
Carnegie Mellon

1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes, and Integers

15-213: Introduction to Computer Systems
2nd Lecture, Jan. 14, 2016

Instructors:
Franz Franchetti, Seth Copen Goldstein, Ralf Brown, and Brian Railing

Carnegie Mellon

2 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

1/18 is MLK Day—No Recitations
 No recitations, So …

Carnegie Mellon

3 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Waitlist questions
 15-213: Catherine Fichtner (cathyf@cs.cmu.edu)
 18-213: Zara Collier (zcollier@andrew.cmu.edu)
 15-513: Catherine Fichtner (cathyf@cs.cmu.edu)

 Wailtlists are being cleared—everybody will get in

 Please don’t contact the instructors with waitlist

questions.

mailto:cathyf@cs.cmu.edu
mailto:zcollier@andrew.cmu.edu
mailto:cathyf@cs.cmu.edu

Carnegie Mellon

4 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Autolab accounts
 You should have an autolab account by now

 You must be enrolled to get an account
 Autolab is not tied in to the Hub’s rosters
 If you do NOT have an Autolab account for 213/513 this semester,

please add your name to the following Google form. The link is
available from the course web page.
https://docs.google.com/forms/d/1M3dHRvEraM8eCpk9jq46rkqDqe
Eho_ffhdce7F25rqY/viewform?usp=send_form
We will update the autolab accounts once a day, so check back in 24
hours.

https://docs.google.com/forms/d/1M3dHRvEraM8eCpk9jq46rkqDqeEho_ffhdce7F25rqY/viewform?usp=send_form
https://docs.google.com/forms/d/1M3dHRvEraM8eCpk9jq46rkqDqeEho_ffhdce7F25rqY/viewform?usp=send_form

Carnegie Mellon

5 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blackboard and Piazza
 We do not use Blackboard or Piazza

 Please send your questions to the 15-213 staff mailing list

15-213-staff@cs.cmu.edu

mailto:15-213-staff@cs.cmu.edu

Carnegie Mellon

6 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Linux Bootcamp
 We will hold a linux bootcamp Sunday evening, 1/17,

8pm in GHC4401.

Carnegie Mellon

7 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 First Assignment: Data Lab
 Data Lab is out

 Due: Thursday, Jan 28th 2016, 11:59:00 pm

 Last Possible Time to Turn in: Fri, Jan 29, 11:59PM

 Read the instructions carefully

 Start early

 Seek help (office hours start on Sunday)

 Based on Lecture 2, 3 , and 4

Carnegie Mellon

8 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

9 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Everything is bits
 Each bit is 0 or 1
 By encoding/interpreting sets of bits in various ways
 Computers determine what to do (instructions)
 … and represent and manipulate numbers, sets, strings, etc…

 Why bits? Electronic Implementation
 Easy to store with bistable elements
 Reliably transmitted on noisy and inaccurate wires

0.0V

0.2V

0.9V

1.1V

0 1 0

Carnegie Mellon

10 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

For example, can count in binary
 Base 2 Number Representation
 Represent 1521310 as 111011011011012

 Represent 1.2010 as 1.0011001100110011[0011]…2

 Represent 1.5213 X 104 as 1.11011011011012 X 213

Carnegie Mellon

11 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Byte Values
 Byte = 8 bits
 Binary 000000002 to 111111112
 Decimal: 010 to 25510
 Hexadecimal 0016 to FF16
 Base 16 number representation
 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 Write FA1D37B16 in C as

– 0xFA1D37B
– 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

15213: 0011 1011 0110 1101

3 B 6 D

Carnegie Mellon

12 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8

Carnegie Mellon

13 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

14 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Boolean Algebra
 Developed by George Boole in 19th Century
 Algebraic representation of logic
 Encode “True” as 1 and “False” as 0

And
 A&B = 1 when both A=1 and B=1

Or
 A|B = 1 when either A=1 or B=1

Not
 ~A = 1 when A=0

Exclusive-Or (Xor)
 A^B = 1 when either A=1 or B=1, but not both

Carnegie Mellon

15 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Boolean Algebras
 Operate on Bit Vectors
 Operations applied bitwise

 All of the Properties of Boolean Algebra Apply

 01101001
& 01010101
 01000001

 01101001
| 01010101
 01111101

 01101001
^ 01010101
 00111100

~ 01010101
 10101010 01000001 01111101 00111100 10101010

Carnegie Mellon

16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Representing & Manipulating Sets
 Representation
 Width w bit vector represents subsets of {0, …, w–1}
 aj = 1 if j ∈ A

