Carnegie Mellon

Exceptional Control Flow:
Signals and Nonlocal Jumps

15-213: Introduction to Computer Systems
15t Lecture, Mar. 3, 2016

Instructors:
Seth Copen Goldstein, Franz Franchetti, Ralf Brown, and Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Review from last lecture

m Exceptions

= Events that require nonstandard control flow
= Generated externally (interrupts) or internally (traps and faults)

m Processes

= At any given time, system has multiple active processes
"= Only one can execute at a time on any single core

= Each process appears to have total control of
processor + private memory space

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Review (cont.)

m Spawning processes
= Call fork

= One call, two returns
m Process completion

= Callexit

® One call, no return

m Reaping and waiting for processes
= Callwairtorwartpid

m Loading and running programs
= Call execve (or variant)

= One call, (normally) no return

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

execve: Loading and Running Programs

m Int execve(char *filename, char *argv[], char *envp[])

m Loads and runs in the current process:
= Executable file f1lename

= Can be object file or script file beginning with #! Interpreter
(e.g., #1/bi1n/bash)

= _.with argument list argv
= By convention argv[O]==Ffi1lename
= ..and environment variable list envp
= “name=value” strings (e.g., USER=droh)
« getenv, putenv, printenv
m Overwrites code, data, and stack
= Retains PID, open files and signal context

m Called once and never returns

= ..exceptif thereis an error

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Bottom of stack

Null-terminated

StrUCtu re of environment variable strings .
Null-terminated |
the StaCk When ___,| command-line arg strings
a new program | — o
starts SV IT=E] i environ
| . |.(global var)
i envp[0] i
i argv[argc] = NULL 1 envp
i argv[argc-1] (in %rdx)
2lgh .‘ argv[o]
(in %rsi)
argc Stack frame for
i 3 libc start main
(in %rdt) - —rat Top of stack

Future stack frame for
main

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

execve Example

m Executes “/bin/ls —lt Zusr/include” in child process
using current environment:

envp[n] = NULL
envp[n-1]} —> “PWD=/usr/droh”
_ envp[O] —> “USER=droh”
environ >
myargvfargc] = NULL
(argc == 3) myargv[2] —> “/usr/include”
myargv[1] s “-It”
myargv ——[Myaravio] 5 “/bin/Is”

If ((pid = Fork()) ==0){ /* Child runs program */

If (execve(myargv[0], myargv, environ) < 0) {
printf("%s: Command not found.\n", myargv|[0]);
exit(1);

}

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

ECF Exists at All Levels of a System

m Exceptions \
= Hardware and operating system kernel software
m Process Context Switch
= Hardware timer and kernel software J

m Signals

>Previous Lecture

>This Lecture

= Kernel software and application software

m Nonlocal jumps Textbook and

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

(partial) Taxonomy

ECF

Asynchronous

Interrupts

Carnegie Mellon

Handled in kernel

Handled in user process

Synchronous

Traps

Faults

Aborts

Signals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

m Shells
m Signals

m Nonlocal jumps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Linux Process Hierarchy

(3 e
. .
* .

0
‘e
",

I“‘
.
snnmaunannnt®

Login shell
Child

w w Note: you can view the
hierarchy using the Linux

pstree command

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Shell Programs

m A shell is an application program that runs programs on behalf
of the user.

= sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
= csh/tcsh BSD Unix C shell
= pash ““Bourne-Again” Shell (default Linux shell)
iInt main() o
Execution is a

char cmdline[MAXLINE]; /* command line */ sequence of

while (1) { read/evaluate
[* read */ steps
printf(">");

Fgets(cmdline, MAXLINE, stdin);
If (feof(stdin))
exit(0);

[* evaluate */
eval(cmdline);

}
} shellex.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Simple Shell eval Function

void eval(char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buffMAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */

pid_t pid; [* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);

parsel 1ne will parse ‘buf’ into
‘argv’ and return whether or not
input line ended in ‘&’

shellex.c

Bry 12

Simple Shell eval Function

void eval(char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buffMAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */

pid_t pid; [* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
If (argv[0] == NULL)
return; /*Ignore empty lines */

lgnore empty lines.

