
Carnegie Mellon

1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Memory Hierarchy

15-213: Introduction to Computer Systems
11th Lecture, Feb. 16, 2016

Instructors:
Franz Franchetti & Seth Copen Goldstein, Ralf Brown, and Brian Railing

Carnegie Mellon

2 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Storage technologies and trends
 Locality of reference
 Caching in the memory hierarchy

Carnegie Mellon

3 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Random-Access Memory (RAM)
 Key features
 RAM is traditionally packaged as a chip.
 Basic storage unit is normally a cell (one bit per cell).
 Multiple RAM chips form a memory.

 RAM comes in two varieties:
 SRAM (Static RAM)
 DRAM (Dynamic RAM)

Carnegie Mellon

4 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SRAM vs DRAM Summary

 Trans. Access Needs Needs
 per bit time refresh? EDC? Cost Applications

SRAM 4 or 6 1X No Maybe 100x Cache memories

DRAM 1 10X Yes Yes 1X Main memories,
 frame buffers

Carnegie Mellon

5 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nonvolatile Memories
 DRAM and SRAM are volatile memories
 Lose information if powered off.

 Nonvolatile memories retain value even if powered off
 Read-only memory (ROM): programmed during production
 Programmable ROM (PROM): can be programmed once
 Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)
 Electrically eraseable PROM (EEPROM): electronic erase capability
 Flash memory: EEPROMs. with partial (block-level) erase capability

 Wears out after about 100,000 erasings
 Uses for Nonvolatile Memories
 Firmware programs stored in a ROM (BIOS, controllers for disks,

network cards, graphics accelerators, security subsystems,…)
 Solid state disks (replace rotating disks in thumb drives, smart

phones, mp3 players, tablets, laptops,…)
 Disk caches

Carnegie Mellon

6 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Traditional Bus Structure Connecting
CPU and Memory
 A bus is a collection of parallel wires that carry address,

data, and control signals.
 Buses are typically shared by multiple devices.

Main
memory

I/O
bridge Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Carnegie Mellon

7 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Read Transaction (1)
 CPU places address A on the memory bus.

ALU

Register file

Bus interface
A 0

A x

Main memory
I/O bridge

%rax

Load operation: movq A, %rax

Carnegie Mellon

8 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Read Transaction (2)
 Main memory reads A from the memory bus, retrieves

word x, and places it on the bus.

ALU

Register file

Bus interface

x 0

A x

Main
memory

%rax

I/O bridge

Load operation: movq A, %rax

Carnegie Mellon

9 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Read Transaction (3)
 CPU read word x from the bus and copies it into register

%rax.

x
ALU

Register file

Bus interface x

Main memory
0

A

%rax

I/O bridge

Load operation: movq A, %rax

Carnegie Mellon

10 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Write Transaction (1)
 CPU places address A on bus. Main memory reads it and

waits for the corresponding data word to arrive.

y
ALU

Register file

Bus interface
A

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

Carnegie Mellon

11 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Write Transaction (2)
 CPU places data word y on the bus.

y
ALU

Register file

Bus interface
y

Main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

Carnegie Mellon

12 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Write Transaction (3)
 Main memory reads data word y from the bus and stores

it at address A.

y
ALU

Register file

Bus interface y

main memory
0

A

%rax

I/O bridge

Store operation: movq %rax, A

Carnegie Mellon

13 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What’s Inside A Disk Drive?
Spindle Arm

Actuator

Platters

Electronics
(including a
processor
and memory!) SCSI

connector

Image courtesy of Seagate Technology

Carnegie Mellon

14 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Geometry

 Disks consist of platters, each with two surfaces.
 Each surface consists of concentric rings called tracks.
 Each track consists of sectors separated by gaps.

Spindle

Surface
Tracks

Track k

Sectors

Gaps

Carnegie Mellon

15 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Geometry (Muliple-Platter View)
 Aligned tracks form a cylinder.

Surface 0

Surface 1
Surface 2

Surface 3
Surface 4

Surface 5

Cylinder k

Spindle

Platter 0

Platter 1

Platter 2

Carnegie Mellon

16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Capacity
 Capacity: maximum number of bits that can be stored.
 Vendors express capacity in units of gigabytes (GB), where

1 GB = 109 Bytes.

 Capacity is determined by these technology factors:
 Recording density (bits/in): number of bits that can be squeezed

into a 1 inch segment of a track.
 Track density (tracks/in): number of tracks that can be squeezed

into a 1 inch radial segment.
 Areal density (bits/in2): product of recording and track density.

