Carnegie Mellon

Bits, Bytes, and Integers

15-213: Introduction to Computer Systems
2" Lecture, Jan. 14, 2016

Instructors:
Franz Franchetti, Seth Copen Goldstein, Ralf Brown, and Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

1/18 is MLK Day—No Recitations

m No recitations, So ...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Waitlist questions

m 15-213: Catherine Fichtner (cathyf@cs.cmu.edu)
m 18-213: Zara Collier (zcollier@andrew.cmu.edu)
m 15-513: Catherine Fichtner (cathyf@cs.cmu.edu)

m Wailtlists are being cleared—everybody will get in

m Please don’t contact the instructors with waitlist
guestions.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

mailto:cathyf@cs.cmu.edu
mailto:zcollier@andrew.cmu.edu
mailto:cathyf@cs.cmu.edu

Carnegie Mellon

Autolab accounts

m You should have an autolab account by now

m You must be enrolled to get an account
= Autolab is not tied in to the Hub’s rosters

= |f you do NOT have an Autolab account for 213/513 this semester,
please add your name to the following Google form. The link is
available from the course web page.
https://docs.google.com/forms/d/1M3dHRvEraM8eCpk9jg46rkgDge
Eho ffhdce7F25rqY/viewform?usp=send form

We will update the autolab accounts once a day, so check back in 24
hours.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

https://docs.google.com/forms/d/1M3dHRvEraM8eCpk9jq46rkqDqeEho_ffhdce7F25rqY/viewform?usp=send_form
https://docs.google.com/forms/d/1M3dHRvEraM8eCpk9jq46rkqDqeEho_ffhdce7F25rqY/viewform?usp=send_form

Carnegie Mellon

Blackboard and Piazza

m We do not use Blackboard or Piazza

m Please send your questions to the 15-213 staff mailing list
15-213-staff@cs.cmu.edu

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

mailto:15-213-staff@cs.cmu.edu

Carnegie Mellon

Linux Bootcamp

m We will hold a linux bootcamp Sunday evening, 1/17,
8pm in GHC4401.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

First Assignment: Data Lab

m Data Lab is out

m Due: Thursday, Jan 28th 2016, 11:59:00 pm

m Last Possible Time to Turn in: Fri, Jan 29, 11:59PM
m Read the instructions carefully

m Start early

m Seek help (office hours start on Sunday)

m Based on Lecture 2,3, and 4

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Representing information as bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Everything is bits

m EachbitisOor1l
m By encoding/interpreting sets of bits in various ways

= Computers determine what to do (instructions)
= .. and represent and manipulate numbers, sets, strings, etc...
m Why bits? Electronic Implementation

= Easy to store with bistable elements
= Reliably transmitted on noisy and inaccurate wires

e > < > ‘
0 1 — 0 —

1.1V —

0.0V — /‘A’\/\\
0.2V —N\J/ \’\f
0.0V —

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

For example, can count in binary

m Base 2 Number Representation
" Represent 15213,,as11101101101101,
= Represent 1.20,,as 1.0011001100110011[0011]...,
" Represent 1.5213 X 10 as 1.1101101101101, X 213

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Encoding Byte Values

m Byte = 8 bits
= Binary 000000002t0 11111111>
= Decimal: 010 to 25510

" Hexadecimal 0016 to FFi6

= Base 16 number representation

©| 0[N O O KW N (O
o
[
o
o

T M| O] O TI| 3> O] 00| N[O] UT| B WIN| = O

[¥aYs [faY4 { V4 ir’ 1000

= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F 1001
= Write FA1D37B1sin C as 10 | 1010
11 | 1011

— OXFA1D37B 15 T 1100

_ 13| 1101
Oxfald37b T TI10

15| 1111

15213: 0011 1011 0110 1101

3 B 6 D

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
fong 4 8 8
float 4 4 4
double 8 8 8
pointer 4 8 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Bit-level manipulations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as O

And Or
= A&B = 1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&0 1 | 10 1
010 O 0|0 1
110 1 111 1
Not Exclusive-Or (Xor)
= “A =1 when A=0 = AMB = 1 when either A=1 or B=1, but not both
~ AO 1
R 0[0 f