shellex.c

Bry

Simple Shell eval Function

void eval(char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */
char buffMAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; [* Process id */
strcpy(buf, cmdline);
bg = parseline(buf, argv);
If (argv[0] == NULL)
return; /*Ignore empty lines */

if (builtin_command(argv)) {

If it is a ‘built in” command, then
handle it here in this program.
Otherwise fork/exec the program
specified in argv|[0]

shellex.c

Bry , : , - - , 14

Simple Shell eval Function

void eval(char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buffMAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */

pid_t pid; [* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
If (argv[0] == NULL)
return; /*Ignore empty lines */

If ("builtin_command(argv)) {
If ((pid = Fork()) ==0){ /* Child runs user job */

Create child

shellex.c

Bry 15

Simple Shell eval Function

void eval(char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buffMAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */

pid_t pid; [* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
If (argv[0] == NULL)
return; /*Ignore empty lines */
If ("builtin_command(argv)) {
If ((pid = Fork()) ==0) { /* Child runs user job */
If (execve(argv[0], argv, environ) <0) {

printf("%s: Command not found.\n", argv[0]);
exit(0);

Startargv|[O].
Remember execve only returns on
error.

shellex.c

Bry 16

Simple Shell eval Function

void eval(char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buffMAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */

pid_t pid; [* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
If (argv[0] == NULL)
return; /*Ignore empty lines */

If ("builtin_command(argv)) {
If ((pid = Fork()) ==0) { /* Child runs user job */
If (execve(argv[0], argv, environ) <0) {
pri_n(tgg"%s: Command not found.\n", argv[0]);
exit(0);

}

[* Parent waits for foreground job to terminate */
if (1bg) {
int status; . g
if (waitpid(pid, &status, 0) < 0) |f running child in
unix_error("waitfg: waitpid error"); . .
} foreground, wait until

it is done.

shellex.c

Bry 17

Simple Shell eval Function

void eval(char *cmdline)
{
char *argv[MAXARGS]; /* Argument list execve() */
char buffMAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; [* Process id */
strcpy(buf, cmdline);
bg = parseline(buf, argv);
If (argv[0] == NULL)
return; /*Ignore empty lines */
If ("builtin_command(argv)) {
If ((pid = Fork()) ==0) { /* Child runs user job */
If (execve(argv[0], argv, environ) <0) {
printf("%s: Command not found.\n", argv[0]);
exit(0);
}
[* Parent waits for foreground job to terminate */
if (1bg) {
int status; : TP
if (waitpid(pid, &status, 0)<0) If running child in
} unix_error("waitfg: waitpid error"); background, print pid
else : :
printf("%d %s", pid, cmdline); and continue domg
I other stuff.
Bry} shellex.c 5

Simple Shell eval Function

void eval(char *cmdline)
{
char *argv[MAXARGS]; /* Argument list execve() */
char buffMAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; [* Process id */
strcpy(buf, cmdline);
bg = parseline(buf, argv);
If (argv[0] == NULL)
return; /*Ignore empty lines */
If ("builtin_command(argv)) {
If ((pid = Fork()) ==0) { /* Child runs user job */
If (execve(argv[0], argv, environ) <0) {
printf("%s: Command not found.\n", argv[0]);
exit(0); .
} Thereis a
[* Parent waits for foreground job to terminate */ prOblem Wlth
if ('bg) { :
int status; thls COde-
If (waitpid(pid, &status, 0) < 0)
unix_error("waitfg: waitpid error");
}
else
printf("%d %s", pid, cmdline);
return;
}
oy shellex.c o

Carnegie Mellon

Bry

Simple Shell eval Function

void eval(char *cmdline)
{
char *argv[MAXARGS]; /* Argument list execve() */
char buffMAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid_t pid; [* Process id */

strcpy(buf, cmdline);
bg = parseline(buf, argv);
If (argv[0] == NULL)
return; /*Ignore empty lines */

If ("builtin_command(argv)) {
If ((pid = Fork()) ==0){ /* Child runj
If (execve(argv[0], argv, environ) s

exit(0);
}

[* Parent waits for foreground job tos
if (1bg) {

int status;

