abcde”?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

30

Master Class: Process Control and 1/O

#include '"'csapp.h"
int main(int argc, char *argvl])
{
int fdi;
int s = getpid() & Ox1;
char cl, c2;
char *fname = argv|[1l];
fdl = Open(fname, O RDONLY, 0);
Read(fdl, &cl, 1);
it (fork()) { 7* Parent */
sleep(s);
Read(fdl, &c2, 1);
printf("'Parent: cl = %c, c2
} else { /7* Child */
sleep(1-s);
Read(fdl, &c2, 1);
printf(""Child: cl1 = %c, c2
+
return O;
+

|
Child: ¢l = a, c2 = b
Parent: ¢l = a, c2 = C

b
C

Parent: cl = a, c2
Child: ¢cl1 = a, c2

Bonus: Which way|does it go?

%c\n', cl, c2);

%c\n'", cl, c2);

ffiles2.c

m What would this program print

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

for file containing “abcde”?

31

Carnegie Mellon

Today

m Unix1/0

m Metadata, sharing, and redirection
m RIO (robust 1/0) package

m Standard 1/O

m Closing remarks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

The RIO Package (15-213/CS:APP Package)

m RIO is a set of wrappers that provide efficient and robust 1/0
in apps, such as network programs that are subject to short
counts

m RIO provides two different kinds of functions
= Unbuffered input and output of binary data
= rio_readnand rio_writen
= Buffered input of text lines and binary data
= rio_readlineband rio_readnb

= Buffered RIO routines are thread-safe and can be interleaved
arbitrarily on the same descriptor

m Download from http://csapp.cs.cmu.edu/3e/code.html
- src/csapp-c and include/csapp.-h

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

http://csapp.cs.cmu.edu/public/code.html

Unbuffered RIO Input and Output

m Same interface as Unix read and write
m Especially useful for transferring data on network sockets

#include "csapp-h"

ssize t rio_readn(int fd, void *usrbuf, size t n);
ssize t rio writen(int fd, void *usrbuf, size t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

" ri1o_readn returnsshort count only if it encounters EOF
= Only use it when you know how many bytes to read
" r1o_writen never returns a short count
= Callstorio_readnand rio_writen can be interleaved arbitrarily on
the same descriptor

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Implementation of rio readn

/*
* rio_readn - Robustly read n bytes (unbuffered)
*/
ssize t rio_readn(int fd, void *usrbuf, size t n)
{

size_t nleft = n;
ssize_t nread;
char *bufp = usrbuf;

while (nleft > 0) {
IT ((hread = read(fd, bufp, nleft)) < 0) {
iIT (errno == EINTR) /* Interrupted by sig handler return */

nread = 0; /* and call read() again */
else
return -1; /* errno set by read() */
s
else 1T (nread == 0)
break; /* EOF */
nleft -= nread;
bufp += nread;
ks
return (n - nleft); /* Return >= 0 */

ks csapp.c

Brya[Uddimu U Tidiftar UTt, CUTITPULTT OSYSLTITIS. A TTUSTHATTITITT S5 TTISPTULLIVE, TTTTU LUTLTiUTI

T

Carnegie Mellon

Buffered RIO Input Functions

m Efficiently read text lines and binary data from a file partially
cached in an internal memory buffer

#include "csapp.-h"

void rio _readinitb(rio t *rp, int fd);

ssize t rio_readlineb(rio_t *rp, void *usrbuf, size t maxlen);
ssize t rio _readnb(rio_t *rp, void *usrbuf, size t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

" rio_readlineb reads a text line of up to maxlen bytes from file
Td and stores the line in usrbuf
= Especially useful for reading text lines from network sockets
= Stopping conditions
= maxlen bytes read
= EOF encountered
= Newline (“\n’) encountered

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Buffered RIO Input Functions (cont)

#include "csapp.h''
void rio _readinitb(rio t *rp, int fd);

ssize t rio _readlineb(rio_t *rp, void *usrbuf, size t maxlen);
ssize t rio _readnb(rio_t *rp, void *usrbuf, size t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

