Carnegie Mellon

Program Optimization

15-213: Introduction to Computer Systems
10t Lecture, Feb. 11, 2016

Instructors:
Franz Franchetti & Seth Copen Goldstein, Ralf Brown, and Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

m Overview
m Generally Useful Optimizations

= Code motion/precomputation
" Strength reduction
® Sharing of common subexpressions

" Removing unnecessary procedure calls

m Optimization Blockers
® Procedure calls

" Memory aliasing
m Exploiting Instruction-Level Parallelism
m Dealing with Conditionals

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Performance Realities

m There’s more to performance than asymptotic complexity
m Constant factors matter too!

= Easily see 10:1 performance range depending on how code is written
= Must optimize at multiple levels:
= algorithm, data representations, procedures, and loops

m Must understand system to optimize performance
" How programs are compiled and executed
" How modern processors + memory systems operate
= How to measure program performance and identify bottlenecks

= How to improve performance without destroying code modularity and
generality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Optimizing Compilers

m Provide efficient mapping of program to machine
= register allocation
= code selection and ordering (scheduling)
= dead code elimination
= eliminating minor inefficiencies
m Don’t (usually) improve asymptotic efficiency
" up to programmer to select best overall algorithm
= big-O savings are (often) more important than constant factors
= but constant factors also matter

m Have difficulty overcoming “optimization blockers”
= potential memory aliasing
= potential procedure side-effects

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Limitations of Optimizing Compilers

m Operate under fundamental constraint
" Must not cause any change in program behavior

= Except, possibly when program making use of nonstandard language
features

= Often prevents it from making optimizations that would only affect behavior
under pathological conditions.

m Behavior that may be obvious to the programmer can be obfuscated by
languages and coding styles

= e.g., Data ranges may be more limited than variable types suggest
m Most analysis is performed only within procedures
= Whole-program analysis is too expensive in most cases
= Newer versions of GCC do interprocedural analysis within individual files
= But, not between code in different files
m Most analysis is based only on static information
= Compiler has difficulty anticipating run-time inputs

m When in doubt, the compiler must be conservative

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Generally Useful Optimizations

m Optimizations that you or the compiler should do regardless
of processor / compiler

m Code Motion
= Reduce frequency with which computation performed
= |f it will always produce same result
= Especially moving code out of loop

void set row(double *a, double *b,
long 1, long n)

{

long j;
Int ni = n*i1;

long j:

for (j = 0; j < n; j++)
a[n*i+j] = b[j];

for (=0; j < n; j++)
a[ni+j] = b[i]:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Compiler-Generated Code Motion (-01)

void set_row(double *a, double *b, —
long 1, long n) g 1 _
long ni = n*1;
double *rowp = a+ni;

for J = 0; j < n; j++)
= b[i1:

set_row:

)]
>

%rcx, %rcx

L1

%rcx, %rdx

(%rdi ,%rdx,8), %rdx
$0, %eax

to done

mi =h (D

T Il O+
S
*Q

o)
I
A +

ni*8

(@) (@)
o Il =
o

e O

(%rsi ,%rax,8), %xmmO
%xmmO, (%rdx,%rax,8)
$1, %rax

%rcx, %rax

-L3

= b[j]
[A+n|*8 + J*8] =
+

Q_-lhlh|§ﬂ-hl-13——|
3

HFHEFHIFHFHEHFHEHFRHEHFHRH

T 1=, goto loop

@)
)
M

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Reduction in Strength

= Replace costly operation with simpler one
= Shift, add instead of multiply or divide
16*x --> X << 4
= Utility machine dependent
= Depends on cost of multiply or divide instruction
— On Intel Nehalem, integer multiply requires 3 CPU cycles
= Recognize sequence of products

O; 1 <n; 1+t) {
= n*i;
+

O; J < n; j+t)
31 = bli]:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Share Common Subexpressions