Carnegie Mellon

17 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recording zones
 Modern disks partition tracks

into disjoint subsets called
recording zones
 Each track in a zone has the same

number of sectors, determined
by the circumference of
innermost track.

 Each zone has a different number
of sectors/track, outer zones
have more sectors/track than
inner zones.

 So we use average number of
sectors/track when computing
capacity.

Spindle

…

Carnegie Mellon

18 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Computing Disk Capacity
Capacity = (# bytes/sector) x (avg. # sectors/track) x
 (# tracks/surface) x (# surfaces/platter) x
 (# platters/disk)
Example:

 512 bytes/sector
 300 sectors/track (on average)
 20,000 tracks/surface
 2 surfaces/platter
 5 platters/disk

Capacity = 512 x 300 x 20,000 x 2 x 5
 = 30,720,000,000
 = 30.72 GB

Carnegie Mellon

19 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Operation (Single-Platter View)

The disk surface
spins at a fixed
rotational rate

By moving radially, the arm can
position the read/write head
over any track.

The read/write head
is attached to the end
of the arm and flies over
the disk surface on
a thin cushion of air.

spindle

spindle

sp
in

dl
e

spindle spindle

Carnegie Mellon

20 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Operation (Multi-Platter View)

Arm

Read/write heads
move in unison
from cylinder to
cylinder

Spindle

Carnegie Mellon

21 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tracks divided into sectors

Disk Structure - top view of single platter

Surface organized into tracks

Carnegie Mellon

22 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access

Head in position above a track

Carnegie Mellon

23 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access

Rotation is counter-clockwise

Carnegie Mellon

24 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access – Read

About to read blue sector

Carnegie Mellon

25 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access – Read

After BLUE read

After reading blue sector

Carnegie Mellon

26 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access – Read

After BLUE read

Red request scheduled next

Carnegie Mellon

27 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access – Seek

After BLUE read Seek for RED

Seek to red’s track

Carnegie Mellon

28 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access – Rotational Latency

After BLUE read Seek for RED Rotational latency

Wait for red sector to rotate around

Carnegie Mellon

29 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access – Read

After BLUE read Seek for RED Rotational latency After RED read

Complete read of red

Carnegie Mellon

30 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access – Service Time Components

After BLUE read Seek for RED Rotational latency After RED read

Data transfer Seek Rotational
latency

Data transfer

Carnegie Mellon

31 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access Time
 Average time to access some target sector approximated by:
 Taccess = Tavg seek + Tavg rotation + Tavg transfer

 Seek time (Tavg seek)
 Time to position heads over cylinder containing target sector.
 Typical Tavg seek is 3—9 ms

 Rotational latency (Tavg rotation)
 Time waiting for first bit of target sector to pass under r/w head.
 Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min
 Typical Tavg rotation = 7,200 RPMs

 Transfer time (Tavg transfer)
 Time to read the bits in the target sector.
 Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

Carnegie Mellon

32 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access Time Example
 Given:
 Rotational rate = 7,200 RPM
 Average seek time = 9 ms.
 Avg # sectors/track = 400.

 Derived:
 Tavg rotation =
 Tavg transfer =
 Taccess =

Carnegie Mellon

33 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Disk Access Time Example
 Given:
 Rotational rate = 7,200 RPM
 Average seek time = 9 ms.
 Avg # sectors/track = 400.

 Derived:
 Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.
 Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms
 Taccess = 9 ms + 4 ms + 0.02 ms

 Important points:
 Access time dominated by seek time and rotational latency.
 First bit in a sector is the most expensive, the rest are free.
 SRAM access time is about 4 ns/doubleword, DRAM about 60 ns

 Disk is about 40,000 times slower than SRAM,
 2,500 times slower then DRAM.

Carnegie Mellon

34 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logical Disk Blocks
 Modern disks present a simpler abstract view of the

complex sector geometry:
 The set of available sectors is modeled as a sequence of b-sized

logical blocks (0, 1, 2, ...)

