Carnegie Mellon

Exceptional Control Flow:
Exceptions and Processes

15-213 : Introduction to Computer Systems
14t Lecture, Feb. 25, 2016

Instructors:
Seth Copen Goldstein, Franz Franchetti, Ralf Brown, and Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

|
|
m Processes
|

Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Control Flow

m Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst,
. inst
Time .2
Inst,
inst,
<shutdown>

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Altering the Control Flow

m Up to now: two mechanisms for changing control flow:
= Jumps and branches
= Call and return
React to changes in program state

m Insufficient for a useful system:
Difficult to react to changes in system state
= Data arrives from a disk or a network adapter
" |nstruction divides by zero
= User hits Ctrl-C at the keyboard
= System timer expires

m System needs mechanisms for “exceptional control flow”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Exceptional Control Flow

m Exists at all levels of a computer system

m Low level mechanisms

= 1. Exceptions

= Change in control flow in response to a system event
(i.e., change in system state)

= Implemented using combination of hardware and OS software

m Higher level mechanisms
= 2. Process context switch
= Implemented by OS software and hardware timer
= 3. Signals
= Implemented by OS software
= 4. Nonlocal jumps: setgmp() and longgmp()
= Implemented by C runtime library

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

|
|
m Processes
|

Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Exceptions

m An exception is a transfer of control to the OS kernel in response
to some event (i.e., change in processor state)
= Kernel is the memory-resident part of the OS

= Examples of events: Divide by 0, arithmetic overflow, page fault, I/0
request completes, typing Ctrl-C

User code Kernel code
Event — |_current v Exception S
|_next Exception processing

by exception handler
* Return to | _current

* Return to |_next
* Abort

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Exception Tables

Exception

numbers
Code for m Each type of event has a
exception handler 0 unique exception number k

Exception Code for

vTable .
exception handler 1 — : .

0 re e m k=index into exception table

1 o Code for (a.k.a. interrupt vector)

2 o« exception handler 2

n-1 e m Handler k is called each time

exception k occurs

Code for
exception handler n-1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

(partial) Taxonomy

ECF

Asynchronous

Interrupts

Synchronous

Carnegie Mellon

T

Traps

Faults

Aborts

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor
" |ndicated by setting the processor’s interrupt pin
= Handler returns to “next” instruction

m Examples:
" Timer interrupt
= Every few ms, an external timer chip triggers an interrupt
= Used by the kernel to take back control from user programs
= /O interrupt from external device
= Hitting Ctrl-C at the keyboard
= Arrival of a packet from a network
= Arrival of data from a disk

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:

" Traps
= Intentional
= Examples: system calls, breakpoint traps, special instructions
= Returns control to “next” instruction

" Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= Unintentional and unrecoverable

= Examples: illegal instruction, parity error, machine check

= Aborts current program

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

System Calls

m Each x86-64 system call has a unique ID number
m Examples:

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

System Call Example: Opening File

m User calls: open(filename, options)
m Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

e5d79: b802000000 mov $0x2,%eax # open is syscall #2

ebd7e: 0Of 05 syscall # Return value in %rax
e5d80: 48 3d 01 fO ff ff cmp $OxffffffffffffO01,%rax

éédfa: c3 retq
User code Kernel code m %rax contains syscall number
m Other arguments in %rdi,
Exception %I"Si, %rdx, %rilo, %rsg, %r9

<

syscally .

cmp] . m Return value in %rax
Open file
Returns m Negative value is an error
corresponding to negative
errno

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

A 4

Carnegie Mellon

System Call | Aimost like a function call

a User calls: open(f Transfer of control
a Calls__open functi On return, executes next instruction

e Passes arguments using calling convention
00000000000e5d70 <__ * Gets result in %rax

e5d79: b8 02 00 00 00

e5d7e: Of 05 . One Important exception!
e5d80: 48 3d 01 fO ff fl e Executed by Kernel
e5dfa: c3 e * Different set of privileges

* And other differences:
 E.g., “address” of “function” is in %rax

e Useserrno
e Etc.

syscall Except - .

cmp - . m Return value in %rax
Open file
Returns m Negative value is an error

corresponding to negative
errno

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

<

A 4

Carnegie Mellon

Fault Example: Page Fault
int a[1000];
m User writes to memory location ?a'” O
m That portion (page) of user’s memory a[500] = 13;
is currently on disk +
80483b7: c7 05 10 9d 04 08 0Od movl $0xd, 0x8049d10
User code Kernel code