" ri10_readnb reads up to n bytes from file ¥d

= Stopping conditions
= maxlen bytes read

= EOF encountered

" Callstorio_readlineband rio_readnb can be interleaved
arbitrarily on the same descriptor

= Warning: Don’t interleave with calls to rio_readn

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Buffered 1/0: Implementation

m For reading from file

m File has associated buffer to hold bytes that have been read
from file but not yet read by user code

«—— rio cnt ——

Buffer | already read unread

rio buf -/] _/
rio_bufptr

m Layered on Unix file:

\ 4

A

Buffered Portion

not in buffer already read unread unseen

J

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Current File Position

Carnegie Mellon

Buffered 1/0: Declaration
m All information contained in Struct

«—— rio cnt ——

Buffer | already read unread

rio buf -/] _/
rio_bufptr

typedef struct {

int rio_fd; /* descriptor for this internal buf */
int rio_cnt; /* unread bytes 1n internal buf */
char *rio_bufptr; /* next unread byte in internal buf */

char rio_buf[RI0O _BUFSIZE]; /* internal buffer */
} rio_t;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

RIO Example

m Copying the lines of a text file from standard input to

standard output

#include "csapp.h'

int main(int argc, char **argv)

{ -
int n;

rio t rio;

char buf[MAXLINE];

Rio_readinitb(&rio, STDIN_FILENO);

Rio writen(STDOUT_FILENO, buf, n);
ex1t(0);

while((n = Rio readlineb(&rio, buf, MAXLINE)) != 0)

cpfile.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

40

Carnegie Mellon

Today

m Unix1/0

m Metadata, sharing, and redirection
m RIO (robust I/0) package

m Standard 1/O

m Closing remarks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Standard 1/0 Functions

m The Cstandard library (1 1bC . S0) contains a collection of
higher-level standard I/0 functions
= Documented in Appendix B of K&R

m Examples of standard 1/0 functions:
" QOpening and closing files (Fopen and fclose)
= Reading and writing bytes (Fread and fwrite)
= Reading and writing text lines (Fgets and fputs)
" Formatted reading and writing (Fscanf and fprintf)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Standard I/O Streams

m Standard I/O models open files as streams

= Abstraction for a file descriptor and a buffer in memory

m Cprograms begin life with three open streams
(defined in stdi10.h)

= stdin (standard input)
= stdout (standard output)
= gstderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf(stdout, "Hello, world\n");

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

43

Buffered 1/0O: Motivation

m Applications often read/write one character at a time
= getc, putc, ungetc
= gets, fgets
= Read line of text one character at a time, stopping at newline
m Implementing as Unix 1/0 calls expensive
= read and write require Unix kernel calls
= > 10,000 clock cycles

m Solution: Buffered read
= Use Unix read to grab block of bytes
= User input functions take one byte at a time from buffer
= Refill buffer when empty

Buffer | already read unread

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Buffering in Standard 1/0O

m Standard I/O functions use buffered 1/O

printf("'h™);

printf('e™);

printf(C'l");
printf(C'l');
printf('o");

buf | printf('’\n"");

hlell I \n

fflush(stdout);

write(l, buf, 6);

m Buffer flushed to output fd on “\n”, call to Tflush or
exi1t, orreturn frommain.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Standard I/O Buffering in Action

m You can see this buffering in action for yourself, using the
always fascinating Linux strace program:

#include <stdio.h> Iinux> strace ./hello
execve('"./hello”, ["hello"], [/* ... */])-
int main() .-
{ write(l1, "hello\n", 6) =6
printf(C'h™); -
printf('e'); exit _group(0) = ?
printf(C'Il');
printf(C'l');
printf(*'o™);
printf('\n"");
fflush(stdout);
exit(0);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Today

m Unix1/0

m RIO (robust I/0) package

m Metadata, sharing, and redirection
m Standard 1/O

m Closing remarks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Unix 1/0 vs. Standard 1/0 vs. RIO

m Standard I/O and RIO are implemented using low-level Unix 1/0

fopen fTdopen
fread fTwrite
fscant fprintf

sscanf sprintf |» C application program
fgets fputs b rio_readn
fflush fseek rio_writen
fclose | Standard I/0 Ao - rio_readinitb
functions e rio_readlineb
open read Unix 1/0 functions rio_readnb

write Iseek |«----

stat close (accessed via system calls)

m Which ones should you use in your programs?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Pros and Cons of Unix I/O

m Pros
= Unix I/Ois the most general and lowest overhead form of I/0O
= All other I/O packages are implemented using Unix I/O functions
= Unix I/O provides functions for accessing file metadata

