
Carnegie Mellon

1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System-Level I/O

15-213: Introduction to Computer Systems
16th Lecture, March 15, 2016

Instructors:
Franz Franchetti & Seth Copen Goldstein, Ralf Brown, and Brian Railing

Carnegie Mellon

2 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mid-Semester Feedback (Selected Answers)
 Piazza reaction time, let students answer questions

 Pace and denseness of lecture and slides

 Slides posted ahead of lecture, videos
http://www.cs.cmu.edu/afs/cs/academic/class/15213-f15/www/schedule.html
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx#folderID=%22b9
6d90ae-9871-4fae-91e2-b1627b43e25e%22

 Exam questions, solving problems together, interactivity

 Other suggestions re office hours and recitations

 Shout-out to TAs (and you could become one next semester)

Thank you to all of you who did the survey!

http://www.cs.cmu.edu/afs/cs/academic/class/15213-f15/www/schedule.html
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx#folderID=%22b96d90ae-9871-4fae-91e2-b1627b43e25e%22
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx#folderID=%22b96d90ae-9871-4fae-91e2-b1627b43e25e%22

Carnegie Mellon

3 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Unix I/O and C Standard I/O
 Two sets: system-level and C level
 Robust I/O (RIO): 15-213 special wrappers

good coding practice: handles error checking, signals, and
“short counts”

Unix I/O functions
(accessed via system calls)

Standard I/O
functions

C application program

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek
fclose

open read
write lseek
stat close

rio_readn
rio_writen
rio_readinitb
rio_readlineb
rio_readnb

RIO
functions

Carnegie Mellon

4 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Unix I/O
 Metadata, sharing, and redirection
 RIO (robust I/O) package
 Standard I/O
 Closing remarks

Carnegie Mellon

5 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O Overview
 A Linux file is a sequence of m bytes:
 B0 , B1 , , Bk , , Bm-1

 Cool fact: All I/O devices are represented as files:
 /dev/sda2 (/usr disk partition)
 /dev/tty2 (terminal)

 Even the kernel is represented as a file:
 /boot/vmlinuz-3.13.0-55-generic (kernel image)
 /proc (kernel data structures)

Carnegie Mellon

6 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O Overview
 Elegant mapping of files to devices allows kernel to export

simple interface called Unix I/O:
 Opening and closing files

 open()and close()
 Reading and writing a file

 read() and write()
 Changing the current file position (seek)

 indicates next offset into file to read or write
 lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

Carnegie Mellon

7 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Types
 Each file has a type indicating its role in the system
 Regular file: Contains arbitrary data
 Directory: Index for a related group of files
 Socket: For communicating with a process on another machine

 Other file types beyond our scope
 Named pipes (FIFOs)
 Symbolic links
 Character and block devices

Carnegie Mellon

8 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Regular Files
 A regular file contains arbitrary data
 Applications often distinguish between text files and binary

files
 Text files are regular files with only ASCII or Unicode characters
 Binary files are everything else

 e.g., object files, JPEG images
 Kernel doesn’t know the difference!

 Text file is sequence of text lines
 Text line is sequence of chars terminated by newline char (‘\n’)

 Newline is 0xa, same as ASCII line feed character (LF)
 End of line (EOL) indicators in other systems
 Linux and Mac OS: ‘\n’ (0xa)

 line feed (LF)
 Windows and Internet protocols: ‘\r\n’ (0xd 0xa)

 Carriage return (CR) followed by line feed (LF)

Carnegie Mellon

9 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Directories
 Directory consists of an array of links
 Each link maps a filename to a file

 Each directory contains at least two entries
 . (dot) is a link to itself
 .. (dot dot) is a link to the parent directory in the directory

hierarchy (next slide)

 Commands for manipulating directories
 mkdir: create empty directory
 ls: view directory contents
 rmdir: delete empty directory

Carnegie Mellon

10 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Directory Hierarchy
 All files are organized as a hierarchy anchored by root directory

named / (slash)

 Kernel maintains current working directory (cwd) for each process
 Modified using the cd command

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vim sys/

unistd.h

hello.c

Carnegie Mellon

11 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pathnames
 Locations of files in the hierarchy denoted by pathnames
 Absolute pathname starts with ‘/’ and denotes path from root

 /home/droh/hello.c

 Relative pathname denotes path from current working directory
 ../home/droh/hello.c

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vim sys/

unistd.h

hello.c

cwd: /home/bryant

Carnegie Mellon

12 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Opening Files
 Opening a file informs the kernel that you are getting ready to

access that file

 Returns a small identifying integer file descriptor
 fd == -1 indicates that an error occurred

