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Control Flow 

<startup> 
inst1 
inst2 
inst3 
… 
instn 
<shutdown> 

 Processors do only one thing: 
 From startup to shutdown, a CPU simply reads and executes 

(interprets) a sequence of instructions, one at a time 
 This sequence is the CPU’s control flow (or flow of control) 

 
Physical control flow 

Time 
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Altering the Control Flow 
 Up to now: two mechanisms for changing control flow: 
 Jumps and branches 
 Call and return 
React to changes in program state 
 

 Insufficient  for a useful system:  
Difficult to react to changes in system state  
 Data arrives from a disk or a network adapter 
 Instruction divides by zero 
 User hits Ctrl-C at the keyboard 
 System timer expires 

 
 System needs mechanisms for “exceptional control flow” 
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Exceptional Control Flow 
 Exists at all levels of a computer system 
 Low level mechanisms 
 1. Exceptions  

 Change in control flow in response to a system event  
(i.e.,  change in system state) 

 Implemented using combination of hardware and OS software
  

 Higher level mechanisms 
 2. Process context switch 

 Implemented by OS software and hardware timer 
 3. Signals 

 Implemented by OS software  
 4. Nonlocal jumps: setjmp() and longjmp() 

 Implemented by C runtime library 
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Today 
 Exceptional Control Flow 
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Exceptions 
 An exception is a transfer of control to the OS kernel in response 

to some event  (i.e., change in processor state) 
 Kernel is the memory-resident part of the OS 
 Examples of events: Divide by 0, arithmetic overflow, page fault, I/O 

request completes, typing Ctrl-C 
 

 
 
 
 
 
 
 
 

User code Kernel code 

Exception 
Exception processing 
by exception handler 
 • Return to I_current 

• Return to I_next 
• Abort 

Event  I_current 
I_next 
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0 
1 
2 ... 

n-1 

Exception Tables 

 Each type of event has a  
unique exception number k 
 

 k = index into exception table  
(a.k.a. interrupt vector) 
 

 Handler k is called each time  
exception k occurs 

Exception 
Table 

Code for   
exception handler 0 

Code for  
exception handler 1 

Code for 
exception handler 2 

Code for  
exception handler n-1 

... 

Exception  
numbers 



Carnegie Mellon 

9 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 

 (partial) Taxonomy 

Asynchronous Synchronous 

Interrupts Traps Faults Aborts 

ECF 
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Asynchronous Exceptions (Interrupts) 
 Caused by events external to the processor 
 Indicated by setting the processor’s interrupt pin 
 Handler returns to “next” instruction 

 
 Examples: 
 Timer interrupt 

 Every few ms, an external timer chip triggers an interrupt 
 Used by the kernel to take back control from user programs 

  I/O interrupt from external device 
 Hitting Ctrl-C at the keyboard 
 Arrival of a packet from a network 
 Arrival of data from a disk 
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Synchronous Exceptions 
 Caused by events that occur as a result of executing an 

instruction: 
 Traps 

 Intentional 
 Examples: system calls, breakpoint traps, special instructions 
 Returns control to “next” instruction 

 Faults 
 Unintentional but possibly recoverable  
 Examples: page faults (recoverable), protection faults 

(unrecoverable), floating point exceptions 
 Either re-executes faulting (“current”) instruction or aborts 

 Aborts 
 Unintentional and unrecoverable 
 Examples: illegal instruction, parity error, machine check 
 Aborts current program 



Carnegie Mellon 

12 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 

System Calls 

Number Name Description 

0 read Read file 

1 write Write file 

2 open Open file 

3 close Close file 

4 stat Get info about file 

57 fork Create process 

59 execve Execute a program 

60 _exit Terminate process 

62 kill Send signal to process 

 Each x86-64 system call has a unique ID number 
 Examples: 
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System Call Example: Opening File 
 User calls: open(filename, options) 
 Calls __open function, which invokes system call instruction syscall 

 
 
 
 
 
 

 
 

 
 
 