Exception: page fault ‘

mov! % >
N COpy pagefrom
Return and disk to memory

reexecute movl

v

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Fault Example: Invalid Memory Reference

int a[1000];

main ()
{
a[5000] = 13;
}
80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360
User code Kernel code

»

l Exception: page fault

movl
Detect invalid address

v » Signal process

m Sends SIGSEGV signal to user process
m User process exits with “segmentation fault”

16

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

|
|
m Processes
|

Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Processes

m Definition: A process is an instance of a running

program.
= One of the most profound ideas in computer science

= Not the same as “program” or “processor”

m Process provides each program with two key

abstractions:

= logical control flow
= Each program seems to have exclusive use of the CPU

= Provided by kernel mechanism called context switching

" Private address space
= Each program seems to have exclusive use of main

memory.
= Provided by kernel mechanism called virtual memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory

Stack

Heap

Data

Code

CPU

Registers

18

Carnegie Mellon

Multiprocessing: The lllusion

Memory

Stack

Memory

Heap

Stack

Data

Heap

Code

Data

Code

CPU

Registers

CPU

Registers

m Computer runs many processes simultaneously

= Applications for one or more users

Memory

Stack

Heap

Data

Code

CPU

Registers

= Web browsers, email clients, editors, ...

= Background tasks

= Monitoring network & I/O devices

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

19

Carnegie Mellon

Multiprocessing Example

XTerm
Proceszes: 123 total, 5 running, 9 stuck, 109 zleeping, 611 threads 1147207
Load Awg: 1,03, 1,13, 1,14 CPU uzage: 3,27 uszer, 5,158 =sys, 91.56% idle
SharedLibz: 576K resident, OB data, OB linkedit,
HemBegions: 27998 total, 1127H resident, 35M private, 434 shared,
PhysMem: 1039M wired, 1974M active, 10BZ2M inactiwve, 407VEM uszed, 18M free,
YH: 280G vsize, 1091M framework wsize, 230759213(1) pageins, B843367(0) pageouts,
Hetworks: packets: 41046228110 in, BEOBI0SE/7/L out, I

Disks: 17874231/73430 read, 1284737375340 written, i
FII COMMAND ZCFU TIHE #TH #W0 #PORT #MREG EPEWT RSHED RSIZE WPEMT WSIZE
99217- Microsoft OF 0,0 02:28,34 4 1 202 418 Z1M 24H 21 BEM FEAH
33051 wsbmuxd 0,0 0030410 3 1 47 BE 436k 21EK 480k BOM 2422
FI006 iTunesHelper 0,0 OO301,23 2 1 55 3 faak 3124k 1124k 43M 24294
24286 bash 0,0 000,11 1 0 20 24 224k 732k 484K 1M 2378H
24280 xterm 0,0 00:00,83 1 0 22 73 BSEK 872K B9Z2k 9728k 2382H
595939- Microsoft Ex 0,3 21:;58,97 10 3 360 354 1BM =y 4EM 114K 1057M
54751 =leep 0,0 00:00,00 1 0 17 20 32k 212k 3R0K B3k ZE7O0M
54739 launchdadd 0,0 Q000,00 2 1 33 5 483k 220K 173EK 48HM 24091
4737 top B.o 000253 171 0 B 23 1416k 216K 2124k 17H 2378H
24713 automountd 0,0 0030002 7 1 53 B4 ob0k 216k 2184K haM 2413
54701 ocspd 0,0 000005 4 1 B1 54 1268k 2644k 3132K 5H0OH 2426M
S4EE1 Lrab 0.6 00:02,75 B 3 222+ 383+ 18M+ ZEM+ 40M+ FhM+ Z50EM+
S4E59 cookied 0,0 00:00,15 2 1 40 Bl 231Ek 224K 4088k 42M 2411H
EZHE el s AN ansnl B7 A 1 57 91 FEIAK FA1 1EM AAH 24 Z0H

m Running program “top” on Mac

= System has 123 processes, 5 of which are active
= |dentified by Process ID (PID)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data eee Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

m Single processor executes multiple processes concurrently
" Process executions interleaved (multitasking)
= Address spaces managed by virtual memory system (later in course)
= Register values for nonexecuting processes saved in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory
Stack : Stack Stack
Heap : Heap Heap
Data : Data ses Data
Code , Code Code
Saved : Saved Saved
registers : registers registers
CPU
Registers

m Save current registers in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data eee Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

m Schedule next process for execution

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data eee Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

m Load saved registers and switch address space (context switch)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Multiprocessing: The (Modern) Reality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory

Stack Stack Stack

Heap Heap Heap

Data Data see Data

Code Code Code

Saved Saved Saved
registers registers registers

CPU CPU m Multicore processors
Registers Registers = Multiple CPUs on single chip

= Share main memory (and some caches)
= Each can execute a separate process

= Scheduling of processors onto cores
done by kernel

25

Carnegie Mellon

Concurrent Processes

m Each process is a logical control flow.

m Two processes run concurrently (are concurrent) if their
flows overlap in time

m Otherwise, they are sequential

m Examples (running on single core):
" Concurrent: A&B,A&C
= Sequential: B&C

Process A Process B Process C

Time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

User View of Concurrent Processes

m Control flows for concurrent processes are physically
disjoint in time

m However, we can think of concurrent processes as
running in parallel with each other

Process A Process B Process C

Time

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Context Switching

m Processes are managed by a shared chunk of memory-
resident OS code called the kernel

" |mportant: the kernel is not a separate process, but rather runs as part
of some existing process.

m Control flow passes from one process to another via a

context switch
I
Process A 1 Process B
I
I
: user code
I kernel code } context switch
Time user code

kernel code } context switch

user code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Today

Exceptional Control Flow
Exceptions

|
|
m Processes
|

Process Control

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

System Call Error Handling

m On error, Linux system-level functions typically return -1 and
set global variable errno to indicate cause.

m Hard and fast rule:

" You must check the return status of every system-level function
= Only exception is the handful of functions that return void

m Example:

If ((pid =fork()) <0) {
fprintf(stderr, "fork error: %s\n", strerror(errno));
exit(-1);

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Error-reporting functions

m Can simplify somewhat using an error-reporting function:

void unix_error(char *msg) /* Unix-style error */

{

fprintf(stderr, "%s: %s\n", msg, strerror(errno));

exit(-1x
}
. . \ Note: csapp.c exits with 0.
If ((pid =fork()) <0)

unix_error("fork error");

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Error-handling Wrappers

m We simplify the code we present to you even further by
using Stevens-style error-handling wrappers:

pid_t Fork(void)
{
pid_t pid;

If ((pid =fork()) <0)
unix_error("Fork error");
return pid;

}

pid = Fork();

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Obtaining Process IDs

m pid _t getpid(void)

= Returns PID of current process

m pid _t getppid(void)

= Returns PID of parent process

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Creating and Terminating Processes

From a programmer’s perspective, we can think of a process
as being in one of three states

m Running

" Process is either executing, or waiting to be executed and will
eventually be scheduled (i.e., chosen to execute) by the kernel

m Stopped

" Process execution is suspended and will not be scheduled until
further notice (next lecture when we study signals)

m Terminated
" Process is stopped permanently

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Terminating Processes

m Process becomes terminated for one of three reasons:

= Receiving a signal whose default action is to terminate (next lecture)
= Returning from the main routine
= Calling the ex1t function

m void exit(int status)
" Terminates with an exit status of status
= Convention: normal return status is O, nonzero on error

= Another way to explicitly set the exit status is to return an integer value
from the main routine

m eXltis called once but never returns.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Creating Processes

m Parent process creates a new running child process by
calling fork

m Int fork(void)

= Returns 0 to the child process, child’s PID to parent process
= Child is almost identical to parent:

= Child get an identical (but separate) copy of the parent’s virtual
address space.

= Child gets identical copies of the parent’s open file descriptors
= Child has a different PID than the parent

m Tork s interesting (and often confusing) because
it is called once but returns twice