 Each process created by a Linux shell begins life with three
open files associated with a terminal:
 0: standard input (stdin)
 1: standard output (stdout)
 2: standard error (stderr)

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {
 perror("open");
 exit(1);
}

Carnegie Mellon

13 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Closing Files
 Closing a file informs the kernel that you are finished

accessing that file

 Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

 Moral: Always check return codes, even for seemingly
benign functions such as close()

int fd; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
 perror("close");
 exit(1);
}

Carnegie Mellon

14 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Files
 Reading a file copies bytes from the current file position to

memory, and then updates file position

 Returns number of bytes read from file fd into buf
 Return type ssize_t is signed integer
 nbytes < 0 indicates that an error occurred
 Short counts (nbytes < sizeof(buf)) are possible and are not

errors!

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */
/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
 perror("read");
 exit(1);
}

Carnegie Mellon

15 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Writing Files
 Writing a file copies bytes from memory to the current file

position, and then updates current file position

 Returns number of bytes written from buf to file fd
 nbytes < 0 indicates that an error occurred
 As with reads, short counts are possible and are not errors!

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
 perror("write");
 exit(1);
}

Carnegie Mellon

16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Unix I/O example
 Copying stdin to stdout, one byte at a time

#include "csapp.h"

int main(void)
{
 char c;

 while(Read(STDIN_FILENO, &c, 1) != 0)
 Write(STDOUT_FILENO, &c, 1);
 exit(0);
}

Carnegie Mellon

17 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

On Short Counts
 Short counts can occur in these situations:
 Encountering (end-of-file) EOF on reads
 Reading text lines from a terminal
 Reading and writing network sockets

 Short counts never occur in these situations:
 Reading from disk files (except for EOF)
 Writing to disk files

 Best practice is to always allow for short counts.

Carnegie Mellon

18 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Unix I/O
 Metadata, sharing, and redirection
 RIO (robust I/O) package
 Standard I/O
 Closing remarks

Carnegie Mellon

19 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Metadata
 Metadata is data about data, in this case file data
 Per-file metadata maintained by kernel
 accessed by users with the stat and fstat functions

/* Metadata returned by the stat and fstat functions */
struct stat {
 dev_t st_dev; /* Device */
 ino_t st_ino; /* inode */
 mode_t st_mode; /* Protection and file type */
 nlink_t st_nlink; /* Number of hard links */
 uid_t st_uid; /* User ID of owner */
 gid_t st_gid; /* Group ID of owner */
 dev_t st_rdev; /* Device type (if inode device) */
 off_t st_size; /* Total size, in bytes */
 unsigned long st_blksize; /* Blocksize for filesystem I/O */
 unsigned long st_blocks; /* Number of blocks allocated */
 time_t st_atime; /* Time of last access */
 time_t st_mtime; /* Time of last modification */
 time_t st_ctime; /* Time of last change */
};

Carnegie Mellon

20 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example of Accessing File Metadata

int main (int argc, char **argv)
{
 struct stat stat;
 char *type, *readok;

 Stat(argv[1], &stat);
 if (S_ISREG(stat.st_mode)) /* Determine file type */
 type = "regular";
 else if (S_ISDIR(stat.st_mode))
 type = "directory";
 else
 type = "other";
 if ((stat.st_mode & S_IRUSR)) /* Check read access */
 readok = "yes";
 else
 readok = "no";

 printf("type: %s, read: %s\n", type, readok);
 exit(0);
}

linux> ./statcheck statcheck.c
type: regular, read: yes
linux> chmod 000 statcheck.c
linux> ./statcheck statcheck.c
type: regular, read: no
linux> ./statcheck ..
type: directory, read: yes

statcheck.c

Carnegie Mellon

21 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How the Unix Kernel Represents Open Files
 Two descriptors referencing two distinct open files.

Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A (terminal)

File B (disk)

Info in
stat
struct

File pos is maintained per open file

Carnegie Mellon

22 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File Sharing
 Two distinct descriptors sharing the same disk file through

two distinct open file table entries
 E.g., Calling open twice with the same filename argument

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File A (disk)

File B (disk)

Different logical but same physical file

Carnegie Mellon

23 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Processes Share Files: fork
 A child process inherits its parent’s open files
 Note: situation unchanged by exec functions (use fcntl to change)

 Before fork call:

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A (terminal)

File B (disk)

Carnegie Mellon

24 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How Processes Share Files: fork
 A child process inherits its parent’s open files
 After fork:
 Child’s table same as parent’s, and +1 to each refcnt

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=2

...