If (waitpid(pid, &status, 0) < 0)
} unix_error("waitfg: waitpid erra

else
printf("%d %s", pid, cmdline);

return;

}

shellex.c

20

Problem with Simple Shell Example

m Our example shell correctly waits for and reaps foreground
jobs

m But what about background jobs?
= Will become zombies when they terminate
= Will never be reaped because shell (typically) will not terminate
= Will create a memory leak that could run the kernel out of memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

ECF to the Rescue!

m Solution: Exceptional control flow

= The kernel will interrupt regular processing to alert us when a background
process completes

" |n Unix, the alert mechanism is called a signal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Today

m Shells
m Signals
m Nonlocal jumps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Signals

Carnegie Mellon

m Asignalis a small message that notifies a process that an
event of some type has occurred in the system

= Akin to exceptions and interrupts

= Sent from the kernel (sometimes at the request of another process) to a

pProcess

= Signal type is identified by small integer ID’s (1-30)

" Only information in a signal is its ID and the fact that it arrived

ID Name Default Action
SIGINT Terminate
9 SIGKILL Terminate
11 SIGSEGV Terminate
14 SIGALRM Terminate
17 SIGCHLD lgnore

Corresponding Event

User typed ctrl-c

Kill program (cannot override or ignore)
Segmentation violation

Timer signal

Child stopped or terminated

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

24

Signal Concepts: Sending a Signal

m Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination process

m Kernel sends a signal for one of the following reasons:
= Kernel has detected a system event such as divide-by-zero (SIGFPE) or
the termination of a child process (SIGCHLD)

= Another process has invoked the ki1 1l system call to explicitly request
the kernel to send a signal to the destination process

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Signal Concepts: Sending a Signal

User ley
Process B
Process C
kerne
Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

User ley
Process B
Process C

(dp)
(40
p
Q.
(7]
5“ kerne
O

Pending for A Blocked for A

X ending for B Blocked for B
Pending for C Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

User ley

Process A
Process C
kerne
Pending for A Blocked for A
Pending for B Blocked for B
1l Pending for C Blocked for C

Carnegie Mellon

Signal Concepts: Sending a Signal

Process B

Process A

User ley

Blocked for A

Blocked for B

Blocked for C

kerne

Carnegie Mellon

Signhal Concepts: Sending a Signal

User ley
Process B
Process A
Process C

kerne

Pending for A Blocked for A

Pending for B Blocked for B

o[Pending for C Blocked for C

Carnegie Mellon

Signal Concepts: Receiving a Signal

m A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

m Some possible ways to react:
= Jgnore the signal (do nothing)

= Terminate the process (with optional core dump)

= Catch the signal by executing a user-level function called signal handler

= Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(1) Signal received
by process

curr Y
next

y

(2) Control passes
to signal handler

v

(4) Signal handler
returns to
next instruction

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

1 (3) signal
handler runs

33

Carnegie Mellon

Signal Concepts: Pending and Blocked Signals

m Asignalis pending if sent but not yet received
" There can be at most one pending signal of any particular type
" |mportant: Signals are not queued

= |f a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

m A process can block the receipt of certain signals

= Blocked signals can be delivered, but will not be received until the signal
is unblocked

m A pending signal is received at most once

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Signal Concepts: Pending/Blocked Bits

m Kernel maintains pending and bl ocked bit vectors in the
context of each process
= pending: represents the set of pending signals
= Kernel sets bit k in pending when a signal of type k is delivered
= Kernel clears bit k in pend1ng when a signal of type k is received

= blocked: represents the set of blocked signals

= Can be set and cleared by using the sigprocmask function
= Also referred to as the signal mask.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Signal Concepts: Sending a Signal

User ley

Process A o
9 Process C
<5
/&
// kerne
/' Anding for A Blocked for A
N\ _Sending for B Blocked for B
1l Pending for C Blocked for C

Sending Signals: Process Groups

m Every process belongs to exactly one process group

pid=20

pgid=20 P1d=40

pgid=40

Background Background
process group 32 process group 40

pid=21 pid=22 getpgrp()

pgid=20 pgid=20 Return process group of current process
Foreground Setpg i1d ()
process group 20 Change process group of a process (see

text for details)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Sending Signals with Zbin/Zki1 1l Program

m /bin/kill program
sends arbitrary signal to a
process or process group

m Examples

= /bin/kill -9 24818
Send SIGKILL to process 24818

= /bin/kill -9 -24817

Send SIGKILL to every process
in process group 24817

linux> ./forks 16
Childl: pi1d=24818 pgrp=24817
Child2: pi1d=24819 pgrp=24817
linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
Linux> /Zbin/kill -9 -24817
linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps

11nux>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Sending Signals from the Keyboard

m Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every
job in the foreground process group.

