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Control Flow

m Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,
. inst
Time .2
Inst,
inst,
<shutdown>
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Altering the Control Flow

m Up to now: two mechanisms for changing control flow:
= Jumps and branches
= Call and return
React to changes in program state

m Insufficient for a useful system:
Difficult to react to changes in system state
= Data arrives from a disk or a network adapter
" |nstruction divides by zero
= User hits Ctrl-C at the keyboard
= System timer expires

m System needs mechanisms for “exceptional control flow”
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Exceptional Control Flow

m Exists at all levels of a computer system

m Low level mechanisms

= 1. Exceptions

= Change in control flow in response to a system event
(i.e., change in system state)

= Implemented using combination of hardware and OS software

m Higher level mechanisms
= 2. Process context switch
= Implemented by OS software and hardware timer
= 3. Signals
= Implemented by OS software
= 4. Nonlocal jumps: setgmp() and longgmp()
= Implemented by C runtime library
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Exceptions

m An exception is a transfer of control to the OS kernel in response
to some event (i.e., change in processor state)
= Kernel is the memory-resident part of the OS

= Examples of events: Divide by 0, arithmetic overflow, page fault, I/0
request completes, typing Ctrl-C

User code Kernel code
Event — |_current v Exception S
|_next Exception processing

by exception handler
* Return to | _current

* Return to |_next
* Abort
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Exception Tables

Exception

numbers
Code for m Each type of event has a
exception handler 0 unique exception number k

Exception Code for

vTable .
exception handler 1 — : .

0 re e m k=index into exception table

1 o Code for (a.k.a. interrupt vector)

2 o« exception handler 2

n-1 e m Handler k is called each time

exception k occurs

Code for
exception handler n-1
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(partial) Taxonomy
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Asynchronous

Interrupts

Synchronous
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T

Traps

Faults

Aborts
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Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor
" |ndicated by setting the processor’s interrupt pin
= Handler returns to “next” instruction

m Examples:
" Timer interrupt
= Every few ms, an external timer chip triggers an interrupt
= Used by the kernel to take back control from user programs
= /O interrupt from external device
= Hitting Ctrl-C at the keyboard
= Arrival of a packet from a network
= Arrival of data from a disk
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Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:

" Traps
= Intentional
= Examples: system calls, breakpoint traps, special instructions
= Returns control to “next” instruction

" Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= Unintentional and unrecoverable

= Examples: illegal instruction, parity error, machine check

= Aborts current program
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System Calls

m Each x86-64 system call has a unique ID number
m Examples:

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process
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System Call Example: Opening File

m User calls: open(filename, options)
m Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

e5d79: b802000000 mov $0x2,%eax # open is syscall #2

ebd7e: 0Of 05 syscall # Return value in %rax
e5d80: 48 3d 01 fO ff ff cmp $OxffffffffffffO01,%rax

éédfa: c3 retq
User code Kernel code m %rax contains syscall number
m Other arguments in %rdi,
Exception %I"Si, %rdx, %rilo, %rsg, %r9

<

syscally .

cmp ] . m Return value in %rax
Open file
Returns m Negative value is an error
corresponding to negative
errno
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System Call | Aimost like a function call

a User calls: open(f Transfer of control
a Calls__open functi On return, executes next instruction

e Passes arguments using calling convention
00000000000e5d70 <__ * Gets result in %rax

e5d79: b8 02 00 00 00

e5d7e: Of 05 . One Important exception!
e5d80: 48 3d 01 fO ff fl e Executed by Kernel
e5dfa: c3 e * Different set of privileges

* And other differences:
 E.g., “address” of “function” is in %rax

e Useserrno
e Etc.

syscall Except - .

cmp - . m Return value in %rax
Open file
Returns m Negative value is an error

corresponding to negative
errno

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14
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Fault Example: Page Fault
int a[1000];
m User writes to memory location ?a'” O
m That portion (page) of user’s memory a[500] = 13;
is currently on disk +
80483b7: c7 05 10 9d 04 08 0Od movl $0xd, 0x8049d10
User code Kernel code