= Unix I/O functions are async-signal-safe and can be used safely in signal
handlers

m Cons
= Dealing with short counts is tricky and error prone

= Efficient reading of text lines requires some form of buffering, also tricky
and error prone

= Both of these issues are addressed by the standard 1/0 and RIO packages

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Pros and Cons of Standard 1/O

m Pros:
= Buffering increases efficiency by decreasing the number of read and
wr 1te system calls

= Short counts are handled automatically

m Cons:
= Provides no function for accessing file metadata
= Standard I/O functions are not async-signal-safe, and not appropriate for
signal handlers
= Standard I/O is not appropriate for input and output on network sockets

= There are poorly documented restrictions on streams that interact
badly with restrictions on sockets (CS:APP3e, Sec 10.11)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Choosing 1/0 Functions

m General rule: use the highest-level 1/0 functions you can

= Many C programmers are able to do all of their work using the standard
|/O functions

= But, be sure to understand the functions you use!

m When to use standard I/O
= When working with disk or terminal files

m When to use raw Unix I/O
" Inside signal handlers, because Unix I/0O is async-signal-safe
" |n rare cases when you need absolute highest performance

m When to use RIO

= When you are reading and writing network sockets
= Avoid using standard 1/O on sockets

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Aside: Working with Binary Files

m Functions you should never use on binary files
" Text-oriented I/O: such as fgets, scanf, rio_readlineb

= Interpret EOL characters.
= Use functions like rio_readn or rio_readnb instead

= String functions

= strlen, strcpy, strcat
= |nterprets byte value O (end of string) as special

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

I/O Questions in Exams

Problem 10. (6 points):
Unix /0.

A. Suppose that the disk file foobar.txt consists of the six ASCII characters “foobar”. What is the
output of the following program?

/* any necessary 1includes =/
char buf[20] = {0}; /* init to all zerces */

int main(int argc, charx argv[]) {
int fdl = open("foobar.txt", O_RDONLY);
int fd2 = open("foobar.txt", O_RDONLY);

dup2z (£d2, f£dl);

read (fdl, buf, 3);

close (fdl); % %K 3k 3k 3k 3k %k k %k k
read (fdz, &buf[3], 3);

close (£a2); Problem 10
printf ("buf = %s\n", buf); % % % 3%k 3k %k % %k k %k

return 0;

) A. Output: buf = foobar

Output: buf =

Fall 2011 (model solution)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

http://www.cs.cmu.edu/%7E213/oldexams/final-f11.pdf
http://www.cs.cmu.edu/%7E213/oldexams/final-f11.pdf
http://www.cs.cmu.edu/%7E213/oldexams/final-f11-sol.txt

Carnegie Mellon

Extra Slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

For Further Information

m The Unix bible:

= W. Richard Stevens & Stephen A. Rago, Advanced Programming in the
Unix Environment, 2" Edition, Addison Wesley, 2005

= Updated from Stevens’s 1993 classic text

m The Linux bible:

= Michael Kerrisk, The Linux Programming Interface, No Starch Press, 2010
= Encyclopedic and authoritative

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Fun with File Descriptors (1)