 Mapping between logical blocks and actual (physical)
sectors
 Maintained by hardware/firmware device called disk controller.
 Converts requests for logical blocks into (surface,track,sector)

triples.

 Allows controller to set aside spare cylinders for each
zone.
 Accounts for the difference in “formatted capacity” and “maximum

capacity”.

Carnegie Mellon

35 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I/O Bus

Main
memory

I/O
bridge Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus Expansion slots for
other devices such
as network adapters.

Carnegie Mellon

36 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading a Disk Sector (1)

Main
memory

ALU

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

mouse keyboard Monitor

Disk

I/O bus

Bus interface

CPU initiates a disk read by writing a
command, logical block number, and
destination memory address to a port
(address) associated with disk
controller.

Carnegie Mellon

37 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading a Disk Sector (2)

Main
memory

ALU

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus

Bus interface

Disk controller reads the sector
and performs a direct memory
access (DMA) transfer into main
memory.

Carnegie Mellon

38 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading a Disk Sector (3)

Main
memory

ALU

Register file

CPU chip

Disk
controller

Graphics
adapter

USB
controller

Mouse Keyboard Monitor

Disk

I/O bus

Bus interface

When the DMA transfer completes,
the disk controller notifies the CPU
with an interrupt (i.e., asserts a
special “interrupt” pin on the CPU)

Carnegie Mellon

39 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solid State Disks (SSDs)

 Pages: 512KB to 4KB, Blocks: 32 to 128 pages
 Data read/written in units of pages.
 Page can be written only after its block has been erased
 A block wears out after about 100,000 repeated writes.

Flash
translation layer

I/O bus

Page 0 Page 1 Page P-1 …
Block 0

… Page 0 Page 1 Page P-1 …
Block B-1

Flash memory

Solid State Disk (SSD)

Requests to read and
write logical disk blocks

Carnegie Mellon

40 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SSD Performance Characteristics

 Sequential access faster than random access
 Common theme in the memory hierarchy

 Random writes are somewhat slower
 Erasing a block takes a long time (~1 ms)
 Modifying a block page requires all other pages to be copied to

new block
 In earlier SSDs, the read/write gap was much larger.

Sequential read tput 550 MB/s Sequential write tput 470 MB/s
Random read tput 365 MB/s Random write tput 303 MB/s
Avg seq read time 50 us Avg seq write time 60 us

Source: Intel SSD 730 product specification.

Carnegie Mellon

41 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

SSD Tradeoffs vs Rotating Disks
 Advantages
 No moving parts  faster, less power, more rugged

 Disadvantages
 Have the potential to wear out

 Mitigated by “wear leveling logic” in flash translation layer
 E.g. Intel SSD 730 guarantees 128 petabyte (128 x 1015 bytes) of

writes before they wear out
 In 2015, about 30 times more expensive per byte

 Applications
 MP3 players, smart phones, laptops
 Beginning to appear in desktops and servers

Carnegie Mellon

42 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The CPU-Memory Gap
The gap between DRAM, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

Ti
m

e
(n

s)

Year

Disk seek time
SSD access time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

DRAM

CPU

SSD

Disk

Carnegie Mellon

43 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental
property of computer programs known as locality

Carnegie Mellon

44 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Storage technologies and trends
 Locality of reference
 Caching in the memory hierarchy

Carnegie Mellon

45 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality
 Principle of Locality: Programs tend to use data and

instructions with addresses near or equal to those they
have used recently

 Temporal locality:
 Recently referenced items are likely

to be referenced again in the near future

 Spatial locality:
 Items with nearby addresses tend

to be referenced close together in time

Carnegie Mellon

46 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality Example

 Data references
 Reference array elements in succession

(stride-1 reference pattern).
 Reference variable sum each iteration.

 Instruction references
 Reference instructions in sequence.
 Cycle through loop repeatedly.

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Spatial locality
Temporal locality

Spatial locality
Temporal locality

Carnegie Mellon

47 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Qualitative Estimates of Locality
 Claim: Being able to look at code and get a qualitative

sense of its locality is a key skill for a professional
programmer.