File pos
refcnt=2

...

File access

...

File size
File type

File access

...

File size
File type

File A (terminal)

File B (disk)
fd 0
fd 1
fd 2
fd 3
fd 4

Parent

Child

File is shared between processes

Carnegie Mellon

25 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection
 Question: How does a shell implement I/O redirection?

linux> ls > foo.txt

 Answer: By calling the dup2(oldfd, newfd) function
 Copies (per-process) descriptor table entry oldfd to entry newfd

a

b

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
after dup2(4,1)

Carnegie Mellon

26 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection Example
 Step #1: open file to which stdout should be redirected
 Happens in child executing shell code, before exec

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File A

File pos
refcnt=1

...

File access

...

File size
File type

File B

Carnegie Mellon

27 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Redirection Example (cont.)
 Step #2: call dup2(4,1)
 cause fd=1 (stdout) to refer to disk file pointed at by fd=4

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=0

...

File pos
refcnt=2

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A

File B

Two descriptors point to the same file

Carnegie Mellon

28 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Warm-Up: I/O and Redirection Example

 What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{
 int fd1, fd2, fd3;
 char c1, c2, c3;
 char *fname = argv[1];
 fd1 = Open(fname, O_RDONLY, 0);
 fd2 = Open(fname, O_RDONLY, 0);
 fd3 = Open(fname, O_RDONLY, 0);
 Dup2(fd2, fd3);
 Read(fd1, &c1, 1);
 Read(fd2, &c2, 1);
 Read(fd3, &c3, 1);
 printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);
 return 0;
} ffiles1.c

Carnegie Mellon

29 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Warm-Up: I/O and Redirection Example

 What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{
 int fd1, fd2, fd3;
 char c1, c2, c3;
 char *fname = argv[1];
 fd1 = Open(fname, O_RDONLY, 0);
 fd2 = Open(fname, O_RDONLY, 0);
 fd3 = Open(fname, O_RDONLY, 0);
 Dup2(fd2, fd3);
 Read(fd1, &c1, 1);
 Read(fd2, &c2, 1);
 Read(fd3, &c3, 1);
 printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);
 return 0;
} ffiles1.c

c1 = a, c2 = a, c3 = b

dup2(oldfd, newfd)

Carnegie Mellon

30 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Master Class: Process Control and I/O

 What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{
 int fd1;
 int s = getpid() & 0x1;
 char c1, c2;
 char *fname = argv[1];
 fd1 = Open(fname, O_RDONLY, 0);
 Read(fd1, &c1, 1);
 if (fork()) { /* Parent */
 sleep(s);
 Read(fd1, &c2, 1);
 printf("Parent: c1 = %c, c2 = %c\n", c1, c2);
 } else { /* Child */
 sleep(1-s);
 Read(fd1, &c2, 1);
 printf("Child: c1 = %c, c2 = %c\n", c1, c2);
 }
 return 0;
} ffiles2.c

Carnegie Mellon

31 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Master Class: Process Control and I/O

 What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{
 int fd1;
 int s = getpid() & 0x1;
 char c1, c2;
 char *fname = argv[1];
 fd1 = Open(fname, O_RDONLY, 0);
 Read(fd1, &c1, 1);
 if (fork()) { /* Parent */
 sleep(s);
 Read(fd1, &c2, 1);
 printf("Parent: c1 = %c, c2 = %c\n", c1, c2);
 } else { /* Child */
 sleep(1-s);
 Read(fd1, &c2, 1);
 printf("Child: c1 = %c, c2 = %c\n", c1, c2);
 }
 return 0;
} ffiles2.c

Child: c1 = a, c2 = b
Parent: c1 = a, c2 = c

Parent: c1 = a, c2 = b
Child: c1 = a, c2 = c

Bonus: Which way does it go?