00000000000e5d70 <__open>: 
... 
e5d79:   b8 02 00 00 00      mov  $0x2,%eax  # open is syscall #2 
e5d7e:   0f 05               syscall         # Return value in %rax 
e5d80:   48 3d 01 f0 ff ff   cmp  $0xfffffffffffff001,%rax  
... 
e5dfa:   c3                  retq 

User code Kernel code 

Exception 

Open file 
Returns 

syscall 
cmp 

 %rax contains syscall number 
 Other arguments in %rdi, 

%rsi, %rdx, %r10, %r8, %r9 
 Return value in %rax 
 Negative value is an error 

corresponding to negative 
errno 
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System Call Example: Opening File 
 User calls: open(filename, options) 
 Calls __open function, which invokes system call instruction syscall 

 
 
 
 
 
 

 
 

 
 
 

00000000000e5d70 <__open>: 
... 
e5d79:   b8 02 00 00 00      mov  $0x2,%eax  # open is syscall #2 
e5d7e:   0f 05               syscall         # Return value in %rax 
e5d80:   48 3d 01 f0 ff ff   cmp  $0xfffffffffffff001,%rax  
... 
e5dfa:   c3                  retq 

User code Kernel code 

Exception 

Open file 
Returns 

syscall 
cmp 

 %rax contains syscall number 
 Other arguments in %rdi, 

%rsi, %rdx, %r10, %r8, %r9 
 Return value in %rax 
 Negative value is an error 

corresponding to negative 
errno 

 
 
 
 
 
 

 
 

 
 

 

Almost like a function call 
• Transfer of control 
• On return, executes next instruction 
• Passes arguments using calling convention 
• Gets result in %rax 
 

One Important exception! 
• Executed by Kernel 
• Different set of privileges 
• And other differences:  

• E.g., “address” of “function” is in %rax 
• Uses errno 
• Etc. 
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Fault Example: Page Fault 
 User writes to memory location 
 That portion (page) of user’s memory  

is currently on disk 
 
 
 
 
 
 
 

 

int a[1000]; 
main () 
{ 
    a[500] = 13; 
} 

 80483b7: c7 05 10 9d 04 08 0d  movl   $0xd,0x8049d10 

User code Kernel code 

Exception: page fault 
Copy page from 
disk to memory Return and 

reexecute movl 

movl 



Carnegie Mellon 

16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 

Fault Example: Invalid Memory Reference 

 Sends SIGSEGV signal to user process 
 User process exits with “segmentation fault” 

int a[1000]; 
main () 
{ 
    a[5000] = 13; 
} 

 80483b7: c7 05 60 e3 04 08 0d  movl   $0xd,0x804e360 

User code Kernel code 

Exception: page fault 

Detect invalid address 
movl 

Signal process 
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Today 
 Exceptional Control Flow 
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 Processes 
 Process Control 
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Processes 
 Definition: A process is an instance of a running 

program. 
 One of the most profound ideas in computer science 
 Not the same as “program” or “processor” 

 
 Process provides each program with two key 

abstractions: 
 Logical control flow 

 Each program seems to have exclusive use of the CPU 
 Provided by kernel mechanism called context switching 

 Private address space 
 Each program seems to have exclusive use of main 

memory.  
 Provided by kernel mechanism called virtual memory 

CPU 
Registers 

Memory 
Stack 
Heap 

Code 
Data 
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Multiprocessing: The Illusion 

 Computer runs many processes simultaneously 
 Applications for one or more users 

 Web browsers, email clients, editors, … 
 Background tasks 

 Monitoring network & I/O devices 
 

CPU 
Registers 

Memory 
Stack 
Heap 

Code 
Data 

CPU 
Registers 

Memory 
Stack 
Heap 

Code 
Data … 

CPU 
Registers 

Memory 
Stack 
Heap 

Code 
Data 
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Multiprocessing Example 

 Running program “top” on Mac 
 System has 123 processes, 5 of which are active 
 Identified by Process ID (PID) 
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Multiprocessing: The (Traditional) Reality 

 Single processor executes multiple processes concurrently 
 Process executions interleaved (multitasking)  
 Address spaces managed by virtual memory system (later in course) 
 Register values for nonexecuting processes saved in memory 

