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Today 
 Storage technologies and trends 
 Locality of reference 
 Caching in the memory hierarchy 
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Random-Access Memory (RAM) 
 Key features 
 RAM is traditionally packaged as a chip. 
 Basic storage unit is normally a cell (one bit per cell). 
 Multiple RAM chips form a memory. 

 
 RAM comes in two varieties: 
 SRAM (Static RAM) 
 DRAM (Dynamic RAM) 
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SRAM vs DRAM Summary 

 Trans. Access Needs Needs   
 per bit  time refresh? EDC? Cost Applications 
 
SRAM 4 or 6 1X No Maybe 100x Cache memories 
 
DRAM 1 10X Yes Yes 1X Main memories, 
      frame buffers 



Carnegie Mellon 

5 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 

Nonvolatile Memories 
 DRAM and SRAM are volatile memories 
 Lose information if powered off. 

 Nonvolatile memories retain value even if powered off 
 Read-only memory (ROM): programmed during production 
 Programmable ROM (PROM): can be programmed once 
 Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray) 
 Electrically eraseable PROM (EEPROM): electronic erase capability 
 Flash memory: EEPROMs. with partial (block-level) erase capability 

 Wears out after about 100,000 erasings 
 Uses for Nonvolatile Memories 
 Firmware programs stored in a ROM (BIOS, controllers for disks, 

network cards, graphics accelerators, security subsystems,…) 
 Solid state disks (replace rotating disks in thumb drives, smart 

phones, mp3 players, tablets, laptops,…) 
 Disk caches 
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Traditional Bus Structure Connecting  
CPU and Memory 
 A bus is a collection of parallel wires that carry address, 

data, and control signals. 
 Buses are typically shared by multiple devices. 

Main 
memory 

I/O  
bridge Bus interface 

ALU 

Register file 

CPU chip 

System bus Memory bus 
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Memory Read Transaction (1) 
 CPU places address A on the memory bus. 

  
 

ALU 

Register file 

Bus interface 
A 0 

A x 

Main memory 
I/O bridge 

%rax 

Load operation: movq A, %rax 
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Memory Read Transaction (2) 
 Main memory reads A from the memory bus, retrieves 

word x, and places it on the bus. 

ALU 

Register file 

Bus interface 

x 0 

A x 

Main 
memory 

%rax 

I/O bridge 

Load operation: movq A, %rax 
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Memory Read Transaction (3) 
 CPU read word x from the bus and copies it into register 

%rax. 

x 
ALU 

Register file 

Bus interface x 

Main memory 
0 

A 

%rax 

I/O bridge 

Load operation: movq A, %rax 
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Memory Write Transaction (1) 
 CPU places address A on bus. Main memory reads it and 

waits for the corresponding data word to arrive. 

y 
ALU 

Register file 

Bus interface 
A 

Main memory 
0 

A 

%rax 

I/O bridge 

Store operation: movq %rax, A 
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Memory Write Transaction (2) 
  CPU places data word y on the bus. 

y 
ALU 

Register file 

Bus interface 
y 

Main memory 
0 

A 

%rax 

I/O bridge 

Store operation: movq %rax, A 
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Memory Write Transaction (3) 
 Main memory reads data word y from the bus and stores 

it at address A. 

y 
ALU 

Register file 

Bus interface y 

main memory 
0 

A 

%rax 

I/O bridge 

Store operation: movq %rax, A 
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What’s Inside A Disk Drive? 
Spindle Arm 

Actuator 

Platters 

Electronics 
(including a  
processor  
and memory!) SCSI 

connector 

Image courtesy of Seagate Technology 
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Disk Geometry 

 Disks consist of platters, each with two surfaces. 
 Each surface consists of concentric rings called tracks. 
 Each track consists of sectors separated by gaps. 

Spindle 

Surface 
Tracks 

Track k 

Sectors 

Gaps 
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Disk Geometry (Muliple-Platter View) 
  Aligned tracks form a cylinder. 

Surface 0 

Surface 1 
Surface 2 

Surface 3 
Surface 4 

Surface 5 

Cylinder k 

Spindle 

Platter 0 

Platter 1 

Platter 2 



Carnegie Mellon 

16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 

Disk Capacity 
 Capacity: maximum number of bits that can be stored. 
 Vendors express capacity in units of gigabytes (GB),  where 

1 GB = 109 Bytes.  

 Capacity is determined by these technology factors: 
 Recording density (bits/in): number of bits that can be squeezed 

into a 1 inch segment of a track. 
 Track density (tracks/in): number of tracks that can be squeezed 

into a 1 inch radial segment. 
 Areal density (bits/in2): product of recording and track density. 
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Recording zones  
 Modern disks partition tracks 

into disjoint subsets called 
recording zones  
 Each track in a zone has the same 

number of sectors, determined 
by the circumference of 
innermost track. 