= S|GINT — default action is to terminate each process
= SIGTSTP — default action is to stop (suspend) each process

pid=20

0gid=20 pid=40

pgid=40

Background Background
process group 32 process group 40

pi1d=21 pi1d=22
pgid=20 pgid=20
Foreground

rocess group 20
Bryant and O’ HaIIarv.p“.. ST ,g,.v...,.P.. ieprures o+ wiopo<live, Third Edition 39

Carnegie Mellon

Example of ctrl-cand ctrl-z

bluefish> ./forks 17
Child: pi1d=28108 pgrp=28107

Parent: pi1d=28107 pgrp=28107

<types ctrl-z>
Suspended
bluefish> ps w

PID TTY STAT
27699 pts/8 Ss
28107 pts/8 T
28108 pts/8 T
28109 pts/8 R+
bluefish> fg
./Tforks 17
<types ctrl-c>
bluefish> ps w

PID TTY STAT
27699 pts/8 Ss
28110 pts/8 R+

TIME
0:00
0:01
0:01
0:00

TIME
0:00
0:00

COMMAND
—tcsh
./forks 17
./forks 17
ps w

COMMAND
-tcsh
ps w

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader

+: foreground proc group

See “man ps” for more
details

40

Sending Signals with K1 1l Function

void fork12()
{

pid_t pid[N];
inti;
int child_status;

for 1I=0;1<N; i++)
T ((pid[i] = fork()) == 0) {
[* Child: Infinite Loop */
while(1)

}

for 1=0;1<N;i++){
printf("Killing process %d\n", pid[i]);
Kill(pid[i], SIGINT);

for I=0;1<N;i++){
pid twpid = wait(&child_status);
If (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminated abnormally\n", wpid);
}

} forks.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

Process A

user code
kernel code } context switch

Time user code

kernel code } context switch

user code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

m Kernel computes pnb = pending & ~blocked

"= The set of pending nonblocked signals for process p

m If (pnb == 0)
= Pass control to next instruction in the logical flow for p
m Else

" Choose least nonzero bit kin pnb and force process p to receive
signal k

" The receipt of the signal triggers some action by p

= Repeat for all nonzero kin pnb

= Pass control to next instruction in logical flow for p

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Default Actions

m Each signal type has a predefined default action, which is
one of:
"= The process terminates
" The process stops until restarted by a SIGCONT signal
"= The process ignores the signal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Installing Signal Handlers

m The signal function modifies the default action associated
with the receipt of signal stgnum:
= handler_t *signal(int signum, handler_t *handler)

m Different values for handler:
= SIG_IGN: ignore signals of type signum
= SIG_DFL: revert to the default action on receipt of signals of type stgnum
= Otherwise, handler is the address of a user-level signal handler
= Called when process receives signal of type signum
= Referred to as “installing” the handler
= Executing handler is called “catching” or “handling” the signal

= When the handler executes its return statement, control passes back
to instruction in the control flow of the process that was interrupted
by receipt of the signal

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Signal Handling Example

void sigint_handler(int sig) /* SIGINT handler */
{

printf();
sleep(2);
printf();
fflush(stdout);
sleep(1);
printf()i
exit(0);
}

iInt main()
{
[* Install the SIGINT handler */
If (signal(SIGINT, sigint_handler) == SIG_ERR)
unix_error();

/* Walit for the receipt of a signal */
pause();

return O:
} sigint.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Signals Handlers as Concurrent Flows

m Asignal handler is a separate logical flow (not process) that
runs concurrently with the main program