CPU 
Registers 

Memory 
Stack 
Heap 

Code 
Data 

Saved 
registers 

Stack 
Heap 

Code 
Data 

Saved 
registers 

Stack 
Heap 

Code 
Data 

Saved 
registers 

… 
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Multiprocessing: The (Traditional) Reality 

 Save current registers in memory 

CPU 
Registers 

Memory 
Stack 
Heap 

Code 
Data 

Saved 
registers 

Stack 
Heap 

Code 
Data 

Saved 
registers 

Stack 
Heap 

Code 
Data 

Saved 
registers 

… 
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Multiprocessing: The (Traditional) Reality 

 Schedule next process for execution 

CPU 
Registers 

Memory 
Stack 
Heap 

Code 
Data 

Saved 
registers 

Stack 
Heap 

Code 
Data 

Saved 
registers 

Stack 
Heap 

Code 
Data 

Saved 
registers 

… 
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Multiprocessing: The (Traditional) Reality 

 Load saved registers and switch address space (context switch) 

CPU 
Registers 

Memory 
Stack 
Heap 

Code 
Data 

Saved 
registers 

Stack 
Heap 

Code 
Data 

Saved 
registers 

Stack 
Heap 

Code 
Data 

Saved 
registers 

… 
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Multiprocessing: The (Modern) Reality 

 Multicore processors 
Multiple CPUs on single chip 
 Share main memory (and some caches) 
 Each can execute a separate process 
 Scheduling of processors onto cores 

done by kernel 

 

CPU 
Registers 

Memory 
Stack 
Heap 

Code 
Data 

Saved 
registers 

Stack 
Heap 

Code 
Data 

Saved 
registers 

Stack 
Heap 

Code 
Data 

Saved 
registers 

… 

CPU 
Registers 
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Concurrent Processes 
 Each process is a logical control flow.  
 Two processes run concurrently (are concurrent) if their 

flows overlap in time 
 Otherwise, they are sequential 
 Examples (running on single core): 
 Concurrent: A & B, A & C 
 Sequential: B & C 

Process A Process B Process C 

Time 
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User View of Concurrent Processes 
 Control flows for concurrent processes are physically 

disjoint in time 
 

 However, we can think of concurrent processes as 
running in parallel with each other 

Time 

Process A Process B Process C 
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Context Switching 
 Processes are managed by a shared chunk of memory-

resident OS code called the kernel 
 Important: the kernel is not a separate process, but rather runs as part 

of some existing process. 

 Control flow passes from one process to another via a 
context switch 
 

Process A Process B 

user code 

kernel code 

user code 

kernel code 

user code 

context switch 

context switch 

Time 
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Today 
 Exceptional Control Flow 
 Exceptions 
 Processes 
 Process Control 
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System Call Error Handling 
 On error, Linux system-level functions typically return -1 and 

set global variable errno to indicate cause.  
 Hard and fast rule:  
 You must check the return status of every system-level function 
 Only exception is the handful of functions that return void 

 Example: 
 

    if ((pid = fork()) < 0) { 
        fprintf(stderr, "fork error: %s\n", strerror(errno)); 
        exit(-1); 
    } 
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Error-reporting functions  
 Can simplify somewhat using an error-reporting function: 

void unix_error(char *msg) /* Unix-style error */ 
{ 
    fprintf(stderr, "%s: %s\n", msg, strerror(errno)); 
    exit(-1); 
} 

 if ((pid = fork()) < 0) 
    unix_error("fork error"); 

Note: csapp.c exits with 0. 
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Error-handling Wrappers  
 We simplify the code we present to you even further by 

using Stevens-style error-handling wrappers: 

pid_t Fork(void) 
{ 
    pid_t pid; 
 
    if ((pid = fork()) < 0) 
        unix_error("Fork error"); 
    return pid; 
} 

  pid = Fork(); 
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Obtaining Process IDs 
 pid_t getpid(void) 
 Returns PID of current process 

 

 pid_t getppid(void) 
 Returns PID of parent process 
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Creating and Terminating Processes 
From a programmer’s perspective, we can think of a process 
as being in one of three states 
 