Carnegie Mellon

32 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Unix I/O
 Metadata, sharing, and redirection
 RIO (robust I/O) package
 Standard I/O
 Closing remarks

Carnegie Mellon

33 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The RIO Package (15-213/CS:APP Package)
 RIO is a set of wrappers that provide efficient and robust I/O

in apps, such as network programs that are subject to short
counts

 RIO provides two different kinds of functions
 Unbuffered input and output of binary data

 rio_readn and rio_writen
 Buffered input of text lines and binary data

 rio_readlineb and rio_readnb
 Buffered RIO routines are thread-safe and can be interleaved

arbitrarily on the same descriptor

 Download from http://csapp.cs.cmu.edu/3e/code.html
 src/csapp.c and include/csapp.h

http://csapp.cs.cmu.edu/public/code.html

Carnegie Mellon

34 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unbuffered RIO Input and Output
 Same interface as Unix read and write
 Especially useful for transferring data on network sockets

 rio_readn returns short count only if it encounters EOF
 Only use it when you know how many bytes to read

 rio_writen never returns a short count
 Calls to rio_readn and rio_writen can be interleaved arbitrarily on

the same descriptor

#include "csapp.h"

ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_writen(int fd, void *usrbuf, size_t n);

 Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

Carnegie Mellon

35 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implementation of rio_readn
/*
 * rio_readn - Robustly read n bytes (unbuffered)
 */
ssize_t rio_readn(int fd, void *usrbuf, size_t n)
{
 size_t nleft = n;
 ssize_t nread;
 char *bufp = usrbuf;

 while (nleft > 0) {
 if ((nread = read(fd, bufp, nleft)) < 0) {
 if (errno == EINTR) /* Interrupted by sig handler return */
 nread = 0; /* and call read() again */
 else
 return -1; /* errno set by read() */
 }
 else if (nread == 0)
 break; /* EOF */
 nleft -= nread;
 bufp += nread;
 }
 return (n - nleft); /* Return >= 0 */
} csapp.c

Carnegie Mellon

36 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered RIO Input Functions
 Efficiently read text lines and binary data from a file partially

cached in an internal memory buffer

 rio_readlineb reads a text line of up to maxlen bytes from file
fd and stores the line in usrbuf
 Especially useful for reading text lines from network sockets

 Stopping conditions
 maxlen bytes read
 EOF encountered
 Newline (‘\n’) encountered

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

 Return: num. bytes read if OK, 0 on EOF, -1 on error

Carnegie Mellon

37 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered RIO Input Functions (cont)

 rio_readnb reads up to n bytes from file fd
 Stopping conditions

 maxlen bytes read
 EOF encountered

 Calls to rio_readlineb and rio_readnb can be interleaved
arbitrarily on the same descriptor
 Warning: Don’t interleave with calls to rio_readn

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

 Return: num. bytes read if OK, 0 on EOF, -1 on error

Carnegie Mellon

38 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

unread

Buffered I/O: Implementation
 For reading from file
 File has associated buffer to hold bytes that have been read

from file but not yet read by user code

 Layered on Unix file:

already read Buffer

rio_buf
rio_bufptr

rio_cnt

unread already read not in buffer unseen

Current File Position

Buffered Portion

Carnegie Mellon

39 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered I/O: Declaration
 All information contained in struct

typedef struct {
 int rio_fd; /* descriptor for this internal buf */
 int rio_cnt; /* unread bytes in internal buf */
 char *rio_bufptr; /* next unread byte in internal buf */
 char rio_buf[RIO_BUFSIZE]; /* internal buffer */
} rio_t;

unread already read Buffer

rio_buf
rio_bufptr

rio_cnt

Carnegie Mellon

40 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

RIO Example
 Copying the lines of a text file from standard input to

standard output

#include "csapp.h"

int main(int argc, char **argv)
{
 int n;
 rio_t rio;
 char buf[MAXLINE];

 Rio_readinitb(&rio, STDIN_FILENO);
 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0)
 Rio_writen(STDOUT_FILENO, buf, n);
 exit(0);
} cpfile.c

Carnegie Mellon

41 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Unix I/O
 Metadata, sharing, and redirection
 RIO (robust I/O) package
 Standard I/O
 Closing remarks

Carnegie Mellon

42 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Functions
 The C standard library (libc.so) contains a collection of

higher-level standard I/O functions
 Documented in Appendix B of K&R

 Examples of standard I/O functions:
 Opening and closing files (fopen and fclose)
 Reading and writing bytes (fread and fwrite)
 Reading and writing text lines (fgets and fputs)
 Formatted reading and writing (fscanf and fprintf)

Carnegie Mellon

43 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Streams
 Standard I/O models open files as streams
 Abstraction for a file descriptor and a buffer in memory

 C programs begin life with three open streams
(defined in stdio.h)
 stdin (standard input)
 stdout (standard output)
 stderr (standard error)

#include <stdio.h>
extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
 fprintf(stdout, "Hello, world\n");
}

Carnegie Mellon

44 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffered I/O: Motivation
 Applications often read/write one character at a time
 getc, putc, ungetc
 gets, fgets

