
Carnegie Mellon

1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow:
Exceptions and Processes

15-213 : Introduction to Computer Systems
14th Lecture, Feb. 25, 2016

Instructors:
Seth Copen Goldstein, Franz Franchetti, Ralf Brown, and Brian Railing

Carnegie Mellon

2 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Exceptional Control Flow
 Exceptions
 Processes
 Process Control

Carnegie Mellon

3 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Control Flow

<startup>
inst1
inst2
inst3
…
instn
<shutdown>

 Processors do only one thing:
 From startup to shutdown, a CPU simply reads and executes

(interprets) a sequence of instructions, one at a time
 This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

Carnegie Mellon

4 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Altering the Control Flow
 Up to now: two mechanisms for changing control flow:
 Jumps and branches
 Call and return
React to changes in program state

 Insufficient for a useful system:
Difficult to react to changes in system state
 Data arrives from a disk or a network adapter
 Instruction divides by zero
 User hits Ctrl-C at the keyboard
 System timer expires

 System needs mechanisms for “exceptional control flow”

Carnegie Mellon

5 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptional Control Flow
 Exists at all levels of a computer system
 Low level mechanisms
 1. Exceptions

 Change in control flow in response to a system event
(i.e., change in system state)

 Implemented using combination of hardware and OS software

 Higher level mechanisms
 2. Process context switch

 Implemented by OS software and hardware timer
 3. Signals

 Implemented by OS software
 4. Nonlocal jumps: setjmp() and longjmp()

 Implemented by C runtime library

Carnegie Mellon

6 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Exceptional Control Flow
 Exceptions
 Processes
 Process Control

Carnegie Mellon

7 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exceptions
 An exception is a transfer of control to the OS kernel in response

to some event (i.e., change in processor state)
 Kernel is the memory-resident part of the OS
 Examples of events: Divide by 0, arithmetic overflow, page fault, I/O

request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler
 • Return to I_current

• Return to I_next
• Abort

Event I_current
I_next

Carnegie Mellon

8 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0
1
2 ...

n-1

Exception Tables

 Each type of event has a
unique exception number k

 k = index into exception table
(a.k.a. interrupt vector)

 Handler k is called each time
exception k occurs

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

Carnegie Mellon

9 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 (partial) Taxonomy

Asynchronous Synchronous

Interrupts Traps Faults Aborts

ECF

Carnegie Mellon

10 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Asynchronous Exceptions (Interrupts)
 Caused by events external to the processor
 Indicated by setting the processor’s interrupt pin
 Handler returns to “next” instruction

 Examples:
 Timer interrupt

 Every few ms, an external timer chip triggers an interrupt
 Used by the kernel to take back control from user programs

 I/O interrupt from external device
 Hitting Ctrl-C at the keyboard
 Arrival of a packet from a network
 Arrival of data from a disk

Carnegie Mellon

11 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronous Exceptions
 Caused by events that occur as a result of executing an

instruction:
 Traps

 Intentional
 Examples: system calls, breakpoint traps, special instructions
 Returns control to “next” instruction

 Faults
 Unintentional but possibly recoverable
 Examples: page faults (recoverable), protection faults

(unrecoverable), floating point exceptions
 Either re-executes faulting (“current”) instruction or aborts

 Aborts
 Unintentional and unrecoverable
 Examples: illegal instruction, parity error, machine check
 Aborts current program

Carnegie Mellon

12 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Calls

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

 Each x86-64 system call has a unique ID number
 Examples:

Carnegie Mellon

13 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Example: Opening File
 User calls: open(filename, options)
 Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User code Kernel code

Exception

Open file
Returns

syscall
cmp

 %rax contains syscall number
 Other arguments in %rdi,

%rsi, %rdx, %r10, %r8, %r9
 Return value in %rax
 Negative value is an error

corresponding to negative
errno

Carnegie Mellon

14 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Example: Opening File
 User calls: open(filename, options)
 Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User code Kernel code

Exception

Open file
Returns

syscall
cmp

 %rax contains syscall number
 Other arguments in %rdi,

%rsi, %rdx, %r10, %r8, %r9
 Return value in %rax
 Negative value is an error

corresponding to negative
errno

Almost like a function call
• Transfer of control
• On return, executes next instruction
• Passes arguments using calling convention
• Gets result in %rax

One Important exception!
• Executed by Kernel
• Different set of privileges
• And other differences:

• E.g., “address” of “function” is in %rax
• Uses errno
• Etc.