Process A Process A Process B

while (1) handler Q{

}

Time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Another View of Signal Handlers as
Concurrent Flows

I
Process A 1 Process B
|
|
. . I .
Signal delivered —> leyrr : user code (main)
I
to process A kernel code } context switch
|
: user code (main)
I .
1 kernel code } context switch
Signal received —> I
I user code (handler)
by process A v I
: kernel code
| ¢ I
next I user code (main)
v I
I

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Nested Signal Handlers

m Handlers can be interrupted by other handlers

Main program Handler S Handler T

(2) Control passes
(1) Program | to handler S
curr

catches signal s (4) Control passes
(3) Program to handler T

(7) Main program lnext catches signal t >

(6) Handler S (5) Handler T

returns to returns to
: handler S

main

program

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Blocking and Unblocking Signals

m Implicit blocking mechanism

= Kernel blocks any pending signals of type currently being handled.
= E.g., ASIGINT handler can’t be interrupted by another SIGINT

m Explicit blocking and unblocking mechanism
= sigprocmask function

m Supporting functions
= sigemptyset - Create empty set
= sigfillset - Addeverysignal number to set
= spgaddset - Add signal number to set
= sigdelset - Delete signal number from set

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Temporarily Blocking Signals

sigset_t mask, prev_mask;

Sigemptyset(&mask);
Sigaddset(&mask, SIGINT);

/* Block SIGINT and save previous blocked set */
Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

E*Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask(SIG_SETMASK, &prev_mask, NULL);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Safe Signal Handling

m Handlers are tricky because they are concurrent with
main program and share the same global data structures.
= Shared data structures can become corrupted.

m We'll explore concurrency issues later in the term.

m For now here are some guidelines to help you avoid
trouble.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Guidelines for Writing Safe Handlers

GO: Keep your handlers as simple as possible
= e.g., Set aglobal flag and return

G1: Call only async-signal-safe functions in your handlers
= printf, sprintf, malloc, and exit are not safe!
G2: Save and restore errno on entry and exit
= So that other handlers don’t overwrite your value of errno
G3: Protect accesses to shared data structures by temporarily
blocking all signals.
= To prevent possible corruption
G4: Declare global variables as volati le
= To prevent compiler from storing them in a register
G5: Declare global flags as volatile sig _atomic t

" flag: variable that is only read or written (e.g. flag = 1, not flag++)
= Flag declared this way does not need to be protected like other globals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Async-Signal-Safety

m Function is async-signal-safe if either reentrant (e.g., all
variables stored on stack frame, CS:APP3e 12.7.2) or non-
interruptible by signals.

m Posix guarantees 117 functions to be async-signal-safe
= Source: “man 7 signal”
= Popular functions on the list:
= _exit, write, wait, waitpid, sleep, kill
= Popular functions that are not on the list:
= printf, sprintf, malloc, exit
= Unfortunate fact: write is the only async-signal-safe output function

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Safely Generating Formatted Output

m Use the reentrant SIO (Safe 1/0 library) from csapp.cin
your handlers.
= ssize t si10 _puts(char s[]) /7* Put string */
= ssize t si1o putl(long v) /* Put long */
= void si10_error(char s[]) /* Put msg & exit */

void sigint_handler(int sig) /* Safe SIGINT handler */
{
Sio_puts("So you think you can stop the bomb with ctrl-c, do you?\n");
sleep(2);
Sio_puts(*Well...");
sleep(1);
Sio_puts("OK. :-)\n");
_exit(0);
}

sigintsafe.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

volatile int ccount = 0: Correct Signal Handling

void child_handler(int sig) {
int olderrno = errno;

pid_t pid; m Pending signals are

If ((pid = wait(NULL)) < 0)

Sio_error("wait error"); not queued

ccount--; = For each signal type, one

Sio_puts("Handler reaped child "); NPT
Sio_putl((long)pid); bit indicates whether or

Sio_puts(" \n"); not signal is pending...
Sleep(}); _ = _..thus at most one
errno = olderrno; ' '

} pending signal of any

particular type.

void fork14() { ’ .
pid_t pid[N]; m You can’t use signals
'C”Cto'imt N\ to count events, such as
Signal(SIGCHLD, child_handler); children terminating.