 Read line of text one character at a time, stopping at newline

 Implementing as Unix I/O calls expensive
 read and write require Unix kernel calls

 > 10,000 clock cycles

 Solution: Buffered read
 Use Unix read to grab block of bytes
 User input functions take one byte at a time from buffer

 Refill buffer when empty

unread already read Buffer

Carnegie Mellon

45 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Buffering in Standard I/O
 Standard I/O functions use buffered I/O

 Buffer flushed to output fd on “\n”, call to fflush or
exit, or return from main.

printf("h");

h e l l o \n . .

printf("e");
printf("l");

printf("l");
printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf, 6);

Carnegie Mellon

46 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Standard I/O Buffering in Action
 You can see this buffering in action for yourself, using the

always fascinating Linux strace program:

linux> strace ./hello
execve("./hello", ["hello"], [/* ... */]).
...
write(1, "hello\n", 6) = 6
...
exit_group(0) = ?

#include <stdio.h>

int main()
{
 printf("h");
 printf("e");
 printf("l");
 printf("l");
 printf("o");
 printf("\n");
 fflush(stdout);
 exit(0);
}

Carnegie Mellon

47 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Unix I/O
 RIO (robust I/O) package
 Metadata, sharing, and redirection
 Standard I/O
 Closing remarks

Carnegie Mellon

48 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unix I/O vs. Standard I/O vs. RIO

 Standard I/O and RIO are implemented using low-level Unix I/O

 Which ones should you use in your programs?

Unix I/O functions
(accessed via system calls)

 Standard I/O
functions

C application program

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf
fgets fputs
fflush fseek
fclose

open read
write lseek
stat close

rio_readn
rio_writen
rio_readinitb
rio_readlineb
rio_readnb

 RIO
functions

Carnegie Mellon

49 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Unix I/O
 Pros
 Unix I/O is the most general and lowest overhead form of I/O

 All other I/O packages are implemented using Unix I/O functions
 Unix I/O provides functions for accessing file metadata
 Unix I/O functions are async-signal-safe and can be used safely in signal

handlers

 Cons
 Dealing with short counts is tricky and error prone
 Efficient reading of text lines requires some form of buffering, also tricky

and error prone
 Both of these issues are addressed by the standard I/O and RIO packages

Carnegie Mellon

50 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Pros and Cons of Standard I/O
 Pros:
 Buffering increases efficiency by decreasing the number of read and
write system calls

 Short counts are handled automatically

 Cons:
 Provides no function for accessing file metadata
 Standard I/O functions are not async-signal-safe, and not appropriate for

signal handlers
 Standard I/O is not appropriate for input and output on network sockets

 There are poorly documented restrictions on streams that interact
badly with restrictions on sockets (CS:APP3e, Sec 10.11)

Carnegie Mellon

51 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Choosing I/O Functions
 General rule: use the highest-level I/O functions you can
 Many C programmers are able to do all of their work using the standard

I/O functions
 But, be sure to understand the functions you use!

 When to use standard I/O
 When working with disk or terminal files

 When to use raw Unix I/O
 Inside signal handlers, because Unix I/O is async-signal-safe
 In rare cases when you need absolute highest performance

 When to use RIO
 When you are reading and writing network sockets
 Avoid using standard I/O on sockets

Carnegie Mellon

52 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside: Working with Binary Files

 Functions you should never use on binary files
 Text-oriented I/O: such as fgets, scanf, rio_readlineb

 Interpret EOL characters.
 Use functions like rio_readn or rio_readnb instead

 String functions

 strlen, strcpy, strcat

 Interprets byte value 0 (end of string) as special

Carnegie Mellon

53 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Questions in Exams

Fall 2011 (model solution)

Problem 10

A. Output: buf = foobar

http://www.cs.cmu.edu/%7E213/oldexams/final-f11.pdf
http://www.cs.cmu.edu/%7E213/oldexams/final-f11.pdf
http://www.cs.cmu.edu/%7E213/oldexams/final-f11-sol.txt

Carnegie Mellon

54 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Extra Slides

Carnegie Mellon

55 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

For Further Information
 The Unix bible:
 W. Richard Stevens & Stephen A. Rago, Advanced Programming in the

Unix Environment, 2nd Edition, Addison Wesley, 2005
 Updated from Stevens’s 1993 classic text

 The Linux bible:
 Michael Kerrisk, The Linux Programming Interface, No Starch Press, 2010