 Running  
 Process is either executing, or waiting to be executed and will 

eventually be scheduled (i.e., chosen to execute) by the kernel 
 

 Stopped 
 Process execution is suspended and will not be scheduled until 

further notice (next lecture when we study signals)  
 

 Terminated 
 Process is stopped permanently  
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Terminating Processes  
 Process becomes terminated for one of three reasons: 
 Receiving a signal whose default action is to terminate (next lecture) 
 Returning from the main routine 
 Calling the exit function 

 

 void exit(int status) 
 Terminates with an exit status of status 
 Convention: normal return status is 0, nonzero on error 
 Another way to explicitly set the exit status is to return an integer value 

from the main routine 
 

 exit is called once but never returns. 
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Creating Processes 
 Parent process creates a new running child process by 

calling fork 
 
 int fork(void) 
 Returns 0 to the child process, child’s PID to parent process 
 Child is almost identical to parent: 

 Child get an identical (but separate) copy of the parent’s virtual 
address space. 

 Child gets identical copies of the parent’s open file descriptors 
 Child has a different PID than the parent 

 

 fork is interesting (and often confusing) because  
it is called once but returns twice 
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fork Example 

int main() 
{ 
    pid_t pid; 
    int x = 1; 
 
    pid = Fork();  
    if (pid == 0) {  /* Child */ 
        printf("child : x=%d\n", ++x);  
 exit(0); 
    } 
 
    /* Parent */ 
    printf("parent: x=%d\n", --x);  
    exit(0); 
} 

linux> ./fork 
parent: x=0 
child : x=2 

fork.c 

 Call once, return twice 
 Concurrent execution 
 Can’t predict execution 

order of parent and child 

linux> ./fork 
child : x=2 
parent: x=0 

linux> ./fork 
parent: x=0 
child : x=2 

linux> ./fork 
parent: x=0 
child : x=2 
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fork Example 

int main() 
{ 
    pid_t pid; 
    int x = 1; 
 
    pid = Fork();  
    if (pid == 0) {  /* Child */ 
        printf("child : x=%d\n", ++x);  
 exit(0); 
    } 
 
    /* Parent */ 
    printf("parent: x=%d\n", --x);  
    exit(0); 
} 

linux> ./fork 
parent: x=0 
child : x=2 

fork.c 

 Call once, return twice 
 Concurrent execution 
 Can’t predict execution 

order of parent and child 

 Duplicate but separate 
address space 
 x has a value of 1 when 

fork returns in parent and 
child 

 Subsequent changes to x 
are independent 
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fork Example 

int main() 
{ 
    pid_t pid; 
    int x = 1; 
 
    pid = Fork();  
    if (pid == 0) {  /* Child */ 
        printf("child : x=%d\n", ++x);  
        printf("child : x=%d\n", ++x);  
 exit(0); 
    } 
 
    /* Parent */ 
    printf("parent: x=%d\n", --x); 
    printf("parent: x=%d\n", --x);  
    exit(0); 
} 

linux> ./fork 
parent: x=0 
child : x=2 
parent: x=-1 
child : x=3 
 

 Call once, return twice 
 Concurrent execution 
 Can’t predict execution 

order of parent and child 

 Duplicate but separate 
address space 
 x has a value of 1 when 

fork returns in parent and 
child 

 Subsequent changes to x 
are independent 
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fork Example 

int main() 
{ 
    pid_t pid; 
    int x = 1; 
 
    pid = Fork();  
    if (pid == 0) {  /* Child */ 
        printf("child : x=%d\n", ++x);  
 exit(0); 
    } 
 
    /* Parent */ 
    printf("parent: x=%d\n", --x);  
    exit(0); 
} 

linux> ./fork 
parent: x=0 
child : x=2 

fork.c 

 Call once, return twice 
 Concurrent execution 
 Can’t predict execution 

order of parent and child 

 Duplicate but separate 
address space 
 x has a value of 1 when 

fork returns in parent and 
child 

 Subsequent changes to x 
are independent 

 Shared open files 
 stdout is the same in 

both parent and child 
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Modeling fork with Process Graphs 