#include "csapp.h"
int main(int argc, char *argvl])
{
int fd1, fd2, fd3;
char cl, c2, c3;
char *fname = argv|[1l];
fdl = Open(fname, O RDONLY, 0);
fd2 = Open(fname, O RDONLY, 0);
fd3 = Open(fname, O RDONLY, 0);
Dup2(fd2, fd3);
Read(fdl, &cl, 1);
Read(fd2, &c2, 1);
Read(fd3, &c3, 1);
printf("'cl = %c, c2 = %c, c3 = %c\n', cl, c2, c3);
return O;
} ffilesl.c

m What would this program print for file containing “abcde”?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

Fun with File Descriptors (2)

#include "csapp.-h"
int main(int argc, char *argvl])
{
int fdi;
int s = getpid() & Ox1;
char cl, c2;
char *fname = argv|[1l];
fdl = Open(fname, O RDONLY, 0);
Read(fdl, &cl, 1);
it (fork()) { 7* Parent */
sleep(s);
Read(fdl, &c2, 1);

} else { /7* Child */
sleep(1-s);
Read(fdl, &c2, 1);

}

return O;

}

printf("'Parent: cl = %c, c2 = %c\n'", cl, c2);

printf(C"'Child: cl1l = %c, c2 = %c\n", cl, c2);

ffiles2.c

m What would this program print for file containing “abcde”?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

57

Fun with File Descriptors (3)

#include "csapp-h"
int main(int argc, char *argv[])

{

int fd1, fd2, fd3;
char *fname = argv|[1l];
fdl = Open(fname, O_CREAT]O_TRUNC]JO_RDWR, S IRUSR|S_IWUSR);
Write(fdl, "pgrs', 4);
fd3 = Open(fname, O APPEND]O_WRONLY, 0);
Write(fd3, "jkimn", 5);
fd2 = dup(fdl); /* Allocates descriptor */
Write(fd2, "wxyz", 4);
Write(fd3, "ef", 2);
return O;
+ ffiles3.c

m What would be the contents of the resulting file?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Accessing Directories

m Only recommended operation on a directory: read its entries
= dirent structure contains information about a directory entry

= DIR structure contains information about directory while stepping
through its entries

#include <sys/types.h>
#include <dirent.h>

{
DIR *directory;

struct dirent *de;

iIT (!(directory = opendir(dir_name)))
error("'Failed to open directory');

while (0 = (de = readdir(directory))) {
printf(""Found file: %s\n", de->d_name);

}

closedir(directory);

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

	System-Level I/O��15-213: Introduction to Computer Systems	�16th Lecture, March 15, 2016
	Mid-Semester Feedback (Selected Answers)
	Today: Unix I/O and C Standard I/O
	Today
	Unix I/O Overview
	Unix I/O Overview
	File Types	
	Regular Files
	Directories	
	Directory Hierarchy	
	Pathnames	
	Opening Files
	Closing Files
	Reading Files
	Writing Files
	Simple Unix I/O example
	On Short Counts
	Today
	File Metadata
	Example of Accessing File Metadata
	How the Unix Kernel Represents Open Files
	File Sharing
	How Processes Share Files: fork
	How Processes Share Files: fork
	I/O Redirection
	I/O Redirection Example
	I/O Redirection Example (cont.)
	Warm-Up: I/O and Redirection Example
	Warm-Up: I/O and Redirection Example
	Master Class: Process Control and I/O
	Master Class: Process Control and I/O
	Today
	The RIO Package (15-213/CS:APP Package)
	Unbuffered RIO Input and Output
	Implementation of rio_readn
	Buffered RIO Input Functions
	Buffered RIO Input Functions (cont)
	Buffered I/O: Implementation
	Buffered I/O: Declaration
	RIO Example
	Today
	Standard I/O Functions
	Standard I/O Streams
	Buffered I/O: Motivation
	Buffering in Standard I/O
	Standard I/O Buffering in Action
	Today
	Unix I/O vs. Standard I/O vs. RIO
	Pros and Cons of Unix I/O
	Pros and Cons of Standard I/O
	Choosing I/O Functions
	Aside: Working with Binary Files
	I/O Questions in Exams
	Extra Slides
	For Further Information
	Fun with File Descriptors (1)
	Fun with File Descriptors (2)
	Fun with File Descriptors (3)
	Accessing Directories