 Encyclopedic and authoritative

Carnegie Mellon

56 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fun with File Descriptors (1)

 What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{
 int fd1, fd2, fd3;
 char c1, c2, c3;
 char *fname = argv[1];
 fd1 = Open(fname, O_RDONLY, 0);
 fd2 = Open(fname, O_RDONLY, 0);
 fd3 = Open(fname, O_RDONLY, 0);
 Dup2(fd2, fd3);
 Read(fd1, &c1, 1);
 Read(fd2, &c2, 1);
 Read(fd3, &c3, 1);
 printf("c1 = %c, c2 = %c, c3 = %c\n", c1, c2, c3);
 return 0;
} ffiles1.c

Carnegie Mellon

57 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fun with File Descriptors (2)

 What would this program print for file containing “abcde”?

#include "csapp.h"
int main(int argc, char *argv[])
{
 int fd1;
 int s = getpid() & 0x1;
 char c1, c2;
 char *fname = argv[1];
 fd1 = Open(fname, O_RDONLY, 0);
 Read(fd1, &c1, 1);
 if (fork()) { /* Parent */
 sleep(s);
 Read(fd1, &c2, 1);
 printf("Parent: c1 = %c, c2 = %c\n", c1, c2);
 } else { /* Child */
 sleep(1-s);
 Read(fd1, &c2, 1);
 printf("Child: c1 = %c, c2 = %c\n", c1, c2);
 }
 return 0;
} ffiles2.c

Carnegie Mellon

58 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fun with File Descriptors (3)

 What would be the contents of the resulting file?

#include "csapp.h"
int main(int argc, char *argv[])
{
 int fd1, fd2, fd3;
 char *fname = argv[1];
 fd1 = Open(fname, O_CREAT|O_TRUNC|O_RDWR, S_IRUSR|S_IWUSR);
 Write(fd1, "pqrs", 4);
 fd3 = Open(fname, O_APPEND|O_WRONLY, 0);
 Write(fd3, "jklmn", 5);
 fd2 = dup(fd1); /* Allocates descriptor */
 Write(fd2, "wxyz", 4);
 Write(fd3, "ef", 2);
 return 0;
} ffiles3.c

Carnegie Mellon

59 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Accessing Directories
 Only recommended operation on a directory: read its entries
 dirent structure contains information about a directory entry
 DIR structure contains information about directory while stepping

through its entries
#include <sys/types.h>
#include <dirent.h>

{
 DIR *directory;
 struct dirent *de;
 ...
 if (!(directory = opendir(dir_name)))
 error("Failed to open directory");
 ...
 while (0 != (de = readdir(directory))) {
 printf("Found file: %s\n", de->d_name);
 }
 ...
 closedir(directory);
}

	System-Level I/O��15-213: Introduction to Computer Systems	�16th Lecture, March 15, 2016
	Mid-Semester Feedback (Selected Answers)
	Today: Unix I/O and C Standard I/O
	Today
	Unix I/O Overview
	Unix I/O Overview
	File Types	
	Regular Files
	Directories	
	Directory Hierarchy	
	Pathnames	
	Opening Files
	Closing Files
	Reading Files
	Writing Files
	Simple Unix I/O example
	On Short Counts
	Today
	File Metadata
	Example of Accessing File Metadata
	How the Unix Kernel Represents Open Files
	File Sharing
	How Processes Share Files: fork
	How Processes Share Files: fork
	I/O Redirection
	I/O Redirection Example
	I/O Redirection Example (cont.)
	Warm-Up: I/O and Redirection Example
	Warm-Up: I/O and Redirection Example
	Master Class: Process Control and I/O
	Master Class: Process Control and I/O
	Today
	The RIO Package (15-213/CS:APP Package)
	Unbuffered RIO Input and Output
	Implementation of rio_readn
	Buffered RIO Input Functions
	Buffered RIO Input Functions (cont)
	Buffered I/O: Implementation
	Buffered I/O: Declaration
	RIO Example
	Today
	Standard I/O Functions
	Standard I/O Streams
	Buffered I/O: Motivation
	Buffering in Standard I/O
	Standard I/O Buffering in Action
	Today
	Unix I/O vs. Standard I/O vs. RIO
	Pros and Cons of Unix I/O
	Pros and Cons of Standard I/O
	Choosing I/O Functions
	Aside: Working with Binary Files
	I/O Questions in Exams
	Extra Slides
	For Further Information
	Fun with File Descriptors (1)
	Fun with File Descriptors (2)
	Fun with File Descriptors (3)
	Accessing Directories