 Each zone has a different number 
of sectors/track, outer zones 
have more sectors/track than 
inner zones. 

 So we use average number of 
sectors/track when computing 
capacity.    

 

Spindle 

…
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 Computing Disk Capacity 
Capacity =  (# bytes/sector) x (avg. # sectors/track) x 
      (# tracks/surface) x (# surfaces/platter) x 
        (# platters/disk) 
Example: 

 512 bytes/sector 
 300 sectors/track (on average) 
 20,000 tracks/surface 
 2 surfaces/platter 
 5 platters/disk 

 
Capacity = 512 x 300 x 20,000 x 2 x 5 
   = 30,720,000,000 
                = 30.72 GB  
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Disk Operation (Single-Platter View) 

The disk surface  
spins at a fixed 
rotational rate 

By moving radially, the arm can 
position the read/write head 
over any track. 

The read/write head 
is attached to the end 
of the arm and flies over 
the disk surface on 
a thin cushion of air. 

spindle 

spindle 

sp
in

dl
e 

spindle spindle 
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Disk Operation (Multi-Platter View) 

Arm 

Read/write heads  
move in unison 
from cylinder to 
cylinder 

Spindle 
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Tracks divided into sectors 

Disk Structure - top view of single platter 

Surface organized into tracks 
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Disk Access 

Head in position above a track 
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Disk Access 

Rotation is counter-clockwise 
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Disk Access – Read 

About to read blue sector 
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Disk Access – Read 

After BLUE read 

After reading blue sector 
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Disk Access – Read 

After BLUE read 

Red request scheduled next 
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Disk Access – Seek 

After BLUE read Seek for RED 

Seek to red’s track 
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Disk Access – Rotational Latency 

After BLUE read Seek for RED Rotational latency 

Wait for red sector to rotate around 
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Disk Access – Read 

After BLUE read Seek for RED Rotational latency After RED read 

Complete read of red 
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Disk Access – Service Time Components 

After BLUE read Seek for RED Rotational latency After RED read 

Data transfer Seek Rotational  
latency 

Data transfer 
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Disk Access Time 
 Average time to access some target sector approximated by: 
 Taccess  =  Tavg seek +  Tavg rotation + Tavg transfer  

 Seek time (Tavg seek) 
 Time to position heads over cylinder containing target sector. 
 Typical  Tavg seek is 3—9 ms 

 Rotational latency (Tavg rotation) 
 Time waiting for first bit of target sector to pass under r/w head. 
 Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min 
 Typical Tavg rotation = 7,200 RPMs 

 Transfer time (Tavg transfer)  
 Time to read the bits in the target sector. 
 Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min. 
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Disk Access Time Example 
 Given: 
 Rotational rate = 7,200 RPM 
 Average seek time = 9 ms. 
 Avg # sectors/track = 400. 

 Derived: 
 Tavg rotation = 
 Tavg transfer = 
 Taccess  = 
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Disk Access Time Example 
 Given: 
 Rotational rate = 7,200 RPM 
 Average seek time = 9 ms. 
 Avg # sectors/track = 400. 

 Derived: 
 Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms. 
 Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms 
 Taccess  = 9 ms + 4 ms + 0.02 ms 

 Important points: 
 Access time dominated by seek time and rotational latency. 
 First bit in a sector is the most expensive, the rest are free. 
 SRAM access time is about  4 ns/doubleword, DRAM about  60 ns 

 Disk is about 40,000 times slower than SRAM,  
 2,500 times slower then DRAM. 

 



Carnegie Mellon 

34 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 

Logical Disk Blocks 
 Modern disks present a simpler abstract view of the 

complex sector geometry: 
 The set of available sectors is modeled as a sequence of b-sized 

logical blocks (0, 1, 2, ...) 

 Mapping between logical blocks and actual (physical) 
sectors 
 Maintained by hardware/firmware device called disk controller. 
 Converts requests for logical blocks into (surface,track,sector) 

triples. 