 Question: Does this function have good locality with
respect to array a?

int sum_array_rows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];
 return sum;
}

Carnegie Mellon

48 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality Example
 Question: Does this function have good locality with

respect to array a?

int sum_array_cols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];
 return sum;
}

Carnegie Mellon

49 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality Example
 Question: Can you permute the loops so that the function

scans the 3-d array a with a stride-1 reference pattern
(and thus has good spatial locality)?

int sum_array_3d(int a[M][N][N])
{
 int i, j, k, sum = 0;

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < M; k++)
 sum += a[k][i][j];
 return sum;
}

Carnegie Mellon

50 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Hierarchies
 Some fundamental and enduring properties of hardware

and software:
 Fast storage technologies cost more per byte, have less capacity,

and require more power (heat!).
 The gap between CPU and main memory speed is widening.
 Well-written programs tend to exhibit good locality.

 These fundamental properties complement each other
beautifully.

 They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

Carnegie Mellon

51 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Storage technologies and trends
 Locality of reference
 Caching in the memory hierarchy

Carnegie Mellon

52 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Memory
 Hierarchy Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved
from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds disk
blocks retrieved from local
disks.

Carnegie Mellon

53 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Caches
 Cache: A smaller, faster storage device that acts as a staging

area for a subset of the data in a larger, slower device.
 Fundamental idea of a memory hierarchy:
 For each k, the faster, smaller device at level k serves as a cache for the

larger, slower device at level k+1.

 Why do memory hierarchies work?
 Because of locality, programs tend to access the data at level k more

often than they access the data at level k+1.
 Thus, the storage at level k+1 can be slower, and thus larger and

cheaper per bit.

 Big Idea: The memory hierarchy creates a large pool of
storage that costs as much as the cheap storage near the
bottom, but that serves data to programs at the rate of the
fast storage near the top.

Carnegie Mellon

54 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

Carnegie Mellon

55 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory

Data in block b is needed Request: 14

14
Block b is in cache:
Hit!

Carnegie Mellon

56 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory

Data in block b is needed Request: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)

Carnegie Mellon

57 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Caching Concepts:
Types of Cache Misses

 Cold (compulsory) miss
 Cold misses occur because the cache is empty.

 Conflict miss
 Most caches limit blocks at level k+1 to a small subset (sometimes a

singleton) of the block positions at level k.
 E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

 Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.
 E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

 Capacity miss
 Occurs when the set of active cache blocks (working set) is larger than

the cache.

Carnegie Mellon

58 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Examples of Caching in the Mem. Hierarchy

Hardware
MMU

0 On-Chip TLB Address translations TLB

Web browser 10,000,000 Local disk Web pages Browser cache

Web cache

Network buffer
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB pages

64-byte blocks

64-byte blocks

4-8 bytes words

What is Cached?

Web proxy
server

1,000,000,000 Remote server disks

OS 100 Main memory

Hardware 4 On-Chip L1

Hardware 10 On-Chip L2

NFS client 10,000,000 Local disk

Hardware + OS 100 Main memory

Compiler 0 CPU core

Managed By Latency (cycles) Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware

Carnegie Mellon

59 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
 The speed gap between CPU, memory and mass storage

continues to widen.

 Well-written programs exhibit a property called locality.

 Memory hierarchies based on caching close the gap by
exploiting locality.

Carnegie Mellon

60 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Supplemental slides

Carnegie Mellon

61 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conventional DRAM Organization
 d x w DRAM:
 dw total bits organized as d supercells of size w bits

cols

rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

supercell
(2,1)

2 bits
/

8 bits
/

Memory
controller

(to/from CPU)

Carnegie Mellon

62 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.
Step 1(b): Row 2 copied from DRAM array to row buffer.

Cols

Rows

RAS = 2 0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

63 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.
Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually

back to the CPU.

 Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2
/

8
/

Memory
controller

supercell
(2,1)

supercell
(2,1)

To CPU

Carnegie Mellon

64 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Modules

: supercell (i,j)

64 MB
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory
controller

DRAM 7

DRAM 0

0 31 7 8 15 16 23 24 32 63 39 40 47 48 55 56

64-bit word main memory address A

bits
0-7

bits
8-15

bits
16-23

bits
24-31

bits
32-39

bits
40-47

bits
48-55

bits
56-63

64-bit word

0 31 7 8 15 16 23 24 32 63 39 40 47 48 55 56

Carnegie Mellon

65 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enhanced DRAMs
 Basic DRAM cell has not changed since its invention in 1966.
 Commercialized by Intel in 1970.