110 111 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

General Boolean Algebras

m Operate on Bit Vectors
= QOperations applied bitwise

01101001 01101001 01101001
& 01010101] 01010101 ~ 01010101 -~ 01010101

01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Example: Representing & Manipulating Sets

m Representation
= Width w bit vector represents subsets of {0, ..., w—1}
" a=1ifj €A

= 01101001 {0,3,5,6}
= 76543210

= 01010101 {0,2,4,6}

= /6543210
m Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Bit-Level Operations in C

>
ions & A Available in C Nl 0“6&?\3“@6
m Operations &, |, ~, " Available in S o 1 onog
= Apply to any “integral” data type 1 |1 | 0001
: , 2 | 2 | 0010
= long, int, short, char, unsigned 3 T3 10011
= View arguments as bit vectors 4 | 4 | 0100
= Arguments applied bit-wise o> |5 10101
8 PP 6 | 6 | 0110
7 | 7 | 0111
m Examples (Char data type) 85811000
= ~0x41 > 9 | 9 | 1001
A |10]| 1010
B |11]| 1011
= ~0x00 -> C (12| 1100
D |13 | 1101
E |14 | 1110
= 0Ox69 & 0x55 > F (15[1111

0x69 | 0X55 ->

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Bit-Level Operations in C

N
>
Nl o°6ﬁ\°®d
m Operations & ~, ™ Available in C
P e 0 [0 [0000
= Apply to any “integral” data type 1 |1 | 0001
: : 2 | 2 | 0010
long, int, short, char, unsigned 3 13 10011
= View arguments as bit vectors 4 | 4 | 0100
= Arguments applied bit-wise g 2 8%(1%
/7 | 7 | 0111
m Examples (Char data type) 5 T8 11600
= ~0x41 - OxBE 9 | 9 | 1001
o A _[10] 1010
0100 00012 > 1011 11102 5 T11 1011
= ~0x00 - OxFF C [12 | 1100
- ~0000 00002 > 1111 1111, D |15 11101
E |14] 1110
= 0x69 & 0x55 - 0x41 F [15 | 1111

= 0110 10012 & 0101 01012 = 0100 0001>
0x69 | 0x55 - 0x7D
= 0110 10012]0101 01012 - 0111 11012

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Contrast: Logic Operations in C

m Contrast to Bit-Level Operators
" Logic Operation R |],!

= View 0 as “Fal
= Anythigs

.« Al
I Watch out for && vs. & (and || vs. |)...

= Example one of the m.ore common oopsies in
e C programming

= 10x00 > N
= 110x41-> 0x01

= Early

= 0x69 && 0x55 - 0x01
= 0x69 || 0x55 - 0x01
" p&&*p (avoids null pointer access)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Shift Operations
m Left Shift: X << vy Argument x| 01100010
= Shift bit-vector X left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right

m Right Shift: X >> vy
= Shift bit-vector X right y positions

Log.>> 2 | 00011000

Arith. >> 21 00011000

= Throw away extra bits on right Argument x [10100010

" |ogical shift << 3 00010000

= Fill with 0’s on left Log.>> 2 | 00101000
" Arithmetic shift

= Replicate most significant bit on left

Arith. >> 21 11101000

m Undefined Behavior

= Shift amount < 0 or > word size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Today: Bits, Bytes, and Integers

N
N
m Integers
= Representation: unsigned and signed
o
o
o
o
N
N

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Encoding Integers

Unsigned Two’s Complement
w-1) w—2 .
B2UX) = Y x-2' B2T(X) = —Xuq-2" 4+ x-2'
i=0 i=0
short int x = 15213; ‘\\\\\\\
short int y = -15213; Sign Bit

m Cshort 2 bytes long

Decimal Hex Binary
X 15213 3B 6D| 00111011 01101101
y -15213| C4 93| 11000100 10010011

m Sign Bit
= For 2’s complement, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Two-complement: Simple Example

-16 8
10= 0 1 0 1 O 8+2 = 10

N
N
=

-16
1 0 1 1 O -16+4+2 = -10

o0
N
N
=

-10

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Two-complement Encoding Example (Cont.)