= Reuse portions of expressions
= GCCwill do this with -01

/* Sum neighbors of 1,j */ long inj = 1*n + j;

up = val[(i-D)*n + j 17; up = val[inj - n];

down = val[(i+D*n + j 1; down = val[inj + n];

left = val[i*n + j-1]1; left = val[inj - 1];

right = val[i1*n + j+1]; right = val[inj + 1];

sum = up + down + left + right; sum = up + down + left + right;
3 multiplications: 1*n, (1—1)*n, (1+1)*n 1 multiplication: 1*n

leaq 1(%rsi1), %rax # 1+1 imulq %rex, %rsi # 1*n

leaq -1(%rsi1), %r8 # 1-1 addq %rdx, %rsi # 1*n+j
imulg %rcx, %rsi # 1*n movq %rsi, %rax # 1*n+]j
imulg %rcx, %rax (i+1)*n subq %rcx, %rax # 1*n+j-n
imulg %rcx, %r8 (i-1)*n leaq (%rsi,%rcx), %rcx # 1*n+j+n

addg %rdx, %rax (i+1)*n+j

#
#

addqg %rdx, %rsi # 1*n+]j
#

addg %rdx, %r8 # (1-1)*n+]j

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Optimization Blocker #1: Procedure Calls

m Procedure to Convert String to Lower Case

void lower(char *s)
{
size t 1
for (i = 0; 1 < strlen(s); i++)
It (s[1] >= "A" && s[i1] <= "Z%)
s[i] = (A" - "a%);
+

= Extracted from 213 lab submissions, Fall, 1998

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Lower Case Conversion Performance

" Time quadruples when double string length
® Quadratic performance

250

200

150
lowerl

100

50
OO—OM

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
String length

CPU seconds

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Convert Loop To Goto Form

void lower(char *s)
{
size. t 1 = 0;
1T (1 >= strlen(s))
goto done;
loop:
IT (s[1] >= "A" && s[1] <= "Z%)
s[i] -= ("A" - "a");

1++;
It (1 < strlen(s))
goto loop;
done:

}

= strlenexecuted every iteration

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Calling Strlen

/* My version of strlen */
size_t strlen(const char *s)
{
size t length = O;
while (*s I= "\0") {
S++;
length++;
+
return length;
+

m Strlen performance

" Only way to determine length of string is to scan its entire length, looking for
null character.

m Overall performance, string of length N
= N calls to strlen
= Requiretimes N, N-1, N-2, ..., 1
= Qverall O(N?) performance

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Improving Performance

void lower(char *s)
{
size t 1;
size _t len = strlen(s);
for (i = 0; 1 < len; i++)
It (s[1] >= "A" && s[i1] <= "Z%)
s[1] -= (FA" - "a%");

= Move call to strlen outside of loop
= Since result does not change from one iteration to another
"= Form of code motion

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Lower Case Conversion Performance

= Time doubles when double string length

" Linear performance of lower2

250
200
(%]
2 150
o lowerl
(0]
wn
O 100
o
@)
50
:ﬁ lower?2
0

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
String length

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Optimization Blocker: Procedure Calls

m Why couldn’t compiler move strlen out of inner loop?
" Procedure may have side effects
= Alters global state each time called

® Function may not return same value for given arguments
= Depends on other parts of global state
= Procedure lower could interact with strilen

m Warning:
= Compiler treats procedure call as a black box

= Weak optimizations near them -
P size_t lencnt = O;

= Remedies: size_t strlen(const char *s)
= Use of inline functions {
= GCC does this with —01 size_t length = O;

while (*s I= "\0") {

— Within single file
& s++; length++;

"= Do your own code motion }

lencnt += length;
return length;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Memory Matters

/* Sum rows 1s of n X n matrix a
and store in vector b */
void sum_rowsl(double *a, double *b, long n) {
long 1, j,
for (1 = 0; 1 <n; 1++t) {
b[i] = O;
for (g =
1+