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

fork Example

m Call once, return twice

int main()
{ ST m Concurrent execution
int x = 1: = Can’t predict execution
d = Fork() order of parent and child
pid = Fork();

if (pid ==0) { /* Child */
printf("child : x=%d\n", ++Xx);
exit(0);
}

[* Parent */
printf(" parent: x=%d\n", --X);

exit(0);
} fork.c
linux> ./fork linux> ./fork linux> ./fork linux> ./fork
parent: x=0 child : x=2 parent: x=0 parent: x=0
child : x=2 parent: x=0 child : x=2 child : x=2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

fork Example

i g m Call once, return twice
Lt m Concurrent execution
pid_t pid;
int x = 1; = Can’t predict execution
_ order of parent and child
pid = Fork(); .
if (pid == 0) { /* Child */ m Duplicate but separate
H n 1 . :0 n .
printf(_Chl|(.3| : Xx=%d\n", ++x); address space
exit(0);
} = X has a value of 1 when
fork returns in parent and
[* Parent */ hild
printf(" parent: x=%d\n", --x); chi
exit(0); = Subsequent changes to X
} fork.c are independent

linux> _/fork
parent: x=0
child : x=2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

fork Example

{

int main()

pid_t pid;
Int x =1:

pid = Fork();

if (pid ==0) { /* Child */
printf("child : x=%d\n", ++Xx);
printf("child : x=%d\n", ++Xx);

Carnegie Mellon

m Call once, return twice

m Concurrent execution
= Can’t predict execution
order of parent and child
m Duplicate but separate
address space

= X has a value of 1 when

fork returns in parent and
child

exit(0);

}

[* Parent */

printf("parent: x=%d\n", --x); .

printf(" parent: x=%d\n", --Xx); I|nux>_

exit(0): parent:

} child :

parent:
child :

./fork

= Subsequent changes to X
are independent

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

39

fork Example

i g m Call once, return twice
Lt m Concurrent execution
pid_t pid;
int x = 1; = Can’t predict execution
_ order of parent and child
pid = Fork(); .
if (pid == 0) { /* Child */ m Duplicate but separate
A L] X . :0 " .
printf(_chllq : X=%d\n", ++X); address space
exit(0);
} = X has a value of 1 when
fork returns in parent and
[* Parent */ hild
printf(" parent: x=%d\n", --x); chi
exit(0); = Subsequent changes to X
} fork.c are independent

. m Shared open files
linux> ./fork

parent: x=0 = stdoutisthe samein
child @ x=2 both parent and child

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Modeling Tork with Process Graphs

m A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:

= Each vertex is the execution of a statement
" a->b means a happens before b

= Edges can be labeled with current value of variables
= printf vertices can be labeled with output
= Each graph begins with a vertex with no inedges

m Any topological sort of the graph corresponds to a feasible
total ordering.
= Total ordering of vertices where all edges point from left to right

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Process Graph Example

iInt main()
{
pid_t pid;
int x =1:
child: x=2
pid = Fork(); pr;i?tf &.it Child
if (pid ==0) { /* Child */
printf("child : x=%d\n", ++x); - ::1l pareiE: x=0 o barent
exit(0); main for printf exit
} K
[* Parent */
printf("parent: x=%d\n", --x);
exit(0);
} fork.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Interpreting Process Graphs

m Original graph:

child: x=2
> — >0
printf exit
==1 parent: x=0
o —® >®
main for printf exit

k

= Relabled graph: Feasible total ordering:

>@—
e

o 4

o— e :a a b e (o f d
a C

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

fork Example: Two consecutive Torks

{

void fork2()

printf("LO\n");
fork();
printf("L1\n");
fork();

printf("Bye\n");

forks.c

Bye
@
printf
L1 Bye
>0— —> —0
printf fork printf
Bye
prointf
LO L1 Bye
o —>@— —>@— —> —0
printf for printf ork printf
k

Feasible output:
LO

L1

Bye

Bye

L1

Bye

Bye

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Infeasible output:

LO
Bye
L1
Bye
L1
Bye
Bye

44

Carnegie Mellon

fork Example: Nested forks in parent

void fork4()
{
printf("LO\n");
If (fork() '=0){
printf("L1\n");
If (fork() '=0){
printf("L2\n");
}

}
printf("Bye\n");

}

forks.c

LO

Bye Bye

printf printf
A

o —> —>0— —> > e
printf fork printf fork printf printf

Feasible output: Infeasible output:
LO LO

L1 Bye

Bye L1

Bye Bye

L2 Bye

Bye L2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

45

fork Example: Nested forks in children

void fork5()
{
printf("LO\n");
If (fork() ==0){
printf("L1\n");
If (fork() ==0){
printf("L2\n");
}
}
printf("Bye\n");
}

forks.c

L1

LO Bye
o —> —>®
printf fork printf

Feasible output:
LO

Bye

L1

L2

Bye

Bye

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

L2 Bye

p?lntfprlntf
Bye

printf TOrK printf

Infeasible output:
LO

Bye

L1

Bye

Bye

L2

46

Carnegie Mellon

Reaping Child Processes

m Ildea
= When process terminates, it still consumes system resources
= Examples: Exit status, various OS tables
= Called a “zombie”
= Living corpse, half alive and half dead
m Reaping
= Performed by parent on terminated child (using wait or waitpid)
= Parent is given exit status information
= Kernel then deletes zombie child process

m What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then the orphaned
child will be reaped by In1t process (pid == 1)