X = 15213: 00111011 01101101

y = -15213: 11000100 10010011
Weight 15213 -15213

1 1 1 1 1

2 0 0 1 2

4 1 4 0 0

8 1 8 0 0

16 0 0 1 16

32 1 32 0 0

64 1 64 0 0

128 0 0 1 128

256 1 256 0 0

512 1 512 0 0

1024 0 0 1 1024

2048 1 2048 0 0

4096 1 4096 0 0

8192 1 8192 0 0

16384 0 0 1 16384

-32768 0 0 1 -32768

Sum 15213 -15213

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Numeric Ranges

= Unsigned Values m Two’s Complement Values

* UMin =0 = TMin = 2wl
000...0 100...0
[— w_
UMax "1 " TMax = 271 —-1
111...1 011..1
m Other Values
" Minus1
111...1
Values for W =16
Decimal Hex Binary
UMax 65535(FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMIN -32768| 80 00| 10000000 00000000
-1 -1 FF FF}] 11111111 11111111
o) 0o OO0 00| 00000000 00000000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Values for Different Word Sizes

W
8 16 32 64
UMax | 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax | 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin | -128| -32,768 -2,147,483,648 -9,223,372,036,854,775,808
m Observations m CProgramming
= |TMin| = TMax+1 = #include <limits.h>
= Asymmetric range = Declares constants, e.g.,
" UMax = 2*TMax+1 = ULONG_MAX
" LONG_MAX
"= LONG_MIN

= Values platform specific

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Unsighed & Signed Numeric Values

X B2U(X) | B2T(X)
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 7
1010 10 -6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14)
1111 15 il

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m Equivalence

= Same encodings for nonnegative
values

m Uniqueness

= Every bit pattern represents
unique integer value

= Each representable integer has
unique bit encoding

m = Can Invert Mappings

= U2B(x) = B2U(x)

= Bit pattern for unsigned
integer

= T2B(x) = B2T(x)

= Bit pattern for two’s comp
integer

27

Carnegie Mellon

Today: Bits, Bytes, and Integers

n
n
m Integers
o
= Conversion, casting
D
D
D
n

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Mapping Between Sighed & Unsigned

Two’s Complement m— Unsigned
X *| T2B T B2U > UX
Maintain Same Bit Pattern
Unsigned U2T Two’s Complement
Ux »| U2B »| B2T - X

X

Maintain Same Bit Pattern

m Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Mapping Signed < Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 — U 5
0110 6 6
0111 7 —U2Tf— 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Mapping Signed < Unsigned

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 — 3
0100 4 4> 4
0101 5 5
0110 6 6
0111 7 7
1000 _8 8
1001 _7 9
1010 _6 10
1011 5 +/- 16 11
1100 _4 12
1101 _3 13
1110 2 14
1111 1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Relation between Signhed & Unsignhed

Two’s Complement - Unsigned
X *| T2B T B2U > UX

Maintain Same Bit Pattern

w-1 0
UX [+]+[+ vee ++[+

X -|+]+ 000 +1+1|+

Large negative weight
becomes
Large positive weight

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Conversion Visualized

m 2’s Comp. —> Unsigned

= QOrdering Inversion ® UMax

o —
= Negative — Big Positive UMax =1

_ ﬁ. TMax +1 | unsigned
TMax @ *® TMax Range

2’s Complement

® @
Range _2 .J/ 0)
-2

| TMin

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers

= Unsigned if have “U” as suffix
OU, 4294967259U

m Casting

= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (Iint) ux;
uy = (unsigned) ty;

= Implicit casting also occurs via assignments and procedure calls
tX = ux; int fun(unsigned u);
uy = ty; uy = fun(tx);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Casting Surprises

m Expression Evaluation

= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

" Including comparison operations <, >, ==, <=, >=

= Examples for W=32: TMIN =-2,147,483,648,

m Constant,
0
-1
-1
2147483647
2147483647U
-1
(unsigned)-1
2147483647
2147483647

Constant,

ou

0

ou

-2147483647-1
-2147483647-1

-2

-2

2147483648U

(int) 2147483648U

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Relation

<

v N V V AN V V

TMAX = 2,147,483,647

Evaluation

unsigned
signed
unsigned
signed
unsigned
signed
unsigned
unsigned
signed

35

Carnegie Mellon

Summary
Casting Sighed € Unsigned: Basic Rules

m Bit pattern is maintained
m But reinterpreted
m Can have unexpected effects: adding or subtracting 2%

m Expression containing signed and unsigned int
= Intiscasttounsigned!!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Today: Bits, Bytes, and Integers

n
n
m Integers
o
D
= Expanding, truncating
D
D
n

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Sign Extension

m Task:
= Given w-bit signed integer x
= Convert it to w+k-bit integer with same value

m Rule:
= Make k copies of sign bit:
® X = Xy Xpye1 s Xpye1 2 Xy 100 X
L]
k copies of MSB < w >
o000
X ! o0 0 o0 0
< k ><€ W >