 A process graph is a useful tool for capturing the partial 
ordering of statements in a concurrent program: 
 Each vertex is the execution of a statement 
 a -> b means a happens before b 
 Edges can be labeled with current value of variables 
 printf vertices can be labeled with output 
 Each graph begins with a vertex with no inedges  

 Any topological sort of the graph corresponds to a feasible 
total ordering.  
 Total ordering of vertices where all edges point from left to right 
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Process Graph Example 

int main() 
{ 
    pid_t pid; 
    int x = 1; 
 
    pid = Fork();  
    if (pid == 0) {  /* Child */ 
        printf("child : x=%d\n", ++x);  
 exit(0); 
    } 
 
    /* Parent */ 
    printf("parent: x=%d\n", --x);  
    exit(0); 
} 

child: x=2 

main for
k 

printf 

printf 

x==1 

exit 

parent: x=0 

exit 
Parent 

Child 

fork.c 
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Interpreting Process Graphs 
 Original graph: 

 
 
 
 

 Relabled graph: 
 
 

 

child: x=2 

main for
k 

printf 

printf 

x==1 

exit 

parent: x=0 

exit 

a b 

f 

d c 

e 

a b e c f d 

Feasible total ordering: 

a b e c f d 

Infeasible total ordering: 
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fork Example: Two consecutive forks 

void fork2() 
{ 
    printf("L0\n"); 
    fork(); 
    printf("L1\n"); 
    fork(); 
    printf("Bye\n"); 
} printf printf fork 

printf 

printf for
k 

printf fork 

printf 

printf 

Bye 

L0 

Bye 

L1 

L1 

Bye 

Bye 

Feasible output: 
L0 
L1 
Bye 
Bye 
L1 
Bye 
Bye 

Infeasible output: 
L0 
Bye 
L1 
Bye 
L1 
Bye 
Bye 

forks.c 



Carnegie Mellon 

45 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 

fork Example: Nested forks in parent 

void fork4() 
{ 
    printf("L0\n"); 
    if (fork() != 0) { 
        printf("L1\n"); 
        if (fork() != 0) { 
            printf("L2\n"); 
 } 
    } 
    printf("Bye\n"); 
} 

printf printf fork 

printf 

printf fork 

printf 

L0 

Bye 

L1 

Bye 

L2 

printf 

Bye 

Feasible output: 
L0 
L1 
Bye 
Bye 
L2 
Bye 

Infeasible output: 
L0 
Bye 
L1 
Bye 
Bye 
L2 

forks.c 
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fork Example: Nested forks in children 

void fork5() 
{ 
    printf("L0\n"); 
    if (fork() == 0) { 
        printf("L1\n"); 
        if (fork() == 0) { 
            printf("L2\n"); 
        } 
    } 
    printf("Bye\n"); 
} 

printf printf 

fork 

printf 

printf 

fork 

printf 

L0 

L2 

Bye 

L1 Bye 

printf 
Bye 

Feasible output: 
L0 
Bye 
L1 
L2 
Bye 
Bye 

Infeasible output: 
L0 
Bye 
L1 
Bye 
Bye 
L2 

forks.c 
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Reaping Child Processes 
 Idea 
 When process terminates, it still consumes system resources 

 Examples: Exit status, various OS tables 
 Called a “zombie” 

 Living corpse, half alive and half dead 

 Reaping 
 Performed by parent on terminated child (using wait or waitpid) 
 Parent is given exit status information 
 Kernel then deletes zombie child process 

 What if parent doesn’t reap? 
 If any parent terminates without reaping a child, then the orphaned 

child will be reaped by init process (pid == 1) 
 So, only need explicit reaping in long-running processes 

 e.g., shells and servers 
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linux> ./forks 7 & 
[1] 6639 
Running Parent, PID = 6639 
Terminating Child, PID = 6640 
linux> ps 
  PID TTY          TIME CMD 
 6585 ttyp9    00:00:00 tcsh 
 6639 ttyp9    00:00:03 forks 
 6640 ttyp9    00:00:00 forks <defunct> 
 6641 ttyp9    00:00:00 ps 