= So, only need explicit reaping in long-running processes
= e.g., shells and servers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

void fork7() {
if (fork() ==0) {
/* Child */

Zombie
Example

exit(0);
} else {

while (1)

; I* Infinite loop */
linux> ./forks 7 & '}
[1] 6639 }

printf(" Terminating Child, PID = %d\n", getpid());

printf("Running Parent, PID = %d\n", getpid());

Running Parent, PID = 6639
Terminating Child, PID = 6640

Iinux> ps
PID TTY TIME CMD
6585 ttypd 00:00:00 tcsh
6639 ttyp9 00:00:03 forks -
6640 ttyp9 00:00:00 forks <defunct> €
6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated u
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh }
6642 ttyp9 00:00:00 ps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

pPS shows child process as
“defunct” (i.e., a zombie)

Killing parent allows child to
be reaped by Init

48

Carnegie Mellon

Non_ }/oid fork8()
. . if (fork() == 0) {
terminating J* Child *

printf("Running Child, PID = %d\n",
. tpid());
Chlld Example whilgee(lr))I

; [* Infinite loop */

} else{
printf(" Terminating Parent, PID = %d\n",
getpid());
exit(0);
}
linux> _/forks 8 J
Terminating Parent, PID = 6675
Running Child, PID = 6676 m Child process still active even
linux> ps though parent has terminated
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 fork m Must kill child explicitly, or else will
6677 ttyp9 00:00:00 o .
linux> Kill 6676 keep running indefinitely
Linux> ps
PID TTY TIME CMD

6585 ttypd 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

wal t: Synchronizing with Children

m Parent reaps a child by calling the wairt function

m Int wartt(int *child _status)

= Suspends current process until one of its children terminates

Parent Process Kernel code

<

syscally

Exception . And, potentially other user

Returns

of parent

A 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

wal t: Synchronizing with Children

m Parent reaps a child by calling the wairt function

m Int wartt(int *child _status)
= Suspends current process until one of its children terminates
= Return value is the pid of the child process that terminated

= |[fchild status !'= NULL, then the integer it points to will be set
to avalue that indicates reason the child terminated and the exit
status:

= Checked using macros defined inwalt.h

— WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSI1G, WIFSTOPPED, WSTOPSIG,
WIFCONT INUED

— See textbook for details

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

wal t: Synchronizing with Children

void fork9() {
int child_status;

If (fork() ==0) {

exit(0);
} else {

wait(&child_status);

}
printf("Bye\n");

printf("HC: hello from child\n");

printf("HP: hello from parent\n");

printf("CT: child has terminated\n");

forks.c

Feasible output(s):

HC HP
HP HC
CcT CcT
Bye Bye

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

HC exit
»0— —>
printf

CT

HP Bye
o —>0— *é —>e
fork printf wait printf

Infeasible output:
HP

CT

Bye

HC

52

Another walrt Example

m If multiple children completed, will take in arbitrary order

m Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void fork10() {
pid_t pid[N];
int i, child_status;

for i =0; 1 <N;it+)
It ((pid[i] = fork()) == 0) {
exit(100+i); /* Child */
}
for (i =0; 1 <N;i++) { /* Parent */
pid t wpid = wait(&child_status);
It (WIFEXITED(child_status))
printf(" Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminate abnormally\n", wpid);
}

} forks.c

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

waltpid: Waiting for a Specific Process

m pid _t wairtpid(pid_t pid, iInt &status, Int options)
= Suspends current process until specific process terminates
= Various options (see textbook)

void fork11() {
pid_t pid[N];
Int i;
int child_status;

for (1=0; 1 <N; i++)
if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */
for i =N-1;i1>=0; i--) {
pid twpid = waitpid(pid[i], &child_status, 0);
It (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminate abnormally\n", wpid);
}