Exception: page fault ‘

mov! % >
N COpy pagefrom
Return and disk to memory

reexecute movl

v
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Fault Example: Invalid Memory Reference

int a[1000];

main ()
{
a[5000] = 13;
}
80483b7: c7 05 60 e3 04 08 0d movl  $0xd,0x804e360
User code Kernel code

»

l Exception: page fault

movl
Detect invalid address

v » Signal process

m Sends SIGSEGV signal to user process
m User process exits with “segmentation fault”

16
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Processes

m Definition: A process is an instance of a running

program.
= One of the most profound ideas in computer science

= Not the same as “program” or “processor”

m Process provides each program with two key

abstractions:

= logical control flow
= Each program seems to have exclusive use of the CPU

= Provided by kernel mechanism called context switching

" Private address space
= Each program seems to have exclusive use of main

memory.
= Provided by kernel mechanism called virtual memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Multiprocessing: The lllusion

Memory

Stack

Memory

Heap

Stack

Data

Heap

Code

Data

Code

CPU

Registers

CPU

Registers

m Computer runs many processes simultaneously

= Applications for one or more users

Memory

Stack

Heap

Data

Code

CPU

Registers

= Web browsers, email clients, editors, ...

= Background tasks

= Monitoring network & I/O devices

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Multiprocessing Example

XTerm
Proceszes: 123 total, 5 running, 9 stuck, 109 zleeping, 611 threads 1147207
Load Awg: 1,03, 1,13, 1,14 CPU uzage: 3,27 uszer, 5,158 =sys, 91.56% idle
SharedLibz: 576K resident, OB data, OB linkedit,
HemBegions: 27998 total, 1127H resident, 35M private, 434 shared,
PhysMem: 1039M wired, 1974M active, 10BZ2M inactiwve, 407VEM uszed, 18M free,
YH: 280G vsize, 1091M framework wsize, 230759213(1) pageins, B843367(0) pageouts,
Hetworks: packets: 41046228110 in, BEOBI0SE/7/L out, I

Disks: 17874231/73430 read, 1284737375340 written, i
FII COMMAND ZCFU TIHE #TH  #W0  #PORT #MREG EPEWT  RSHED RSIZE WPEMT  WSIZE
99217- Microsoft OF 0,0 02:28,34 4 1 202 418 Z1M 24H 21 BEM FEAH
33051 wsbmuxd 0,0 0030410 3 1 47 BE 436k 21EK 480k BOM 2422
FI006  iTunesHelper 0,0 OO301,23 2 1 55 3 faak 3124k 1124k 43M 24294
24286 bash 0,0 000,11 1 0 20 24 224k 732k 484K 1M 2378H
24280 xterm 0,0 00:00,83 1 0 22 73 BSEK 872K B9Z2k 9728k 2382H
595939- Microsoft Ex 0,3 21:;58,97 10 3 360 354 1BM =y 4EM 114K 1057M
54751 =leep 0,0 00:00,00 1 0 17 20 32k 212k 3R0K B3k ZE7O0M
54739 launchdadd 0,0 Q000,00 2 1 33 5 483k 220K 173EK 48HM 24091
4737 top B.o 000253 171 0 B 23 1416k 216K 2124k 17H 2378H
24713 automountd 0,0 0030002 7 1 53 B4 ob0k 216k 2184K  haM 2413
54701  ocspd 0,0 000005 4 1 B1 54 1268k 2644k 3132K  5H0OH 2426M
S4EE1  Lrab 0.6 00:02,75 B 3 222+ 383+ 18M+  ZEM+  40M+  FhM+ Z50EM+
S4E59  cookied 0,0 00:00,15 2 1 40 Bl 231Ek 224K 4088k 42M 2411H
EZHE el s AN ansnl B7 A 1 57 91 FEIAK  FA1 1EM AAH 24 Z0H

m Running program “top” on Mac

= System has 123 processes, 5 of which are active
= |dentified by Process ID (PID)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20
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Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data eee Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

m Single processor executes multiple processes concurrently
" Process executions interleaved (multitasking)
= Address spaces managed by virtual memory system (later in course)
= Register values for nonexecuting processes saved in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21
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Multiprocessing: The (Traditional) Reality