Carnegie Mellon

15 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fault Example: Page Fault
 User writes to memory location
 That portion (page) of user’s memory

is currently on disk

int a[1000];
main ()
{
 a[500] = 13;
}

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault
Copy page from
disk to memory Return and

reexecute movl

movl

Carnegie Mellon

16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fault Example: Invalid Memory Reference

 Sends SIGSEGV signal to user process
 User process exits with “segmentation fault”

int a[1000];
main ()
{
 a[5000] = 13;
}

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid address
movl

Signal process

Carnegie Mellon

17 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Exceptional Control Flow
 Exceptions
 Processes
 Process Control

Carnegie Mellon

18 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes
 Definition: A process is an instance of a running

program.
 One of the most profound ideas in computer science
 Not the same as “program” or “processor”

 Process provides each program with two key

abstractions:
 Logical control flow

 Each program seems to have exclusive use of the CPU
 Provided by kernel mechanism called context switching

 Private address space
 Each program seems to have exclusive use of main

memory.
 Provided by kernel mechanism called virtual memory

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

19 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The Illusion

 Computer runs many processes simultaneously
 Applications for one or more users

 Web browsers, email clients, editors, …
 Background tasks

 Monitoring network & I/O devices

CPU
Registers

Memory
Stack
Heap

Code
Data

CPU
Registers

Memory
Stack
Heap

Code
Data …

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

20 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing Example

 Running program “top” on Mac
 System has 123 processes, 5 of which are active
 Identified by Process ID (PID)

Carnegie Mellon

21 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Single processor executes multiple processes concurrently
 Process executions interleaved (multitasking)
 Address spaces managed by virtual memory system (later in course)
 Register values for nonexecuting processes saved in memory

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

Carnegie Mellon

22 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Save current registers in memory

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

Carnegie Mellon

23 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Schedule next process for execution

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

Carnegie Mellon

24 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Traditional) Reality

 Load saved registers and switch address space (context switch)

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

Carnegie Mellon

25 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The (Modern) Reality

 Multicore processors
Multiple CPUs on single chip
 Share main memory (and some caches)
 Each can execute a separate process
 Scheduling of processors onto cores

done by kernel

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CPU
Registers

Carnegie Mellon

26 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Processes
 Each process is a logical control flow.
 Two processes run concurrently (are concurrent) if their

flows overlap in time
 Otherwise, they are sequential
 Examples (running on single core):
 Concurrent: A & B, A & C
 Sequential: B & C

Process A Process B Process C

Time

Carnegie Mellon

27 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

User View of Concurrent Processes
 Control flows for concurrent processes are physically

disjoint in time

 However, we can think of concurrent processes as
running in parallel with each other

Time

Process A Process B Process C

Carnegie Mellon

28 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Context Switching
 Processes are managed by a shared chunk of memory-

resident OS code called the kernel
 Important: the kernel is not a separate process, but rather runs as part

of some existing process.

 Control flow passes from one process to another via a
context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

29 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Exceptional Control Flow
 Exceptions
 Processes
 Process Control

Carnegie Mellon

30 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

System Call Error Handling
 On error, Linux system-level functions typically return -1 and

set global variable errno to indicate cause.
 Hard and fast rule:
 You must check the return status of every system-level function
 Only exception is the handful of functions that return void

 Example:

 if ((pid = fork()) < 0) {
 fprintf(stderr, "fork error: %s\n", strerror(errno));
 exit(-1);
 }

Carnegie Mellon

31 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Error-reporting functions
 Can simplify somewhat using an error-reporting function:

void unix_error(char *msg) /* Unix-style error */
{
 fprintf(stderr, "%s: %s\n", msg, strerror(errno));
 exit(-1);
}

 if ((pid = fork()) < 0)
 unix_error("fork error");

Note: csapp.c exits with 0.