 Allows controller to set aside spare cylinders for each 
zone. 
 Accounts for the difference in “formatted capacity” and “maximum 

capacity”.  
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I/O Bus 

Main 
memory 

I/O  
bridge Bus interface 

ALU 

Register file 

CPU chip 

System bus Memory bus 

Disk  
controller 

Graphics 
adapter 

USB 
controller 

Mouse Keyboard Monitor 

Disk 

I/O bus Expansion slots for 
other devices such 
as network adapters. 
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Reading a Disk Sector (1) 

Main 
memory 

ALU 

Register file 

CPU chip 

Disk  
controller 

Graphics 
adapter 

USB 
controller 

mouse keyboard Monitor 

Disk 

I/O bus 

Bus interface 

CPU initiates a disk read by writing a 
command, logical block number, and 
destination memory address to a port 
(address) associated with disk 
controller. 
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Reading a Disk Sector (2) 

Main 
memory 

ALU 

Register file 

CPU chip 

Disk  
controller 

Graphics 
adapter 

USB 
controller 

Mouse Keyboard Monitor 

Disk 

I/O bus 

Bus interface 

Disk controller reads the sector 
and performs a direct memory 
access (DMA) transfer into main 
memory. 
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Reading a Disk Sector (3) 

Main 
memory 

ALU 

Register file 

CPU chip 

Disk  
controller 

Graphics 
adapter 

USB 
controller 

Mouse Keyboard Monitor 

Disk 

I/O bus 

Bus interface 

When the DMA transfer completes, 
the disk controller notifies the CPU 
with an interrupt (i.e., asserts a 
special “interrupt” pin on the CPU) 



Carnegie Mellon 

39 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 

Solid State Disks (SSDs) 

 Pages: 512KB to 4KB, Blocks: 32 to 128 pages 
 Data read/written in units of pages.  
 Page can be written only after its block has been erased 
 A block wears out after about 100,000 repeated writes. 

Flash  
translation layer 

I/O bus 

Page 0 Page 1 Page P-1 … 
Block 0 

… Page 0 Page 1 Page P-1 … 
Block  B-1 

Flash memory 

Solid State Disk (SSD) 

Requests to read and  
write logical disk blocks 
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SSD Performance Characteristics  

 Sequential access faster than random access 
 Common theme in the memory hierarchy 

 Random writes are somewhat slower 
 Erasing a block takes a long time (~1 ms) 
 Modifying a block page requires all other pages to be copied to 

new block 
 In earlier SSDs, the read/write gap was much larger. 

Sequential read tput 550 MB/s Sequential write tput 470 MB/s 
Random read tput 365 MB/s Random write tput 303 MB/s 
Avg seq read time 50 us  Avg seq write time 60 us 

Source: Intel SSD 730 product specification. 
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SSD Tradeoffs vs Rotating Disks 
 Advantages  
 No moving parts  faster, less power, more rugged 

 

 Disadvantages 
 Have the potential to wear out  

 Mitigated by “wear leveling logic” in flash translation layer 
 E.g. Intel SSD 730 guarantees 128 petabyte (128 x 1015 bytes) of 

writes before they wear out 
 In 2015, about 30 times more expensive per byte 

 

 Applications 
 MP3 players, smart phones, laptops 
 Beginning to appear in desktops and servers 
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The CPU-Memory Gap 
The gap  between DRAM, disk, and CPU speeds.  
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Locality to the Rescue!  
 

The key to bridging this CPU-Memory gap is a fundamental 
property of computer programs known as locality 
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Today 
 Storage technologies and trends 
 Locality of reference 
 Caching in the memory hierarchy 
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Locality 
 Principle of Locality: Programs tend to use data and 

instructions with addresses near or equal to those they 
have used recently 
 

 Temporal locality:   
 Recently referenced items are likely  

to be referenced again in the near future 

 
 Spatial locality:   
 Items with nearby addresses tend  

to be referenced close together in time 

 
 



Carnegie Mellon 

46 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 

Locality Example 

 Data references 
 Reference array elements in succession 

(stride-1 reference pattern). 
 Reference variable sum each iteration. 

 Instruction references 
 Reference instructions in sequence. 
 Cycle through loop repeatedly.  

 

sum = 0; 
for (i = 0; i < n; i++) 
 sum += a[i]; 
return sum; 

Spatial locality 
Temporal locality 

Spatial locality 
Temporal locality 
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Qualitative Estimates of Locality 
 Claim: Being able to look at code and get a qualitative 

sense of its locality is a key skill for a professional 
programmer. 
 