Memory
Stack : Stack Stack
Heap : Heap Heap
Data : Data ses Data
Code , Code Code
Saved : Saved Saved
registers : registers registers
CPU
Registers

m Save current registers in memory
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Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data eee Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

m Schedule next process for execution
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Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data eee Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

m Load saved registers and switch address space (context switch)
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Multiprocessing: The (Modern) Reality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory

Stack Stack Stack

Heap Heap Heap

Data Data see Data

Code Code Code

Saved Saved Saved
registers registers registers

CPU CPU m Multicore processors
Registers Registers = Multiple CPUs on single chip

= Share main memory (and some caches)
= Each can execute a separate process

= Scheduling of processors onto cores
done by kernel

25
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Concurrent Processes

m Each process is a logical control flow.

m Two processes run concurrently (are concurrent) if their
flows overlap in time

m Otherwise, they are sequential

m Examples (running on single core):
" Concurrent: A&B,A&C
= Sequential: B&C

Process A Process B Process C

Time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26
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User View of Concurrent Processes

m Control flows for concurrent processes are physically
disjoint in time

m However, we can think of concurrent processes as
running in parallel with each other

Process A Process B Process C

Time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27



Context Switching

m Processes are managed by a shared chunk of memory-
resident OS code called the kernel

" |mportant: the kernel is not a separate process, but rather runs as part
of some existing process.

m Control flow passes from one process to another via a

context switch
I
Process A 1 Process B
I
I
: user code
I kernel code } context switch
Time user code

kernel code } context switch

user code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28
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System Call Error Handling

m On error, Linux system-level functions typically return -1 and
set global variable errno to indicate cause.

m Hard and fast rule:

" You must check the return status of every system-level function
= Only exception is the handful of functions that return void

m Example:

If ((pid =fork()) <0) {
fprintf(stderr, "fork error: %s\n", strerror(errno));
exit(-1);

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30
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Error-reporting functions

m Can simplify somewhat using an error-reporting function:

void unix_error(char *msg) /* Unix-style error */

{

fprintf(stderr, "%s: %s\n", msg, strerror(errno));

exit(-1x
}
. . \ Note: csapp.c exits with 0.
If ((pid =fork()) <0)

unix_error("fork error");

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31
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Error-handling Wrappers

m We simplify the code we present to you even further by
using Stevens-style error-handling wrappers:

pid_t Fork(void)
{
pid_t pid;

If ((pid =fork()) <0)
unix_error("Fork error");
return pid;

}

pid = Fork();

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32
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Obtaining Process IDs

m pid _t getpid(void)

= Returns PID of current process

m pid _t getppid(void)

= Returns PID of parent process

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33
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Creating and Terminating Processes

From a programmer’s perspective, we can think of a process
as being in one of three states

m Running

" Process is either executing, or waiting to be executed and will
eventually be scheduled (i.e., chosen to execute) by the kernel

m Stopped

" Process execution is suspended and will not be scheduled until
further notice (next lecture when we study signals)

m Terminated
" Process is stopped permanently

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34
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Terminating Processes

m Process becomes terminated for one of three reasons:

= Receiving a signal whose default action is to terminate (next lecture)
= Returning from the main routine
= Calling the ex1t function

m void exit(int status)
" Terminates with an exit status of status
= Convention: normal return status is O, nonzero on error

= Another way to explicitly set the exit status is to return an integer value
from the main routine

m eXltis called once but never returns.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35
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Creating Processes

m Parent process creates a new running child process by
calling fork

m Int fork(void)

= Returns 0 to the child process, child’s PID to parent process
= Child is almost identical to parent:

= Child get an identical (but separate) copy of the parent’s virtual
address space.