O; J <n; j+b)
b[1 a

[*n+J]

sum_rowsl 1nner loop
-L4:

movsd (%rsi ,%rax,8), %xmmO # FP load
addsd (%rdir), %xmmO # FP add
movsd %xmmO, (%rsi,%rax,8) # FP store
addq $8, %rdi

cmpq %rcx, %rdi

Jjne -L4

" Code updates b[1] on every iteration
= Why couldn’t compiler optimize this away?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Memory Aliasing

/* Sum rows 1s of n X n matrix a
and store in vector b */
void sum_rowsl(double *a, double *b, long n) {
long 1, j;
for (1 = O;

b[i] = 0;

Value of B:
double A[9] = double A[9] = init: [4, 8, 16]
{o, 1, 2, {o, 1, 2,
4, 8, 16}, 3, 22, 224}, ——
32, 64, 128}; 32, 64, 128}; ' = 0: 138, 8, 16]

i = 1: [3, 22, 16]

double B[3] = A+3;

sum_rowsl(A, B, 3); 1 = 2: [3, 22, 224]

" Code updates b[1] on every iteration

= Must consider possibility that these updates will affect program behavior

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Removing Aliasing

/* Sum rows 1s of n X n matrix a
and store in vector b */
void sum_rows2(double *a, double *b, long n) {
long 1, j;
for (1 = 0; 1 <n; 1++t) {
double val = 0O;
for (J = 0; J < n; j+t)
val += a[1*n + j];
b[1] = val;

sum_rows2 i1nner loop
-L10:

addsd (%rdir), %xmmO # FP load + add
addq $8, %rdi

cmpq %rax, %rdi

jne -L10

= No need to store intermediate results

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Optimization Blocker: Memory Aliasing

m Aliasing
= Two different memory references specify single location
= Easy to have happenin C
= Since allowed to do address arithmetic
= Direct access to storage structures
= Get in habit of introducing local variables
= Accumulating within loops
= Your way of telling compiler not to check for aliasing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Exploiting Instruction-Level Parallelism

m Need general understanding of modern processor design
= Hardware can execute multiple instructions in parallel

m Performance limited by data dependencies

m Simple transformations can yield dramatic performance
improvement

= Compilers often cannot make these transformations
= Lack of associativity and distributivity in floating-point arithmetic

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Benchmark Example: Data Type for Vectors

/* data structure for vectors */
typedef struct{

size t len;

data_t *data;
} vec;

m Data Types

= Use different declarations
fordata t

int
= long
float
double

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

len 0O 1
data

len-1

/* retrieve vector element
and store at val */
int get vec element
(*vec v, size t i1dx, data_t *val)
{
It (idx >= v->len)
return O;
*val = v->data[i1dx];
return 1;

22

Carnegie Mellon

Benchmark Computation

void combinel(vec ptr v, data t *dest)
E long int i; Compute sum or
*dest = IDENT; product of vector
for (i = 0; i < vec_length(v); i++) {| elements
data_t val;
get vec element(v, 1, &val);
*dest = *dest OP val;

+

+

m Data Types m Operations
= Use different declarations = Use different definitions of

fordata t OP and IDENT
= int = + /0
= Jong = * /1
= float

= double

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Cycles Per Element (CPE)

m Convenient way to express performance of program that operates on
vectors or lists

m Length=n
m In our case: CPE = cycles per OP
m T=CPE*n + Overhead

= CPE is slope of line

2500
2000
psuml

1500
(%]
(]
©
>
O 1000

500 | == Slope = 6.0
0 T T T
0 50 100 150 200
Elements

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Benchmark Performance

void combinel(vec ptr v, data t *dest)
{
long int i; Compute sum or
*dest = IDENT; product of vector
for (i = 0; i < vec_length(v); i++) {| elements
data_t val;
get vec element(v, 1, &val);
*dest = *dest OP val;
by
+
Method Integer Double FP
Operation Add Mult Add Mult
Combinel unoptimized 22.68 20.02 19.98 20.18
Combinel -01 10.12 10.12 10.17 11.14

Results in CPE (cycles per element)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

25

Carnegie Mellon

Basic Optimizations

void combined4(vec ptr v, data t *dest)