 Question: Does this function have good locality with 
respect to array a? 

int sum_array_rows(int a[M][N]) 
{ 
    int i, j, sum = 0; 
 
    for (i = 0; i < M; i++) 
        for (j = 0; j < N; j++) 
            sum += a[i][j]; 
    return sum; 
} 
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Locality Example 
 Question: Does this function have good locality with 

respect to array a? 

int sum_array_cols(int a[M][N]) 
{ 
    int i, j, sum = 0; 
 
    for (j = 0; j < N; j++) 
        for (i = 0; i < M; i++) 
            sum += a[i][j]; 
    return sum; 
} 
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Locality Example 
 Question: Can you permute the loops so that the function 

scans the 3-d array a with a stride-1 reference pattern 
(and thus has good spatial locality)? 

int sum_array_3d(int a[M][N][N]) 
{ 
    int i, j, k, sum = 0; 
 
    for (i = 0; i < N; i++) 
        for (j = 0; j < N; j++) 
            for (k = 0; k < M; k++) 
                sum += a[k][i][j]; 
    return sum; 
} 
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Memory Hierarchies 
 Some fundamental and enduring properties of hardware 

and software: 
 Fast storage technologies cost more per byte, have less capacity, 

and require more power (heat!).  
 The gap between CPU and main memory speed is widening. 
 Well-written programs tend to exhibit good locality. 

 

 These fundamental properties complement each other 
beautifully. 
 

 They suggest an approach for organizing memory and 
storage systems known as a memory hierarchy. 
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Today 
 Storage technologies and trends 
 Locality of reference 
 Caching in the memory hierarchy 
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Example Memory  
     Hierarchy Regs 

L1 cache  
(SRAM) 

Main memory 
(DRAM) 

Local secondary storage 
(local disks) 

Larger,   
slower,  
and  
cheaper  
(per byte) 
storage 
devices 

Remote secondary storage 
(e.g., Web servers) 

Local disks hold files 
retrieved from disks  
on remote servers 

L2 cache  
(SRAM) 

L1 cache holds cache lines retrieved 
from the L2 cache. 

CPU registers hold words retrieved 
from the L1 cache. 

L2 cache holds cache lines 
 retrieved from L3 cache 

L0: 

L1: 

L2: 

L3: 

L4: 

L5: 

Smaller, 
faster, 
and  
costlier 
(per byte) 
storage  
devices 

L3 cache  
(SRAM) 

L3 cache holds cache lines 
 retrieved from main memory. 

L6: 

Main memory holds disk 
blocks retrieved from local 
disks. 
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Caches 
 Cache: A smaller, faster storage device that acts as a staging 

area for a subset of the data in a larger, slower device. 
 Fundamental idea of a memory hierarchy: 
 For each k, the faster, smaller device at level k serves as a cache for the 

larger, slower device at level k+1. 

 Why do memory hierarchies work? 
 Because of locality, programs tend to access the data at level k more 

often than they access the data at level k+1.  
 Thus, the storage at level k+1 can be slower, and thus larger and 

cheaper per bit. 

 Big Idea:  The memory hierarchy creates a large pool of 
storage that costs as much as the cheap storage near the 
bottom, but that serves data to programs at the rate of the 
fast storage near the top. 
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General Cache Concepts 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 
Larger, slower, cheaper memory 
viewed as partitioned into “blocks” 

Data is copied in block-sized 
transfer units 

Smaller, faster, more expensive 
memory caches a  subset of 
the blocks 

4 

4 

4 

10 

10 
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General Cache Concepts: Hit 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 

Data in block b is needed Request: 14 

14 
Block b is in cache: 
Hit! 
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General Cache Concepts: Miss 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 

Data in block b is needed Request: 12 

Block b is not in cache: 
Miss! 

Block b is fetched from 
memory Request: 12 

12 

12 

12 

Block b is stored in cache 
• Placement policy: 

determines where b goes 
• Replacement policy: 

determines which block 
gets evicted (victim) 
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General Caching Concepts:  
Types of Cache Misses 

 Cold (compulsory) miss 
 Cold misses occur because the cache is empty. 

 Conflict miss 
 Most caches limit blocks at level k+1 to a small subset (sometimes a 

singleton) of the block positions at level k. 
 E.g. Block i at level k+1 must be placed in block (i mod 4) at level k. 

 Conflict misses occur when the level k cache is large enough, but multiple 
data objects all map to the same level k block. 
 E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time. 

 Capacity miss 
 Occurs when the set of active cache blocks (working set) is larger than 

the cache. 
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Examples of Caching in the Mem. Hierarchy 

Hardware 
MMU 

0 On-Chip TLB Address translations TLB 

Web browser 10,000,000 Local disk Web pages Browser cache 

Web cache 

Network buffer 
cache 

Buffer cache 

Virtual Memory 

L2 cache 

L1 cache 

Registers 

Cache Type 

Web pages 

Parts of files 

Parts of files 

4-KB pages 

64-byte blocks 

64-byte blocks 

4-8 bytes words 

What is Cached? 