 01101001 { 0, 3, 5, 6 }
 76543210

 01010101 { 0, 2, 4, 6 }
 76543210

 Operations
 & Intersection 01000001 { 0, 6 }
 | Union 01111101 { 0, 2, 3, 4, 5, 6 }
 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }
 ~ Complement 10101010 { 1, 3, 5, 7 }

Carnegie Mellon

17 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bit-Level Operations in C

 Operations &, |, ~, ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned
 View arguments as bit vectors
 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41 → 0xBE

 ~010000012 → 101111102
 ~0x00 → 0xFF

 ~000000002 → 111111112
 0x69 & 0x55 → 0x41

 011010012 & 010101012 → 010000012
 0x69 | 0x55 → 0x7D

 011010012 | 010101012 → 011111012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Carnegie Mellon

18 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Operations &, |, ~, ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned
 View arguments as bit vectors
 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41 → 0xBE

 ~010000012 → 101111102
 ~0x00 → 0xFF

 ~000000002 → 111111112
 0x69 & 0x55 → 0x41

 011010012 & 010101012 → 010000012
 0x69 | 0x55 → 0x7D

 011010012 | 010101012 → 011111012

Bit-Level Operations in C

 Operations &, |, ~, ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned
 View arguments as bit vectors
 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41 → 0xBE

 ~0100 00012 → 1011 11102
 ~0x00 → 0xFF

 ~0000 00002 → 1111 11112
 0x69 & 0x55 → 0x41

 0110 10012 & 0101 01012 → 0100 00012
 0x69 | 0x55 → 0x7D

 0110 10012 | 0101 01012 → 0111 11012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Carnegie Mellon

19 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Contrast: Logic Operations in C
 Contrast to Bit-Level Operators
 Logic Operations: &&, ||, !
 View 0 as “False”
 Anything nonzero as “True”
 Always return 0 or 1
 Early termination

 Examples (char data type)
 !0x41 → 0x00
 !0x00 → 0x01
 !!0x41→ 0x01

 0x69 && 0x55 → 0x01
 0x69 || 0x55 → 0x01
 p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)…
one of the more common oopsies in
C programming

Carnegie Mellon

20 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shift Operations
 Left Shift: x << y
 Shift bit-vector x left y positions

– Throw away extra bits on left
 Fill with 0’s on right

 Right Shift: x >> y
 Shift bit-vector x right y positions
 Throw away extra bits on right

 Logical shift
 Fill with 0’s on left

 Arithmetic shift
 Replicate most significant bit on left

 Undefined Behavior
 Shift amount < 0 or ≥ word size

01100010 Argument x

00010000 << 3

00011000 Log. >> 2

00011000 Arith. >> 2

10100010 Argument x

00010000 << 3

00101000 Log. >> 2

11101000 Arith. >> 2

00010000 00010000

00011000 00011000

00011000 00011000

00010000

00101000

11101000

00010000

00101000

11101000

Carnegie Mellon

21 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings
 Summary

Carnegie Mellon

22 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Integers

 short int x = 15213;
 short int y = -15213;

 C short 2 bytes long

 Sign Bit
 For 2’s complement, most significant bit indicates sign

 0 for nonnegative
 1 for negative

B2T (X) = −xw−1 ⋅2w−1 + xi ⋅2 i

i=0

w−2

∑B2U(X) = xi ⋅2 i

i=0

w−1

∑
Unsigned Two’s Complement

Sign Bit

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
y -15213 C4 93 11000100 10010011

Carnegie Mellon

23 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two-complement: Simple Example

10 =
-16 8 4 2 1

0 1 0 1 0

-10 =
-16 8 4 2 1

1 0 1 1 0

8+2 = 10

-16+4+2 = -10

Carnegie Mellon

24 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two-complement Encoding Example (Cont.)
 x = 15213: 00111011 01101101
 y = -15213: 11000100 10010011

Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0

16 0 0 1 16
32 1 32 0 0
64 1 64 0 0

128 0 0 1 128
256 1 256 0 0
512 1 512 0 0

1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

Carnegie Mellon

25 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Numeric Ranges
 Unsigned Values
 UMin = 0