{
long 1;
long length = vec length(v);
data t *d = get vec start(v);

data_t t = IDENT;

for (1 = 0; 1 < length; 1++)
t =t OP d[i1];

*dest = t;

m Move vec_length out of loop
m Avoid bounds check on each cycle
m Accumulate in temporary

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Effect of Basic Optimizations

void combined4(vec ptr v, data t *dest)
{
long 1;
long length = vec length(v);
data t *d = get vec start(v);
data_t t = IDENT;
for (1 = 0; 1 < length; 1++)
t =t OP d[1]:;
*dest = t;
by
Method Integer Double FP
Operation Add Mult Add Mult
Combinel -O1 10.12 10.12 10.17 11.14
Combine4 1.27 3.01 3.01 5.01

m Eliminates sources of overhead in loop

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Modern CPU Design

Instruction Control
Control - .
Instruction

Retirement

Sennnns Unit
: Register Instruction PLRITTLNE
File Decode |

Cache

Operations

Register Updates Prediction OK?

\ 4

. Functional
Bra Load o .
Units
A A A A y

a A

\ 4 A 4 A 4 A 4 A 4 A 4

Operation Results

Addr. Addr.

Data Data

Execution

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Superscalar Processor

m Definition: A superscalar processor can issue and execute
multiple instructions in one cycle. The instructions are
retrieved from a sequential instruction stream and are
usually scheduled dynamically.

m Benefit: without programming effort, superscalar
processor can take advantage of the instruction level
parallelism that most programs have

m Most modern CPUs are superscalar.
m Intel: since Pentium (1993)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

taali : : 1 1
Pipelined Functional Units , ~
Stage 1
long mult eg(long a, long b, long c) { - X \
long pl = a*b; | Stage 2 |
long p2 = a*c; v
long p3 = pl * p2; Stage 3
return p3; \ J
} !
Stage 1 a*b a*c pl*p2
Stage 2 a*b a*c pl*p2
Stage 3 a*b a*c pl*p2

= Divide computation into stages
= Pass partial computations from stage to stage
= Stage i can start on new computation once values passed to i+1

= E.g., complete 3 multiplications in 7 cycles, even though each

requires 3 cycles

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Haswell CPU

= 8 Total Functional Units

m Multiple instructions can execute in parallel

2 load, with address computation
1 store, with address computation

4 integer
2 FP multiply
1 FP add
1 FP divide

m Some instructions take > 1 cycle, but can be pipelined
Instruction Latency Cycles/Issue
Load / Store 4 1
Integer Multiply 3 1
Integer/Long Divide 3-30 3-30
Single/Double FP Multiply 5 1
Single/Double FP Add 3 1
Single/Double FP Divide 3-15 3-15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

x86-64 Compilation of Combine4

m Inner Loop (Case: Integer Multiply)

-L519: # Loop:

imull (%rax,%rdx,4), %ecx # t =t * d[i]

addg $1, %rdx # 1++

cmpg %rdx, %rbp # Compare length:i

J9 -L519 # ITf >, goto Loop
Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Latency Bound 1.00 3.00 3.00 5.00

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Combine4 = Serial Computation (OP = *)

m Computation (length=8)

CCCCCC@ > d[0]) * d[1]) * d[2]) * d[3D)
* d[4]) * d[5]) * d[6el) * d[7D

m Sequential dependence
= Performance: determined by latency of OP

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Loop Unrolling (2x1)

void unroll2a _combine(vec ptr v, data t *dest)
{
long length = vec length(v);
long limit = length-1;
data t *d = get_vec start(v);
data t x = IDENT;
long 1;
/* Combine 2 elements at a time */
for (i = 0; 1 < limit; i+=2) {
X = (x OP d[1]) OP d[i1+1];
+
/* Finish any remaining elements */
for (; 1 < length; 1++) {
X = X OP d[i1];
+