= Child gets identical copies of the parent’s open file descriptors
= Child has a different PID than the parent

m Tork s interesting (and often confusing) because
it is called once but returns twice

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36



fork Example

m Call once, return twice

int main()
{ ST m Concurrent execution
int x = 1: = Can’t predict execution
d = Fork() order of parent and child
pid = Fork();

if (pid ==0) { /* Child */
printf("child : x=%d\n", ++Xx);
exit(0);
}

[* Parent */
printf(" parent: x=%d\n", --X);

exit(0);
} fork.c
linux> ./fork linux> ./fork linux> ./fork linux> ./fork
parent: x=0 child : x=2 parent: x=0 parent: x=0
child : x=2 parent: x=0 child : x=2 child : x=2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37



fork Example

i g m Call once, return twice
Lt m Concurrent execution
pid_t pid;
int x = 1; = Can’t predict execution
_ order of parent and child
pid = Fork(); .
if (pid == 0) { /* Child */ m Duplicate but separate
H n 1 . :0 n .
printf( _Chl|(.3| : Xx=%d\n", ++x); address space
exit(0);
} = X has a value of 1 when
fork returns in parent and
[* Parent */ hild
printf(" parent: x=%d\n", --x); chi
exit(0); = Subsequent changes to X
} fork.c are independent

linux> _/fork
parent: x=0
child : x=2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38



fork Example

{

int main()

pid_t pid;
Int x =1:

pid = Fork();

if (pid ==0) { /* Child */
printf("child : x=%d\n", ++Xx);
printf("child : x=%d\n", ++Xx);

Carnegie Mellon

m Call once, return twice

m Concurrent execution
= Can’t predict execution
order of parent and child
m Duplicate but separate
address space

= X has a value of 1 when

fork returns in parent and
child

exit(0);

}

[* Parent */

printf("parent: x=%d\n", --x); .

printf(" parent: x=%d\n", --Xx); I|nux>_

exit(0): parent:

} child :

parent:
child :

./fork

= Subsequent changes to X
are independent

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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fork Example

i g m Call once, return twice
Lt m Concurrent execution
pid_t pid;
int x = 1; = Can’t predict execution
_ order of parent and child
pid = Fork(); .
if (pid == 0) { /* Child */ m Duplicate but separate
A L] X . :0 " .
printf( _chllq : X=%d\n", ++X); address space
exit(0);
} = X has a value of 1 when
fork returns in parent and
[* Parent */ hild
printf(" parent: x=%d\n", --x); chi
exit(0); = Subsequent changes to X
} fork.c are independent

. m Shared open files
linux> ./fork

parent: x=0 = stdoutisthe samein
child @ x=2 both parent and child

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40



Carnegie Mellon

Modeling Tork with Process Graphs

m A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:

= Each vertex is the execution of a statement
" a->b means a happens before b

= Edges can be labeled with current value of variables
= printf vertices can be labeled with output
= Each graph begins with a vertex with no inedges

m Any topological sort of the graph corresponds to a feasible
total ordering.
= Total ordering of vertices where all edges point from left to right

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41
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Process Graph Example

iInt main()
{
pid_t pid;
int x =1:
child: x=2
pid = Fork(); pr;i?tf &.it Child
if (pid ==0) { /* Child */
printf("child : x=%d\n", ++x); - ::1l pareiE: x=0 o barent
exit(0); main for printf exit
} K
[* Parent */
printf("parent: x=%d\n", --x);
exit(0);
} fork.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42
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Interpreting Process Graphs

m Original graph:

child: x=2
> — >0
printf exit
==1 parent: x=0
o —® >®
main for printf exit

k

= Relabled graph: Feasible total ordering:

>@—
e

o 4

o— e :a a b e (o f d
a C

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43
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fork Example: Two consecutive Torks

{

void fork2()

printf("LO\n");
fork();
printf("L1\n");
fork();

printf("Bye\n");

forks.c

Bye
@
printf
L1 Bye
>0— —> —0
printf  fork printf
Bye
prointf
LO L1 Bye
o —>@— —>@— —> —0
printf  for printf ork printf
k