Zombie 
Example 

forks.c 
linux> ./forks 7 & 
[1] 6639 
Running Parent, PID = 6639 
Terminating Child, PID = 6640 

linux> ./forks 7 & 
[1] 6639 
Running Parent, PID = 6639 
Terminating Child, PID = 6640 
linux> ps 
  PID TTY          TIME CMD 
 6585 ttyp9    00:00:00 tcsh 
 6639 ttyp9    00:00:03 forks 
 6640 ttyp9    00:00:00 forks <defunct> 
 6641 ttyp9    00:00:00 ps 
linux> kill 6639 
[1]    Terminated 
linux> ps 
  PID TTY          TIME CMD 
 6585 ttyp9    00:00:00 tcsh 
 6642 ttyp9    00:00:00 ps 

 ps shows child process as 
“defunct” (i.e., a zombie) 
 

 Killing parent allows child to 
be reaped by init 

void fork7() { 
    if (fork() == 0) { 
        /* Child */ 
        printf("Terminating Child, PID = %d\n", getpid()); 
        exit(0); 
    } else { 
        printf("Running Parent, PID = %d\n", getpid()); 
        while (1) 
            ; /* Infinite loop */ 
    } 
} 
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linux> ./forks 8 
Terminating Parent, PID = 6675 
Running Child, PID = 6676 

Non- 
terminating 
Child Example 

 Child process still active even 
though parent has terminated 
 

 Must kill child explicitly, or else will 
keep running indefinitely 

forks.c linux> ./forks 8 
Terminating Parent, PID = 6675 
Running Child, PID = 6676 
linux> ps 
  PID TTY          TIME CMD 
 6585 ttyp9    00:00:00 tcsh 
 6676 ttyp9    00:00:06 forks 
 6677 ttyp9    00:00:00 ps 

linux> ./forks 8 
Terminating Parent, PID = 6675 
Running Child, PID = 6676 
linux> ps 
  PID TTY          TIME CMD 
 6585 ttyp9    00:00:00 tcsh 
 6676 ttyp9    00:00:06 forks 
 6677 ttyp9    00:00:00 ps 
linux> kill 6676 
linux> ps 
  PID TTY          TIME CMD 
 6585 ttyp9    00:00:00 tcsh 
 6678 ttyp9    00:00:00 ps 

void fork8() 
{ 
    if (fork() == 0) { 
        /* Child */ 
        printf("Running Child, PID = %d\n", 
               getpid()); 
        while (1) 
            ; /* Infinite loop */ 
    } else { 
        printf("Terminating Parent, PID = %d\n", 
               getpid()); 
        exit(0); 
    } 
} 
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wait: Synchronizing with Children 
 Parent reaps a child by calling the wait function 
 
 int wait(int *child_status) 
 Suspends current process until one of its children terminates 

Parent Process Kernel code 

Exception 

Returns 

syscall 
… 

And, potentially other user 
processes, including a child 
of parent 
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wait: Synchronizing with Children 
 Parent reaps a child by calling the wait function 
 
 int wait(int *child_status) 
 Suspends current process until one of its children terminates 
 Return value is the pid of the child process that terminated 
 If child_status != NULL, then the integer it points to will be set 

to  a value that indicates reason the child terminated and the exit 
status: 
 Checked using macros defined in wait.h 

– WIFEXITED, WEXITSTATUS, WIFSIGNALED, 
WTERMSIG, WIFSTOPPED, WSTOPSIG, 
WIFCONTINUED 

– See textbook for details 
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wait: Synchronizing with Children 

void fork9() { 
    int child_status; 
 
    if (fork() == 0) { 
        printf("HC: hello from child\n"); 
 exit(0); 
    } else { 
        printf("HP: hello from parent\n"); 
        wait(&child_status); 
        printf("CT: child has terminated\n"); 
    } 
    printf("Bye\n"); 
} 

printf wait printf fork 

printf 
exit 

HP 

HC 

CT 
Bye 

forks.c 

Feasible output: 
HC 
HP 
CT 
Bye 

Infeasible output: 
HP 
CT 
Bye 
HC 

Feasible output(s): 
HC HP  
HP HC  
CT CT  
Bye Bye  
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Another wait Example 
 If multiple children completed, will take in arbitrary order 
 Can use macros WIFEXITED and WEXITSTATUS to get information about 