*dest = X;

m Perform 2x more useful work per iteration

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Effect of Loop Unrolling

Method Integer Double FP

Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Latency Bound 1.00 3.00 3.00 5.00

m Helps integer add
= Achieves latency bound

X = (x OP d[1]) OP d[i1+1];

m Others don’t improve. Why?
= Still sequential dependency

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Loop Unrolling with Reassociation (2x1a)

void unroll2aa combine(vec _ptr v, data t *dest)
{
long length = vec length(v);
long limit = length-1;
data t *d = get_vec start(v);
data _t x = IDENT;
flong 1;
/* Combine 2 elements at a time */
for (i = 0; 1 < Limit; 1+=2) {
X = X OP (d[i] OP d[i+1]);
+
/* Finish any remaining elements */
for (; 1 < length; i++) {
X = x OP d[i]; Compare to before
} X = (x OP d[1]) OP d[i1+1];

*dest = X;

}

m Can this change the result of the computation?
m Yes, for FP. Why?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Effect of Reassociation

Method Integer Double FP

Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x1a 1.01 1.51 1.51 2.51
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0{0

\ 4 func. units for int +
2 func. units for load 2 func. units for FP *

2 func. units for load

m Nearly 2x speedup for Int *, FP +, FP *

= Reason: Breaks sequential dependency

X = x OP (d[1] OP d[i1+1]);

= Why is that? (next slide)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Reassociated Computation

x OP (d[i] OP d[i+1]);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A -

m What changed:

= Ops in the next iteration can be
started early (no dependency)

m Overall Performance
= N elements, D cycles latency/op

= (N/2+1)*D cycles:
CPE=D/2

38

Loop Unrolling with Separate Accumulators (2x2)

void unroll2a combine(vec ptr v, data t *dest)

{

long length = vec length(v);
long limit = length-1;
data_t *d get _vec_start(v);
data_t xO IDENT;
data_t x1 IDENT;
flong 1;
/* Combine 2 elements at a time */
for (i = 0; 1 < limit; 1i+=2) {
X0 x0 OP d[1];
x1 x1 OP d[i1+1];

}

/* Finish any remaining elements */
for (; 1 < length; i++) {
x0 = x0 OP d[i];
}
*dest = x0 OP x1;

m Different form of reassociation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Effect of Separate Accumulators

Method Integer Double FP
Operation Add Mult Add Mult
Combine4 1.27 3.01 3.01 5.01
Unroll 2x1 1.01 3.01 3.01 5.01
Unroll 2x1a 1.01

Unroll 2x2 1.51 1.51 2.51
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50

m Int + makes use of two load units

X0 = x0 OP d[1i1];
x1 = x1 OP d[i+1];

m 2x speedup (over unroll2) for Int *, FP +, FP *

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Separate Accumulators

x0 = x0 OP d[i]; m What changed:
x1 = x1 OP d[i+1]; = Two independent “streams” of
operations
1d, 1d,
[J;H | éb] m Overall Performance
2 3 = N elements, D cycles latency/op

,[*] d _,[_*H d ® Should be (N/2+1)*D cycles:
4 ° CPE =D/2
_,GL d _,Gi'] d = CPE matches prediction!
__J 6 7

What Now?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Unrolling & Accumulating

m Ildea
= Canunroll to any degree L
= Can accumulate K results in parallel
= L must be multiple of K

m Limitations
= Diminishing returns
= Cannot go beyond throughput limitations of execution units
= lLarge overhead for short lengths
= Finish off iterations sequentially

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Unrolling & Accumulating: Double *

m Case
" |ntel Haswell
" Double FP Multiplication
= Latency bound: 5.00. Throughput bound: 0.50

FP * Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 501 5.01 501 501 501 501 5.01
‘g 2 2.51 2.51 2.51
e
= 3 1.67
—
g 4 1.25 1.26
a 6 0.84 0.88
Q
<= 8 0.63
10 0.51
12 0.52