Carnegie Mellon

32 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Error-handling Wrappers
 We simplify the code we present to you even further by

using Stevens-style error-handling wrappers:

pid_t Fork(void)
{
 pid_t pid;

 if ((pid = fork()) < 0)
 unix_error("Fork error");
 return pid;
}

 pid = Fork();

Carnegie Mellon

33 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Obtaining Process IDs
 pid_t getpid(void)
 Returns PID of current process

 pid_t getppid(void)
 Returns PID of parent process

Carnegie Mellon

34 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Creating and Terminating Processes
From a programmer’s perspective, we can think of a process
as being in one of three states

 Running
 Process is either executing, or waiting to be executed and will

eventually be scheduled (i.e., chosen to execute) by the kernel

 Stopped
 Process execution is suspended and will not be scheduled until

further notice (next lecture when we study signals)

 Terminated
 Process is stopped permanently

Carnegie Mellon

35 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Terminating Processes
 Process becomes terminated for one of three reasons:
 Receiving a signal whose default action is to terminate (next lecture)
 Returning from the main routine
 Calling the exit function

 void exit(int status)
 Terminates with an exit status of status
 Convention: normal return status is 0, nonzero on error
 Another way to explicitly set the exit status is to return an integer value

from the main routine

 exit is called once but never returns.

Carnegie Mellon

36 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Creating Processes
 Parent process creates a new running child process by

calling fork

 int fork(void)
 Returns 0 to the child process, child’s PID to parent process
 Child is almost identical to parent:

 Child get an identical (but separate) copy of the parent’s virtual
address space.

 Child gets identical copies of the parent’s open file descriptors
 Child has a different PID than the parent

 fork is interesting (and often confusing) because
it is called once but returns twice

Carnegie Mellon

37 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

 Call once, return twice
 Concurrent execution
 Can’t predict execution

order of parent and child

linux> ./fork
child : x=2
parent: x=0

linux> ./fork
parent: x=0
child : x=2

linux> ./fork
parent: x=0
child : x=2

Carnegie Mellon

38 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

 Call once, return twice
 Concurrent execution
 Can’t predict execution

order of parent and child

 Duplicate but separate
address space
 x has a value of 1 when

fork returns in parent and
child

 Subsequent changes to x
are independent

Carnegie Mellon

39 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2
parent: x=-1
child : x=3

 Call once, return twice
 Concurrent execution
 Can’t predict execution

order of parent and child

 Duplicate but separate
address space
 x has a value of 1 when

fork returns in parent and
child

 Subsequent changes to x
are independent

Carnegie Mellon

40 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

 Call once, return twice
 Concurrent execution
 Can’t predict execution

order of parent and child

 Duplicate but separate
address space
 x has a value of 1 when

fork returns in parent and
child

 Subsequent changes to x
are independent

 Shared open files
 stdout is the same in

both parent and child

Carnegie Mellon

41 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Modeling fork with Process Graphs

 A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
 Each vertex is the execution of a statement
 a -> b means a happens before b
 Edges can be labeled with current value of variables
 printf vertices can be labeled with output
 Each graph begins with a vertex with no inedges

 Any topological sort of the graph corresponds to a feasible
total ordering.
 Total ordering of vertices where all edges point from left to right

Carnegie Mellon

42 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graph Example

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

child: x=2

main for
k

printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c

Carnegie Mellon

43 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Interpreting Process Graphs
 Original graph:

 Relabled graph:

child: x=2

main for
k

printf

printf

x==1

exit

parent: x=0

exit

a b

f

d c

e

a b e c f d

Feasible total ordering:

a b e c f d

Infeasible total ordering:

Carnegie Mellon

44 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example: Two consecutive forks

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
} printf printf fork

printf

printf for
k

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
L1
Bye
Bye

forks.c

Carnegie Mellon

45 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example: Nested forks in parent

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf fork

printf

printf fork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:
L0
L1
Bye
Bye
L2
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

Carnegie Mellon

46 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

fork Example: Nested forks in children

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

Feasible output:
L0
Bye
L1
L2
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

Carnegie Mellon

47 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reaping Child Processes
 Idea
 When process terminates, it still consumes system resources

 Examples: Exit status, various OS tables
 Called a “zombie”

 Living corpse, half alive and half dead

 Reaping
 Performed by parent on terminated child (using wait or waitpid)
 Parent is given exit status information
 Kernel then deletes zombie child process

 What if parent doesn’t reap?
 If any parent terminates without reaping a child, then the orphaned

child will be reaped by init process (pid == 1)
 So, only need explicit reaping in long-running processes

 e.g., shells and servers

Carnegie Mellon

48 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps

Zombie
Example

forks.c
linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

 ps shows child process as
“defunct” (i.e., a zombie)

 Killing parent allows child to
be reaped by init

void fork7() {
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n", getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n", getpid());
 while (1)
 ; /* Infinite loop */
 }
}

Carnegie Mellon

49 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676

Non-
terminating
Child Example

 Child process still active even
though parent has terminated

 Must kill child explicitly, or else will
keep running indefinitely

forks.c linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 forks
 6677 ttyp9 00:00:00 ps

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 forks
 6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6678 ttyp9 00:00:00 ps

void fork8()
{
 if (fork() == 0) {
 /* Child */
 printf("Running Child, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 } else {
 printf("Terminating Parent, PID = %d\n",
 getpid());
 exit(0);
 }
}

Carnegie Mellon

50 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children
 Parent reaps a child by calling the wait function

 int wait(int *child_status)
 Suspends current process until one of its children terminates

Parent Process Kernel code

Exception

Returns

syscall
…

And, potentially other user
processes, including a child
of parent

Carnegie Mellon

51 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children
 Parent reaps a child by calling the wait function

 int wait(int *child_status)
 Suspends current process until one of its children terminates
 Return value is the pid of the child process that terminated
 If child_status != NULL, then the integer it points to will be set

to a value that indicates reason the child terminated and the exit
status:
 Checked using macros defined in wait.h

– WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

– See textbook for details

Carnegie Mellon

52 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

wait: Synchronizing with Children

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 exit(0);
 } else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
}

printf wait printf fork

printf
exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

Feasible output(s):
HC HP
HP HC
CT CT
Bye Bye

Carnegie Mellon

53 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Another wait Example
 If multiple children completed, will take in arbitrary order
 Can use macros WIFEXITED and WEXITSTATUS to get information about

exit status

void fork10() {
 pid_t pid[N];
 int i, child_status;

 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0) {
 exit(100+i); /* Child */
 }
 for (i = 0; i < N; i++) { /* Parent */
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminate abnormally\n", wpid);
 }
} forks.c

Carnegie Mellon

54 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

waitpid: Waiting for a Specific Process
 pid_t waitpid(pid_t pid, int &status, int options)

 Suspends current process until specific process terminates
 Various options (see textbook)

void fork11() {
 pid_t pid[N];
 int i;
 int child_status;

 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */
 for (i = N-1; i >= 0; i--) {
 pid_t wpid = waitpid(pid[i], &child_status, 0);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminate abnormally\n", wpid);
 }
} forks.c

Carnegie Mellon

55 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve: Loading and Running Programs

 int execve(char *filename, char *argv[], char *envp[])

 Loads and runs in the current process:
 Executable file filename

 Can be object file or script file beginning with #!interpreter
(e.g., #!/bin/bash)