for 1=0;i<N;i++){
it ((pid[i] = Fork()) == 0) {

Sléep(}):* _ . whaleshark> ./forks 14
exit(0); /* Child exits */ Handler reaped child 23240
) Handler reaped child 23241

}

while (ccount > 0) /* Parent spins */

) ’ forks.c
. . , , 56

Carnegie Mellon

Correct Signal Handling

m Must wait for all terminated child processes

= pPut walt inaloop to reap all terminated children

void child_handler2(int sig)

{
Int olderrno = errno;
pid_t pid;
while ((pid = wait(NULL)) > 0) {
ccount--;

Sio_puts("Handler reaped child ");
Sio_putl((long)pid);
Sio_puts(" \n");

If (errno !'= ECHILD)
Sio_error("wait error");

} errno = olderrno; whaleshark> .fforks 15

Handler reaped child 23246
Handler reaped child 23247
Handler reaped child 23248
Handler reaped child 23249

Handler reaped child 23250
whaleshark>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Portable Signal Handling

m Ugh! Different versions of Unix can have different signal
handling semantics
= Some older systems restore action to default after catching signal
= Some interrupted system calls can return with errno == EINTR
= Some systems don’t block signals of the type being handled

m Solution: sigaction

handler_t *Signal(int signum, handler_t *handler)

{

struct sigaction action, old_action;

action.sa_handler = handler;
sigemptyset(&action.sa_mask); /* Block sigs of type being handled */
action.sa _flags = SA_RESTART; /* Restart syscalls if possible */

If (sigaction(signum, &action, &old_action) < 0)
unix_error("Signal error");
return (old_action.sa_handler);

} csapp.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Synchronizing Flows to Avoid Races

m Simple shell with a subtle synchronization error because it
assumes parent runs before child.

int main(int argc, char **argv)

{

int pid;
sigset_t mask_all, prev_all;

Sigfillset(&mask_all);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (1) {
if ((pid = Fork()) ==0) { /* Child */
Execve("/bin/date", argv, NULL);
}
Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); /* Parent */
addjob(pid); /* Add the child to the job list */
Sigprocmask(SIG_SETMASK, &prev_all, NULL);
}
exit(0);

} procmaskl.c
Bry, . - , o - , 59

Synchronizing Flows to Avoid Races

m SIGCHLD handler for a simple shell

void handler(int sig)

{
Int olderrno = errno;
sigset_t mask_all, prev_all;
pid_t pid;

Sigfillset(&mask_all);

while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */
Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
deletejob(pid); /* Delete the child from the job list */
Sigprocmask(SIG_SETMASK, &prev_all, NULL);

}

If (errno !'= ECHILD)
Sio_error("waitpid error");

errno = olderrno;

} procmaskl.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

Carnegie Mellon

Corrected Shell Program without Race

Int main(int argc, char **argv)
{
int pid;
sigset_t mask_all, mask_one, prev_one;

Sigfillset(&mask_all);
Sigemptyset(&mask_one);
Sigaddset(&mask_one, SIGCHLD);
Signal(SIGCHLD, handler);
initjobs(); /* Initialize the job list */

while (1) {
Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */
If ((pid = Fork()) == 0) { /* Child process */
Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
Execve("/bin/date", argv, NULL);
}
Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */
addjob(pid); /* Add the child to the job list */
Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
}
exit(0);
} procmask2.c

Explicitly Waiting for Signals

m Handlers for program explicitly waiting for SIGCHLD to arrive.

volatile sig_atomic_t pid;

void sigchld _handler(int s)
{
Int olderrno = errno;
pid = Waitpid(-1, NULL, 0); /* Main is waiting for nonzero pid */
errno = olderrno;

}

void sigint_handler(int s)
{
}

waitforsignal.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 62

Carnegie Mellon

Explicitly Waiting for Signals

. - - Similar to a shell waiting
int main(int argc, char **argv) { for a foreeround iob to
sigset_t mask, prev; g J

Signal(SIGCHLD, sigchld_handler); terminate.
Signal(SIGINT, sigint_handler);
Sigemptyset(&mask);
Sigaddset(&mask, SIGCHLD);

while (1) {
Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
If (Fork() ==0) /* Child */

exit(0);
[* Parent */
pid = 0;