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Unrolling & Accumulating: Int +

m Case
" |ntel Haswell

" |nteger addition
= Latency bound: 1.00. Throughput bound: 1.00

FP * Unrolling Factor L
K 1 2 3 4 6 8 10 12
1 1.27 1.01 1.01 1.01 1.01 1.01 1.01
g 2 0.81 0.69 0.54
e
= 3 0.74
—
g 4 0.69 1.24
a 6 0.56 0.56
Q
< 8 0.54
10 0.54
12 0.56

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Achievable Performance

Method Integer Double FP

Operation Add Mult Add Mult
Best 0.54 1.01 1.01 0.52
Latency Bound 1.00 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50

m Limited only by throughput of functional units
m Up to 42X improvement over original, unoptimized code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Programming witH AVX2 E—

YMM Registers
B 16 total, each 32 bytes
B 32 single-byte integers

B 16 16-bit integers

B 8 32-bit integers

B 8 single-precision floats

B 4 double-precision floats

B 1 single-precision float

B 1 double-precision float

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

SIMD Operations

B SIMD Operations: Single Precision
vaddsd %ymmO, %ymml, %ymml

%ymmO

})\})\})\})\})\})\})\})\W/

oymml

B SIMD Operations: Double Precision
vaddpd %ymmO, %ymml, %ymml

%ymmO

BB BB

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

%ymm1

Carnegie Mellon

Using Vector Instructions

Method Integer Double FP

Operation Add Mult Add Mult
Scalar Best 0.54 1.01 1.01 0.52
Vector Best 0.06 0.24 0.25 0.16
Latency Bound 0.50 3.00 3.00 5.00
Throughput Bound 0.50 1.00 1.00 0.50
Vec Throughput Bound 0.06 0.12 0.25 0.12

m Make use of AVX Instructions

= Parallel operations on multiple data elements
= See Web Aside OPT:SIMD on CS:APP web page

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

What About Branches?

m Challenge

Carnegie Mellon

® |Instruction Control Unit must work well ahead of Execution Unit
to generate enough operations to keep EU busy

404663:
404668:
40466Db:
40466d:

404685:

} Executing

How to continue?

mov $0x0, %eax

cmp (%rdn) ,%rsi
jge 404685 <
mov Ox8(%rdi) ,%rax
repz retq

= When encounters conditional branch, cannot reliably determine where to
continue fetching

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

49

Carnegie Mellon

Modern CPU Design

Instruction Control
Control - .
Instruction

Retirement

Sennnns Unit
: Register Instruction PLRITTLNE
File Decode |

Cache

Operations

Register Updates Prediction OK?

\ 4

. Functional
Bra Load o .
Units
A A A A y

a A

\ 4 A 4 A 4 A 4 A 4 A 4

Operation Results

Addr. Addr.

Data Data

Execution

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Branch Outcomes

= When encounter conditional branch, cannot determine where to continue
fetching

= Branch Taken: Transfer control to branch target
= Branch Not-Taken: Continue with next instruction in sequence
= Cannot resolve until outcome determined by branch/integer unit

404663: mov $0x0 , %eax
404668: cmp (%rdin) ,%rsi

40466b: jge 404685 I i
40466d: mov Ox8(%rdi) ,%rax ? Branch Not-Taken

Branch Taken

404685: repz retq

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Branch Prediction

m Ildea
= Guess which way branch will go
= Begin executing instructions at predicted position
= But don’t actually modify register or memory data

404663: mov $0x0, %eax
404668: cmp (%rdi) ,%rsi
40466b: jge 404685

40466d: mov Ox8(%rdi),%rax | » Predict Taken

404685: repz retq } Begin
Execution

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Branch Prediction Through Loop

401029: vmulsd (%rdx) ,%xmmO0,%xmmO Assume
40102d: add $0x8, %rdx vector Iength =100
401031: cmp %rax,%rdx
401034: jne 401029 i =98

7 Predict Taken (OK)
401029: vmulsd (%rdx),%xmmO,%xmmO
40102d: add $0x8, %rdx
401031: cmp %rax,%rdx
401034: jne 401029 i=99