} forks.c

Bryant dina U HdIdror, COMmputer SYSTEITIST A PTOZBrdmnmmer S PErspectve, Trmra eartion 54

Carnegie Mellon

execve: Loading and Running Programs

m Int execve(char *filename, char *argv[], char *envp[])

m Loads and runs in the current process:
= Executable file f1lename

= Can be object file or script file beginning with #! Interpreter
(e.g., #1/bi1n/bash)

= _.with argument list argv
= By convention argv[O]==Ffi1lename
= ..and environment variable list envp
= “name=value” strings (e.g., USER=droh)
« getenv, putenv, printenv
m Overwrites code, data, and stack
= Retains PID, open files and signal context

m Called once and never returns

= ..exceptif thereis an error

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Bottom of stack

Null-terminated

StrUCtu re of environment variable strings .
Null-terminated |
the StaCk When ___,| command-line arg strings
a new program | — o
starts SV IT=E] i environ
| . |.(global var)
i envp[0] i
i argv[argc] = NULL 1 envp
i argv[argc-1] (in %rdx)
2lgh .‘ argv[o]
(in %rsi)
argc Stack frame for
i 3 libc start main
(in %rdt) - —rat Top of stack

Future stack frame for
main

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

execve Example

m Executes “/bin/ls —lt Zusr/include” in child process
using current environment:

envp[n] = NULL
envp[n-1]} —> “PWD=/usr/droh”
_ envp[O] —> “USER=droh”
environ >
myargvfargc] = NULL
(argc == 3) myargv[2] —> “/usr/include”
myargv[1] s “-It”
myargv ——[Myaravio] 5 “/bin/Is”

If ((pid = Fork()) ==0){ /* Child runs program */

If (execve(myargv[0], myargv, environ) < 0) {
printf("%s: Command not found.\n", myargv|[0]);
exit(1);

}

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Summary

m Exceptions

= Events that require nonstandard control flow
= Generated externally (interrupts) or internally (traps and faults)

m Processes

= At any given time, system has multiple active processes
"= Only one can execute at a time on any single core

= Each process appears to have total control of
processor + private memory space

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

Carnegie Mellon

Summary (cont.)

m Spawning processes
= Call fork

® One call, two returns

m Process completion
= Callexit
® One call, no return

m Reaping and waiting for processes
= Callwairtorwartpid

m Loading and running programs
= Call execve (or variant)

= One call, (normally) no return

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 59

Carnegie Mellon

Practice Exam

m At anytime after 4pm today goto:

https://exams.ugrad.cs.cmu.edu:15213

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 60

	Exceptional Control Flow: �Exceptions and Processes��15-213 : Introduction to Computer Systems�14th Lecture, Feb. 25, 2016
	Today
	Control Flow
	Altering the Control Flow
	Exceptional Control Flow
	Today
	Exceptions
	Exception Tables
	 (partial) Taxonomy
	Asynchronous Exceptions (Interrupts)
	Synchronous Exceptions
	System Calls
	System Call Example: Opening File
	System Call Example: Opening File
	Fault Example: Page Fault
	Fault Example: Invalid Memory Reference
	Today
	Processes
	Multiprocessing: The Illusion
	Multiprocessing Example
	Multiprocessing: The (Traditional) Reality
	Multiprocessing: The (Traditional) Reality
	Multiprocessing: The (Traditional) Reality
	Multiprocessing: The (Traditional) Reality
	Multiprocessing: The (Modern) Reality
	Concurrent Processes
	User View of Concurrent Processes
	Context Switching
	Today
	System Call Error Handling
	Error-reporting functions	
	Error-handling Wrappers	
	Obtaining Process IDs
	Creating and Terminating Processes
	Terminating Processes	
	Creating Processes
	fork Example
	fork Example
	fork Example
	fork Example
	Modeling fork with Process Graphs
	Process Graph Example
	Interpreting Process Graphs
	fork Example: Two consecutive forks
	fork Example: Nested forks in parent
	fork Example: Nested forks in children
	Reaping Child Processes
	Zombie�Example
	Non-�terminating�Child Example
	wait: Synchronizing with Children
	wait: Synchronizing with Children
	wait: Synchronizing with Children
	Another wait Example
	waitpid: Waiting for a Specific Process
	execve: Loading and Running Programs
	Structure of �the stack when a new program starts
	execve Example
	Summary
	Summary (cont.)
	Practice Exam