Feasible output:
LO

L1

Bye

Bye

L1

Bye

Bye

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Infeasible output:

LO
Bye
L1
Bye
L1
Bye
Bye
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fork Example: Nested forks in parent

void fork4()
{
printf("LO\n");
If (fork() '=0){
printf("L1\n");
If (fork() '=0){
printf("L2\n");
}

}
printf("Bye\n");

}

forks.c

LO

Bye Bye

printf printf
A

o —> —>0— —> > e
printf fork printf fork printf printf

Feasible output: Infeasible output:
LO LO

L1 Bye

Bye L1

Bye Bye

L2 Bye

Bye L2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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fork Example: Nested forks in children

void fork5()
{
printf("LO\n");
If (fork() ==0){
printf("L1\n");
If (fork() ==0){
printf("L2\n");
}
}
printf("Bye\n");
}

forks.c

L1

LO Bye
o —> —>®
printf fork printf

Feasible output:
LO

Bye

L1

L2

Bye

Bye

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

L2 Bye

p?lntfprlntf
Bye

printf TOrK printf

Infeasible output:
LO

Bye

L1

Bye

Bye

L2
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Reaping Child Processes

m Ildea
= When process terminates, it still consumes system resources
= Examples: Exit status, various OS tables
= Called a “zombie”
= Living corpse, half alive and half dead
m Reaping
= Performed by parent on terminated child (using wait or waitpid)
= Parent is given exit status information
= Kernel then deletes zombie child process

m What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then the orphaned
child will be reaped by In1t process (pid == 1)

= So, only need explicit reaping in long-running processes
= e.g., shells and servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47
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void fork7() {
if (fork() ==0) {
/* Child */

Zombie
Example

exit(0);
} else {

while (1)

; I* Infinite loop */
linux> ./forks 7 & '}
[1] 6639 }

printf(" Terminating Child, PID = %d\n", getpid());

printf("Running Parent, PID = %d\n", getpid());

Running Parent, PID = 6639
Terminating Child, PID = 6640

Iinux> ps
PID TTY TIME CMD
6585 ttypd  00:00:00 tcsh
6639 ttyp9  00:00:03 forks -
6640 ttyp9  00:00:00 forks <defunct> €
6641 ttyp9  00:00:00 ps
linux> kill 6639
[1] Terminated u
linux> ps
PID TTY TIME CMD
6585 ttyp9  00:00:00 tcsh }
6642 ttyp9  00:00:00 ps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

pPS shows child process as
“defunct” (i.e., a zombie)

Killing parent allows child to
be reaped by Init
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Non_ }/oid fork8()
. . if (fork() == 0) {
terminating J* Child *

printf("Running Child, PID = %d\n",
. tpid());
Chlld Example whilgee(lr))I

; [* Infinite loop */

} else{
printf(" Terminating Parent, PID = %d\n",
getpid());
exit(0);
}
linux> _/forks 8 J
Terminating Parent, PID = 6675
Running Child, PID = 6676 m Child process still active even
linux> ps though parent has terminated
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 fork m  Must kill child explicitly, or else will
6677 ttyp9 00:00:00 o .
linux> Kill 6676 keep running indefinitely
Linux> ps
PID TTY TIME CMD

6585 ttypd  00:00:00 tcsh
6678 ttyp9  00:00:00 ps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49



wal t: Synchronizing with Children

m Parent reaps a child by calling the wairt function

m Int wartt(int *child _status)

= Suspends current process until one of its children terminates

Parent Process Kernel code

<

syscally

Exception . And, potentially other user

Returns

of parent

A 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50



wal t: Synchronizing with Children

m Parent reaps a child by calling the wairt function

m Int wartt(int *child _status)
= Suspends current process until one of its children terminates
= Return value is the pid of the child process that terminated

= |[fchild status !'= NULL, then the integer it points to will be set
to avalue that indicates reason the child terminated and the exit
status:

= Checked using macros defined inwalt.h

— WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSI1G, WIFSTOPPED, WSTOPSIG,
WIFCONT INUED

— See textbook for details
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wal t: Synchronizing with Children

void fork9() {
int child_status;

If (fork() ==0) {

exit(0);
} else {

wait(&child_status);

}
printf("Bye\n");

printf("HC: hello from child\n");

printf("HP: hello from parent\n");

printf("CT: child has terminated\n");

forks.c

Feasible output(s):

HC HP
HP HC
CcT CcT
Bye Bye
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HC exit
»0— —>
printf

CT

HP Bye
o —>0— *é —>e
fork printf wait printf

Infeasible output:
HP

CT

Bye

HC
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Another walrt Example

m If multiple children completed, will take in arbitrary order

m Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void fork10() {
pid_t pid[N];
int i, child_status;

for i =0; 1 <N;it+)
It ((pid[i] = fork()) == 0) {
exit(100+i); /* Child */
}
for (i =0; 1 <N;i++) { /* Parent */
pid t wpid = wait(&child_status);
It (WIFEXITED(child_status))
printf(" Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminate abnormally\n", wpid);
}

} forks.c
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waltpid: Waiting for a Specific Process

m pid _t wairtpid(pid_t pid, iInt &status, Int options)
= Suspends current process until specific process terminates
= Various options (see textbook)

void fork11() {
pid_t pid[N];
Int i;
int child_status;

for (1=0; 1 <N; i++)
if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */
for i =N-1;i1>=0; i--) {
pid twpid = waitpid(pid[i], &child_status, 0);
It (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminate abnormally\n", wpid);
}

} forks.c
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execve: Loading and Running Programs

m Int execve(char *filename, char *argv[], char *envp[])

m Loads and runs in the current process:
= Executable file f1lename

= Can be object file or script file beginning with #! Interpreter
(e.g., #1/bi1n/bash)

= _.with argument list argv
= By convention argv[O]==Ffi1lename
= ..and environment variable list envp
= “name=value” strings (e.g., USER=droh)
« getenv, putenv, printenv
m Overwrites code, data, and stack
= Retains PID, open files and signal context

m Called once and never returns

= ..exceptif thereis an error
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Bottom of stack

Null-terminated

StrUCtu re of environment variable strings .
Null-terminated |
the StaCk When ___,|  command-line arg strings
a new program | — o
starts SV IT=E] i environ
| . |.(global var)
i envp[0] i
i argv[argc] = NULL 1 envp
i argv[argc-1] (in %rdx)
2lgh .‘ argv[o]
(in %rsi)
argc Stack frame for
i 3 libc start main
(in %rdt) - —rat Top of stack

Future stack frame for
main
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execve Example

m Executes “/bin/ls —lt Zusr/include” in child process
using current environment:

envp[n] = NULL
envp[n-1]} —> “PWD=/usr/droh”
_ envp[O] —> “USER=droh”
environ >
myargvfargc] = NULL
(argc == 3) myargv[2] —> “/usr/include”
myargv[1] s “-It”
myargv ——[Myaravio] 5 “/bin/Is”

If ((pid = Fork()) ==0){ /* Child runs program */

If (execve(myargv[0], myargv, environ) < 0) {
printf("%s: Command not found.\n", myargv|[0]);
exit(1);

}

}
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Summary

m Exceptions

= Events that require nonstandard control flow
= Generated externally (interrupts) or internally (traps and faults)

m Processes

= At any given time, system has multiple active processes
"= Only one can execute at a time on any single core

= Each process appears to have total control of
processor + private memory space
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Summary (cont.)

m Spawning processes
= Call fork

® One call, two returns

m Process completion
= Callexit
® One call, no return

m Reaping and waiting for processes
= Callwairtorwartpid

m Loading and running programs
= Call execve (or variant)

= One call, (normally) no return
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Practice Exam

m At anytime after 4pm today goto:

https://exams.ugrad.cs.cmu.edu:15213
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