— 7 Predict Taken

401029: wvmulsd (%rdx),%xmm0,%xmmO (Oops) —|—
40102d: add $0x8,%rdx T
401031: cmp %rax,%rdx Read Executed
401034: jne 401029 i=100 invalid

7 location
401029: vmulsd (%rdx),%xmmO,%xmmO
40102d: add $0x8,%rdx Fetched
401031: cmp %rax,%rdx
401034: jne 401029 i=101 _l_

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

53

Carnegie Mellon

Branch Misprediction Invalidation

401029: vmulsd (%rdx) ,%xmmO0,%xmmO Assume

40102d: add $0x8, %rdx vector Iength =100
401031: cmp %rax,%rdx

401034: jne 401029 i =98

7 Predict Taken (OK)

401029: vmulsd (%rdx),%xmmO,%xmmO
40102d: add $0x8, %rdx
401031: cmp %rax,%rdx
401034: jne 401029 i=99

— Predict Taken
7 (Oops)
\

0 0 0

40102d: add $0x8, %rdx
401031: cmp Y%rax,%rdx

401034 : ine 401029 1 =100
? > Invalidate
_401029- vmu 0 0 0
40102d - add $ﬂy97%rdy
401031 - cmn %rnyj%rdy

401034+ jne 401029 =101

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Branch Misprediction Recovery

401029: vmulsd (%rdx),%xmmO,%xmmO

40102d: add $0x8, %rdx .

401031: cmp %rax,%rdx =99 | pefinitely not taken
401034: jne 401029

401036: jmp 401040 — Reload

401040: wvmovsd %xmmO, (%ri2) } Pipeline

m Performance Cost
= Multiple clock cycles on modern processor
= Can be a major performance limiter

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Getting High Performance

m Good compiler and flags

m Don’t do anything stupid
= Watch out for hidden algorithmic inefficiencies
= Write compiler-friendly code

= Watch out for optimization blockers:
procedure calls & memory references

= Look carefully at innermost loops (where most work is done)

m Tune code for machine
= Exploit instruction-level parallelism
= Avoid unpredictable branches
= Make code cache friendly (Covered later in course)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

	Program Optimization��15-213: Introduction to Computer Systems�10th Lecture, Feb. 11, 2016
	Today
	Performance Realities
	Optimizing Compilers
	Limitations of Optimizing Compilers
	Generally Useful Optimizations
	Compiler-Generated Code Motion (-O1)
	Reduction in Strength
	Share Common Subexpressions
	Optimization Blocker #1: Procedure Calls
	Lower Case Conversion Performance
	Convert Loop To Goto Form
	Calling Strlen
	Improving Performance
	Lower Case Conversion Performance
	Optimization Blocker: Procedure Calls
	Memory Matters
	Memory Aliasing
	Removing Aliasing
	Optimization Blocker: Memory Aliasing
	Exploiting Instruction-Level Parallelism
	Benchmark Example: Data Type for Vectors
	Benchmark Computation
	Cycles Per Element (CPE)
	Benchmark Performance
	Basic Optimizations
	Effect of Basic Optimizations
	Modern CPU Design
	Superscalar Processor
	Pipelined Functional Units
	Haswell CPU
	x86-64 Compilation of Combine4
	Combine4 = Serial Computation (OP = *)
	Loop Unrolling (2x1)
	Effect of Loop Unrolling
	Loop Unrolling with Reassociation (2x1a)
	Effect of Reassociation
	Reassociated Computation
	Loop Unrolling with Separate Accumulators (2x2)
	Effect of Separate Accumulators
	Separate Accumulators
	Unrolling & Accumulating
	Unrolling & Accumulating: Double *
	Unrolling & Accumulating: Int +
	Achievable Performance
	Programming with AVX2
	SIMD Operations
	Using Vector Instructions
	What About Branches?
	Modern CPU Design
	Branch Outcomes
	Branch Prediction
	Branch Prediction Through Loop
	Branch Misprediction Invalidation
	Branch Misprediction Recovery
	Getting High Performance