Web proxy 
server 

1,000,000,000 Remote server disks 

OS 100 Main memory 

Hardware 4 On-Chip L1 

Hardware 10 On-Chip L2 

NFS client 10,000,000 Local disk 

Hardware + OS 100 Main memory 

Compiler 0  CPU core 

Managed By Latency (cycles) Where is it Cached? 

Disk cache  Disk sectors Disk controller 100,000 Disk firmware 
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Summary 
 The speed gap between CPU, memory and mass storage 

continues to widen. 
 

 Well-written programs exhibit a property called locality. 
 

 Memory hierarchies based on caching close the gap by 
exploiting locality. 
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Supplemental slides 
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Conventional DRAM Organization 
 d x w DRAM: 
 dw total bits organized as d supercells of size w bits 

cols 
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Internal row buffer 

16 x 8 DRAM chip 

addr 

data 

supercell 
(2,1) 

2 bits 
/ 

8 bits 
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Memory 
controller 
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Reading DRAM Supercell (2,1) 
Step 1(a): Row access strobe (RAS) selects row 2. 
Step 1(b): Row 2 copied from DRAM array to row buffer. 
 

Cols 

Rows 

RAS = 2 0 1 2 3 

0 

1 

2 

Internal row buffer 

16 x 8 DRAM chip 

3 

addr 

data 

2 
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8 
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Memory 
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Reading DRAM Supercell (2,1) 
Step 2(a): Column access strobe (CAS) selects column 1. 
Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually 

back to the CPU. 
 
 Cols 

Rows 

0 1 2 3 

0 

1 

2 

3 

Internal row buffer 

16 x 8 DRAM chip 

CAS = 1 

addr 

data 

2 
/ 

8 
/ 

Memory 
controller 

supercell  
(2,1) 

supercell  
(2,1) 

To CPU 
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Memory Modules 

: supercell (i,j) 

64 MB   
memory module 
consisting of 
eight 8Mx8 DRAMs 

addr (row = i, col = j) 

Memory 
controller 

DRAM 7 

DRAM 0 

0 31 7 8 15 16 23 24 32 63 39 40 47 48 55 56 

64-bit word main memory address A 

bits 
0-7 

bits 
8-15 

bits 
16-23 

bits 
24-31 

bits 
32-39 

bits 
40-47 

bits 
48-55 

bits 
56-63 

64-bit word 

0 31 7 8 15 16 23 24 32 63 39 40 47 48 55 56 
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Enhanced DRAMs 
 Basic DRAM cell has not changed since its invention in 1966. 
 Commercialized by Intel in 1970.  

 DRAM cores with better interface logic and faster I/O : 
 Synchronous DRAM (SDRAM) 

 Uses a conventional clock signal instead of asynchronous control 
 Allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS) 

 
 Double data-rate synchronous DRAM (DDR SDRAM) 

 Double edge clocking sends two bits per cycle per pin 
 Different types distinguished by size of small prefetch buffer: 

– DDR (2 bits), DDR2 (4 bits), DDR3 (8 bits) 
 By 2010, standard for most server and desktop systems 
 Intel Core i7 supports only DDR3 SDRAM 
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Metric  1985 1990 1995 2000 2005 2010 2015 2015:1985 
 
$/MB  880 100 30 1 0.1 0.06 0.02 44,000 
access (ns) 200 100 70 60 50 40 20 10 
typical size (MB)  0.256 4 16 64 2,000 8,000 16.000 62,500 
 

Storage Trends 

DRAM 

SRAM 

Metric  1985 1990 1995 2000 2005 2010 2015 2015:1985 
 
$/GB  100,000 8,000 300 10 5 0.3 0.03 3,333,333 
access (ms) 75 28 10 8 5 3 3 25 
typical size (GB)  0.01 0.16 1 20 160 1,500 3,000 300,000 

Disk 

Metric  1985 1990 1995 2000 2005 2010 2015 2015:1985 
 
$/MB  2,900 320 256 100 75 60 320 116 
access (ns) 150 35 15 3 2 1.5 200 115 
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CPU Clock Rates 

 1985 1990 1995 2003 2005 2010 2015 2015:1985 
 
CPU  80286 80386 Pentium P-4 Core 2 Core i7(n) Core i7(h)  
 
Clock  
rate (MHz) 6 20 150 3,300 2,000 2,500 3,000 500 
 
Cycle  
time (ns) 166 50 6 0.30 0.50 0.4 0.33 500 
 
Cores  1   1 1 1 2 4 4 4 
 
Effective 
cycle  166 50 6 0.30 0.25 0.10 0.08 2,075 
time (ns) 

Inflection point in computer history 
when designers hit the “Power Wall” 

(n) Nehalem processor 
(h) Haswell processor 
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