Sigprocmask(SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */

[* Wait for SIGCHLD to be received (wasteful!) */
while (Ipid)
[* Do some work after receiving SIGCHLD */
printf(".");
}
exit(0);
} waitforsignal.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 63

Carnegie Mellon

Explicitly Waiting for Signals

m Program is correct, but very wasteful
m Other options:

while (Ipid) /* Race! */ while (!pid) /* Too slow! */
pause(); sleep(1);

m Solution: sigsuspend

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 64

Carnegie Mellon

Waiting for Signals with s1gsuspend

m Int sigsuspend(const sigset _t *mask)

m Equivalent to atomic (uninterruptable) version of:

sigprocmask(SIG_BLOCK, &mask, &prev);

pause();
sigprocmask(SIG_SETMASK, &prev, NULL);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 65

Carnegie Mellon

Waiting for Signals with s1gsuspend

int main(int argc, char **argv) {
sigset_t mask, prev;
Signal (SIGCHLD, sigchld handler);
Signal (SIGINT, sigint _handler);
Sigemptyset(&mask) ;
Sigaddset(&mask, SIGCHLD);

while (1) {
Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
it (Fork() == 0) /* Child */
exit(0);

/* Wait for SIGCHLD to be received */
pid = 0;
while (Ipid)
Sigsuspend(&prev) ;

/* Optionally unblock SIGCHLD */
Sigprocmask(SI1G_SETMASK, &prev, NULL);
/* Do some work after receiving SIGCHLD */
printf(".");
}
exi1t(0);

+ sigsuspend.c
Bry , - , - - , 66

Carnegie Mellon

Today

m Shells
m Signals

m Nonlocal jumps
= Consult your textbook and additional slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 67

Carnegie Mellon

Summary

m Signals provide process-level exception handling
= Can generate from user programs
= Can define effect by declaring signal handler
= Be very careful when writing signal handlers

m Nonlocal jumps provide exceptional control flow within
process
= Within constraints of stack discipline

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 68

Carnegie Mellon

Additional slides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 69

Carnegie Mellon

Nonlocal Jumps: setjymp/longjmp

m Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location

= Controlled to way to break the procedure call / return discipline
= Useful for error recovery and signal handling

m INnt segymp(mp_buf j)
" Must be called before longjmp
= |dentifies a return site for a subsequent longjmp
= Called once, returns one or more times

m Implementation:

= Remember where you are by storing the current register context,
stack pointer, and PC value in ymp_buf

= ReturnO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 70

Carnegie Mellon

setjymp/longmp (cont)

m void longgmp(gmp_buf j, Int 1)
" Meaning:
= return from the setjmp remembered by jump buffer J again ...
= ... this time returning 1 instead of 0
" Called after setjmp

= Called once, but never returns

m longjmp Implementation:

= Restore register context (stack pointer, base pointer, PC value) from
jump buffer j

= Set %eaxX (the return value) to 1
= Jump to the location indicated by the PC stored in jump buf j

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 71

setjpmp/longjmp Example

m Goal: return directly to original caller from a deeply-
nested function

[* Deeply nested function foo */
void foo(void)
{
If (errorl)
longjmp(buf, 1);
bar();
}

void bar(void)

{
If (error2)

longjmp(buf, 2);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 72

jmp_buf buf;

setjymp/longjmp
Example (cont)

int errorl = 0;
Int error2 = 1;

void foo(void), bar(void);

iInt main()
{
switch(setjimp(buf)) {
case O:
foo();
break;
case 1:
printf("Detected an errorl condition in foo\n");
break;
case 2:
printf("Detected an error2 condition in foo\n");
break;
default:
printf("Unknown error condition in foo\n");

}
exit(0);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 73

Limitations of Nonlocal Jumps

m Works within stack discipline

= Can only long jump to environment of function that has been called

but not yet completed , ,
Before longjmp After longjmp

Jmp_buf env; env
......... 1 P1 P1
P1O
{
it (setjmp(env)) { P2
/* Long Jump to here */
else
T 020 i
+
¥ P2
P20
{ - - -P20; - . - P30O: } P3
P3O
{
longgmp(env, 1);
+