 DRAM cores with better interface logic and faster I/O :
 Synchronous DRAM (SDRAM)

 Uses a conventional clock signal instead of asynchronous control
 Allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)

 Double data-rate synchronous DRAM (DDR SDRAM)

 Double edge clocking sends two bits per cycle per pin
 Different types distinguished by size of small prefetch buffer:

– DDR (2 bits), DDR2 (4 bits), DDR3 (8 bits)
 By 2010, standard for most server and desktop systems
 Intel Core i7 supports only DDR3 SDRAM

Carnegie Mellon

66 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB 880 100 30 1 0.1 0.06 0.02 44,000
access (ns) 200 100 70 60 50 40 20 10
typical size (MB) 0.256 4 16 64 2,000 8,000 16.000 62,500

Storage Trends

DRAM

SRAM

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/GB 100,000 8,000 300 10 5 0.3 0.03 3,333,333
access (ms) 75 28 10 8 5 3 3 25
typical size (GB) 0.01 0.16 1 20 160 1,500 3,000 300,000

Disk

Metric 1985 1990 1995 2000 2005 2010 2015 2015:1985

$/MB 2,900 320 256 100 75 60 320 116
access (ns) 150 35 15 3 2 1.5 200 115

Carnegie Mellon

67 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

CPU Clock Rates

 1985 1990 1995 2003 2005 2010 2015 2015:1985

CPU 80286 80386 Pentium P-4 Core 2 Core i7(n) Core i7(h)

Clock
rate (MHz) 6 20 150 3,300 2,000 2,500 3,000 500

Cycle
time (ns) 166 50 6 0.30 0.50 0.4 0.33 500

Cores 1 1 1 1 2 4 4 4

Effective
cycle 166 50 6 0.30 0.25 0.10 0.08 2,075
time (ns)

Inflection point in computer history
when designers hit the “Power Wall”

(n) Nehalem processor
(h) Haswell processor

	The Memory Hierarchy��15-213: Introduction to Computer Systems�11th Lecture, Feb. 16, 2016
	Today
	Random-Access Memory (RAM)
	SRAM vs DRAM Summary
	Nonvolatile Memories
	Traditional Bus Structure Connecting �CPU and Memory
	Memory Read Transaction (1)
	Memory Read Transaction (2)
	Memory Read Transaction (3)
	Memory Write Transaction (1)
	Memory Write Transaction (2)
	Memory Write Transaction (3)
	What’s Inside A Disk Drive?
	Disk Geometry
	Disk Geometry (Muliple-Platter View)
	Disk Capacity
	Recording zones	
	 Computing Disk Capacity
	Disk Operation (Single-Platter View)
	Disk Operation (Multi-Platter View)
	Disk Structure - top view of single platter
	Disk Access
	Disk Access
	Disk Access – Read
	Disk Access – Read
	Disk Access – Read
	Disk Access – Seek
	Disk Access – Rotational Latency
	Disk Access – Read
	Disk Access – Service Time Components
	Disk Access Time
	Disk Access Time Example
	Disk Access Time Example
	Logical Disk Blocks
	I/O Bus
	Reading a Disk Sector (1)
	Reading a Disk Sector (2)
	Reading a Disk Sector (3)
	Solid State Disks (SSDs)
	SSD Performance Characteristics	
	SSD Tradeoffs	vs Rotating Disks
	The CPU-Memory Gap
	Locality to the Rescue!	
	Today
	Locality
	Locality Example
	Qualitative Estimates of Locality
	Locality Example
	Locality Example
	Memory Hierarchies
	Today
	Example Memory � Hierarchy
	Caches
	General Cache Concepts
	General Cache Concepts: Hit
	General Cache Concepts: Miss
	General Caching Concepts: �Types of Cache Misses
	Examples of Caching in the Mem. Hierarchy
	Summary
	Supplemental slides
	Conventional DRAM Organization
	Reading DRAM Supercell (2,1)
	Reading DRAM Supercell (2,1)
	Memory Modules
	Enhanced DRAMs
	Storage Trends
	CPU Clock Rates