 …with argument list argv
 By convention argv[0]==filename

 …and environment variable list envp
 “name=value” strings (e.g., USER=droh)
 getenv, putenv, printenv

 Overwrites code, data, and stack
 Retains PID, open files and signal context

 Called once and never returns
 …except if there is an error

Carnegie Mellon

56 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structure of
the stack when
a new program
starts

Null-terminated
environment variable strings

Null-terminated
command-line arg strings

envp[n] == NULL
envp[n-1]

...
envp[0]

argv[argc] = NULL
argv[argc-1]

...
argv[0]

Future stack frame for
main

environ
(global var)

Bottom of stack

Top of stack

argv
(in %rsi)

envp
(in %rdx)

Stack frame for
libc_start_main

argc
(in %rdi)

Carnegie Mellon

57 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

execve Example

envp[n] = NULL
envp[n-1]

envp[0]
…

“USER=droh”

“PWD=/usr/droh”

environ

 if ((pid = Fork()) == 0) { /* Child runs program */
 if (execve(myargv[0], myargv, environ) < 0) {
 printf("%s: Command not found.\n", myargv[0]);
 exit(1);
 }
 }

 Executes “/bin/ls –lt /usr/include” in child process
using current environment:

myargv[argc] = NULL
myargv[2]

myargv[0]
myargv[1]

“/bin/ls”
“-lt”
“/usr/include”

myargv

(argc == 3)

Carnegie Mellon

58 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
 Exceptions
 Events that require nonstandard control flow
 Generated externally (interrupts) or internally (traps and faults)

 Processes
 At any given time, system has multiple active processes
 Only one can execute at a time on any single core
 Each process appears to have total control of

processor + private memory space

Carnegie Mellon

59 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary (cont.)
 Spawning processes
 Call fork
 One call, two returns

 Process completion
 Call exit
 One call, no return

 Reaping and waiting for processes
 Call wait or waitpid

 Loading and running programs
 Call execve (or variant)
 One call, (normally) no return

Carnegie Mellon

60 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Practice Exam
 At anytime after 4pm today goto:

https://exams.ugrad.cs.cmu.edu:15213

	Exceptional Control Flow: �Exceptions and Processes��15-213 : Introduction to Computer Systems�14th Lecture, Feb. 25, 2016
	Today
	Control Flow
	Altering the Control Flow
	Exceptional Control Flow
	Today
	Exceptions
	Exception Tables
	 (partial) Taxonomy
	Asynchronous Exceptions (Interrupts)
	Synchronous Exceptions
	System Calls
	System Call Example: Opening File
	System Call Example: Opening File
	Fault Example: Page Fault
	Fault Example: Invalid Memory Reference
	Today
	Processes
	Multiprocessing: The Illusion
	Multiprocessing Example
	Multiprocessing: The (Traditional) Reality
	Multiprocessing: The (Traditional) Reality
	Multiprocessing: The (Traditional) Reality
	Multiprocessing: The (Traditional) Reality
	Multiprocessing: The (Modern) Reality
	Concurrent Processes
	User View of Concurrent Processes
	Context Switching
	Today
	System Call Error Handling
	Error-reporting functions	
	Error-handling Wrappers	
	Obtaining Process IDs
	Creating and Terminating Processes
	Terminating Processes	
	Creating Processes
	fork Example
	fork Example
	fork Example
	fork Example
	Modeling fork with Process Graphs
	Process Graph Example
	Interpreting Process Graphs
	fork Example: Two consecutive forks
	fork Example: Nested forks in parent
	fork Example: Nested forks in children
	Reaping Child Processes
	Zombie�Example
	Non-�terminating�Child Example
	wait: Synchronizing with Children
	wait: Synchronizing with Children
	wait: Synchronizing with Children
	Another wait Example
	waitpid: Waiting for a Specific Process
	execve: Loading and Running Programs
	Structure of �the stack when a new program starts
	execve Example
	Summary
	Summary (cont.)
	Practice Exam