Bryant and O’Hallaron, Computer Systems: A Programmer’s | ctive, Third Edition 38

Carnegie Mellon

Sign Extension: Simple Example

Positive number Negative number
16 8 4 2 1 16 8 4 2 1
10 = 0 1 O 1 O -10 = 1 1 O
3 f 8 4 2 1 -3 Jf 8 4 2 1
10 = 1 0 1 0] -10 = 1 0] 1 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Larger Sign Extension Example

short int x = 15213;

int iIXx = (int) Xx;

short Int y = -15213;

int 1y = (int) y;

Decimal Hex Binary

X 15213 3B 6D 00111011 01101101
1X 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
1y -15213| FF FF C4 93 11111111 11111111 11000100 10010011

m Converting from smaller to larger integer data type
m C automatically performs sign extension

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Truncation

m Task:
= Given k+w-bit signed or unsigned integer X
= Convert it to w-bit integer X’ with same value for “small enough” X

m Rule:
= Drop top k bits:
= X' = X1 Xyp s X
< k >< W >
X o0 0 o000
X 4 o000
< W >

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Truncation: Simple Example

No sign change Sign change

16 8 4 2 1 16 8 4 2 1

2 = O O O 1 O 10 = 0 1 O 1 O
8 4 2 1 8 4 2 1

2 = O O 1 O -6 = 1 O 1 O
2 mod 16 = 2 10 mod 16 = 10U mod 16 = 10U = -6

_16 4 1 -16 8 1

-6 = 1 1 O 1 O -10 = 1 O 1 1 O
8 4 2 1 8 4 2 1

-6 = 1 0] 1 0 6 = 0 1 1 0
-6 mod 16 = 26U mod 16 = 10U = -6 ~10 mod 16 = 22U mod 16 = 6U = 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added
= Signed: sign extension
= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
= Unsigned: mod operation
= Signed: similar to mod
= For small numbers yields expected behavior

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Summary of Today: Bits, Bytes, and Integers

m Representing information as bits
m Bit-level manipulations

m Integers
= Representation: unsigned and signed
= Conversion, casting
= Expanding, truncating

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

	Bits, Bytes, and Integers��15-213: Introduction to Computer Systems�2nd Lecture, Jan. 14, 2016
	1/18 is MLK Day—No Recitations
	 Waitlist questions
	 Autolab accounts
	Blackboard and Piazza
	 Linux Bootcamp
	 First Assignment: Data Lab
	Today: Bits, Bytes, and Integers
	Everything is bits
	For example, can count in binary
	Encoding Byte Values
	Example Data Representations
	Today: Bits, Bytes, and Integers
	Boolean Algebra
	General Boolean Algebras
	Example: Representing & Manipulating Sets
	Bit-Level Operations in C
	Bit-Level Operations in C
	Contrast: Logic Operations in C
	Shift Operations
	Today: Bits, Bytes, and Integers
	Encoding Integers
	Two-complement: Simple Example
	Two-complement Encoding Example (Cont.)
	Numeric Ranges
	Values for Different Word Sizes
	Unsigned & Signed Numeric Values
	Today: Bits, Bytes, and Integers
	Mapping Between Signed & Unsigned
	Mapping Signed  Unsigned
	Mapping Signed  Unsigned
	Relation between Signed & Unsigned
	Conversion Visualized
	Signed vs. Unsigned in C
	Casting Surprises
	Summary�Casting Signed ↔ Unsigned: Basic Rules
	Today: Bits, Bytes, and Integers
	Sign Extension
	Sign Extension: Simple Example
	Larger Sign Extension Example
	Truncation
	Truncation: Simple Example
	Summary:�Expanding, Truncating: Basic Rules
	Summary of Today: Bits, Bytes, and Integers