exit status 

void fork10() { 
    pid_t pid[N]; 
    int i, child_status; 
 
    for (i = 0; i < N; i++) 
        if ((pid[i] = fork()) == 0) { 
            exit(100+i); /* Child */ 
        } 
    for (i = 0; i < N; i++) { /* Parent */ 
        pid_t wpid = wait(&child_status); 
        if (WIFEXITED(child_status)) 
            printf("Child %d terminated with exit status %d\n", 
                   wpid, WEXITSTATUS(child_status)); 
        else 
            printf("Child %d terminate abnormally\n", wpid); 
    } 
} forks.c 
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waitpid: Waiting for a Specific Process 
 pid_t waitpid(pid_t pid, int &status, int options) 

 Suspends current process until specific process terminates 
 Various options (see textbook) 

void fork11() { 
    pid_t pid[N]; 
    int i; 
    int child_status; 
 
    for (i = 0; i < N; i++) 
        if ((pid[i] = fork()) == 0) 
            exit(100+i); /* Child */ 
    for (i = N-1; i >= 0; i--) { 
        pid_t wpid = waitpid(pid[i], &child_status, 0); 
        if (WIFEXITED(child_status)) 
            printf("Child %d terminated with exit status %d\n", 
                   wpid, WEXITSTATUS(child_status)); 
        else 
            printf("Child %d terminate abnormally\n", wpid); 
    } 
} forks.c 
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execve: Loading and Running Programs 

 int execve(char *filename, char *argv[], char *envp[]) 

 Loads and runs in the current process: 
 Executable  file filename 

 Can be object file or script file beginning with #!interpreter          
(e.g., #!/bin/bash) 

 …with argument list argv 
 By convention argv[0]==filename 

 …and  environment variable list envp 
 “name=value” strings (e.g., USER=droh) 
 getenv, putenv, printenv 

 Overwrites code, data, and stack 
 Retains PID, open files and signal context 

 Called once and never returns 
 …except if there is an error 
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Structure of  
the stack when 
a new program 
starts 

Null-terminated 
environment variable strings 

Null-terminated 
command-line arg strings 

envp[n] == NULL 
envp[n-1] 

... 
envp[0] 

argv[argc] = NULL 
argv[argc-1] 

... 
argv[0] 

Future stack frame for 
main 

environ 
(global var) 

Bottom of stack 

Top of stack 

argv 
(in %rsi) 

envp 
(in %rdx) 

Stack frame for  
libc_start_main 

argc 
(in %rdi) 
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execve Example 

envp[n] = NULL 
envp[n-1] 

envp[0] 
… 

“USER=droh” 

“PWD=/usr/droh” 

environ 

  if ((pid = Fork()) == 0) {   /* Child runs program */                                                
      if (execve(myargv[0], myargv, environ) < 0) {                                                         
          printf("%s: Command not found.\n", myargv[0]);                                                  
          exit(1);                                                                                      
      }                                                                                                 
  }                                                                                                     

 Executes “/bin/ls –lt /usr/include” in child process 
using current environment: 

myargv[argc] = NULL 
myargv[2] 

myargv[0] 
myargv[1] 

“/bin/ls” 
“-lt” 
“/usr/include” 

myargv 

(argc == 3) 
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Summary 
 Exceptions 
 Events that require nonstandard control flow 
 Generated externally (interrupts) or internally (traps and faults) 

 
 Processes 
 At any given time, system has multiple active processes 
 Only one can execute at a time on any single core 
 Each process appears to have total control of  

processor + private memory space 
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Summary (cont.) 
 Spawning processes 
 Call fork 
 One call, two returns 

 Process completion 
 Call exit 
 One call, no return 

 Reaping and waiting for processes 
 Call wait or waitpid 

 Loading and running programs 
 Call execve (or variant) 
 One call, (normally) no return 
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Practice Exam 
 At anytime after 4pm today goto: 

 
 
 

https://exams.ugrad.cs.cmu.edu:15213 
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