Bryant and O’Hararomn, Computer Systems: A PTOGrarnmimer s PETSPECUVE, TTITU EUTTON 74

Limitations of Long Jumps (cont.)

m Works within stack discipline

= Can only long jump to environment of function that has been called
but not yet completed

Jmp_buf env; P1
L — | P2
{ env
P2(0); P3Q:; At setjmp
+
P20 P1
{ - -
if (setjmp(env)) { env
/* Long Jump to here */ e P2
+
} P2 returns P1
P30 env
{ ""X"" P3
longymp(env, 1);
} At longjmp
Bryant and O’Ha , - , > - , 75

Carnegie Mellon

Putting It All Together: A Program
That Restarts Itself When ctril-c’d

#include "csapp.h”

sigimp_buf buf; :
greatwhite> ./restart

void handler(int sig) starting
{ processing. ..
siglongjmp(buf, 1); processing. ..
} processing. ..
int main() restart! ng Ctrl-c
{ processing. =
if (Isigsetjmp(buf, 1)) { preze sl o o -
Signal(SIGINT, handler); restarting
Sio_puts("starting\n"); processing. < Ctrl-c
} processing. ..
else _ processing. . .
Sio_puts("restarting\n");
while(1) {
Sleep(1);

Sio_puts("processing...\n");

}

exit(0); /* Control never reaches here */
} restart.c

1=

Bryant 76

	Exceptional Control Flow: �Signals and Nonlocal Jumps��15-213: Introduction to Computer Systems�15th Lecture, Mar. 3, 2016
	Review from last lecture
	Review (cont.)
	execve: Loading and Running Programs
	Structure of �the stack when a new program starts
	execve Example
	ECF Exists at All Levels of a System
	 (partial) Taxonomy
	Today
	Linux Process Hierarchy
	Shell Programs
	Simple Shell eval Function
	Simple Shell eval Function
	Simple Shell eval Function
	Simple Shell eval Function
	Simple Shell eval Function
	Simple Shell eval Function
	Simple Shell eval Function
	Simple Shell eval Function
	Simple Shell eval Function
	Problem with Simple Shell Example
	ECF to the Rescue!
	Today
	Signals
	Signal Concepts: Sending a Signal
	Signal Concepts: Sending a Signal
	Signal Concepts: Sending a Signal
	Signal Concepts: Sending a Signal
	Signal Concepts: Sending a Signal
	Signal Concepts: Sending a Signal
	Signal Concepts: Receiving a Signal
	Signal Concepts: Pending and Blocked Signals
	Signal Concepts: Pending/Blocked Bits	
	Signal Concepts: Sending a Signal
	Sending Signals: Process Groups
	Sending Signals with /bin/kill Program
	Sending Signals from the Keyboard
	Example of ctrl-c and ctrl-z
	Sending Signals with kill Function
	Receiving Signals
	Receiving Signals
	Default Actions
	Installing Signal Handlers
	Signal Handling Example
	Signals Handlers as Concurrent Flows
	Another View of Signal Handlers as Concurrent Flows
	Nested Signal Handlers	
	Blocking and Unblocking Signals	
	Temporarily Blocking Signals
	Safe Signal Handling
	Guidelines for Writing Safe Handlers	
	Async-Signal-Safety	
	Safely Generating Formatted Output
	Correct Signal Handling
	Correct Signal Handling
	Portable Signal Handling
	Synchronizing Flows to Avoid Races
	Synchronizing Flows to Avoid Races
	Corrected Shell Program without Race
	Explicitly Waiting for Signals
	Explicitly Waiting for Signals
	Explicitly Waiting for Signals
	Waiting for Signals with sigsuspend
	Waiting for Signals with sigsuspend
	Today
	Summary
	Additional slides
	Nonlocal Jumps: setjmp/longjmp
	setjmp/longjmp (cont)
	setjmp/longjmp Example
	setjmp/longjmp Example (cont)
	Limitations of Nonlocal Jumps
	Limitations of Long Jumps (cont.)
	Putting It All Together: A Program �That Restarts Itself When ctrl-c’d