000…0
 UMax = 2w – 1

111…1

 Two’s Complement Values
 TMin = –2w–1

100…0
 TMax = 2w–1 – 1

011…1
 Other Values
 Minus 1

111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111
TMax 32767 7F FF 01111111 11111111
TMin -32768 80 00 10000000 00000000
-1 -1 FF FF 11111111 11111111
0 0 00 00 00000000 00000000

Values for W = 16

Carnegie Mellon

26 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Values for Different Word Sizes

 Observations
 |TMin | = TMax + 1

 Asymmetric range
 UMax = 2 * TMax + 1

 W
 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

 C Programming
 #include <limits.h>
 Declares constants, e.g.,
 ULONG_MAX
 LONG_MAX
 LONG_MIN

 Values platform specific

Carnegie Mellon

27 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned & Signed Numeric Values
 Equivalence
 Same encodings for nonnegative

values

 Uniqueness
 Every bit pattern represents

unique integer value
 Each representable integer has

unique bit encoding

 ⇒ Can Invert Mappings
 U2B(x) = B2U-1(x)

 Bit pattern for unsigned
integer

 T2B(x) = B2T-1(x)
 Bit pattern for two’s comp

integer

X B2T(X) B2U(X)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–8 8
–7 9
–6 10
–5 11
–4 12
–3 13
–2 14
–1 15

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7

Carnegie Mellon

28 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

29 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux X

Mapping Between Signed & Unsigned

U2T
U2B B2T

Two’s Complement Unsigned

Maintain Same Bit Pattern

ux x
X

 Mappings between unsigned and two’s complement numbers:
 Keep bit representations and reinterpret

Carnegie Mellon

30 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed ↔ Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T
T2U

Carnegie Mellon

31 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed ↔ Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

Carnegie Mellon

32 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

+ + + + + + • • •
- + + + + + • • •

ux
x

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U
T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux X

Carnegie Mellon

33 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized
 2’s Comp. → Unsigned
 Ordering Inversion
 Negative → Big Positive

Carnegie Mellon

34 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed vs. Unsigned in C
 Constants
 By default are considered to be signed integers
 Unsigned if have “U” as suffix

0U, 4294967259U

 Casting
 Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

 Implicit casting also occurs via assignments and procedure calls

tx = ux; int fun(unsigned u);
uy = ty; uy = fun(tx);

Carnegie Mellon

35 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 0 0U == unsigned
 -1 0 < signed
 -1 0U > unsigned
 2147483647 -2147483648 > signed
 2147483647U -2147483648 < unsigned
 -1 -2 > signed
 (unsigned) -1 -2 > unsigned
 2147483647 2147483648U < unsigned
 2147483647 (int) 2147483648U > signed

Casting Surprises
 Expression Evaluation

 If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned
 Including comparison operations <, >, ==, <=, >=
 Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

 Constant1 Constant2 Relation Evaluation
 0 0U
 -1 0
 -1 0U
 2147483647 -2147483647-1
 2147483647U -2147483647-1
 -1 -2
 (unsigned)-1 -2
 2147483647 2147483648U
 2147483647 (int) 2147483648U

Carnegie Mellon

36 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
Casting Signed ↔ Unsigned: Basic Rules
 Bit pattern is maintained
 But reinterpreted
 Can have unexpected effects: adding or subtracting 2w

 Expression containing signed and unsigned int
 int is cast to unsigned!!

Carnegie Mellon

37 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting
 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

38 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension
 Task:
 Given w-bit signed integer x
 Convert it to w+k-bit integer with same value

 Rule:
 Make k copies of sign bit:
 X ′ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • • X

X ′ • • • • • •

• • •

w

w k

Carnegie Mellon

39 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

10 =

-32 16 8 4 2 1

0 0 1 0 1 0

-10 =

-16 8 4 2 1

1 1 1 1 0

-32 16 8 4 2 1

1 1 1 0 1 0 -10 =

Positive number Negative number

Carnegie Mellon

40 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Larger Sign Extension Example

 Converting from smaller to larger integer data type
 C automatically performs sign extension

 short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Carnegie Mellon

41 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Truncation
 Task:
 Given k+w-bit signed or unsigned integer X
 Convert it to w-bit integer X’ with same value for “small enough” X

 Rule:
 Drop top k bits:
 X ′ = xw–1 , xw–2 ,…, x0

• • •

• • • X ′
w

X • • • • • •
w k

Carnegie Mellon

42 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Truncation: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

 6 =

-8 4 2 1

0 1 1 0

Sign change

2 =

-16 8 4 2 1

0 0 0 1 0

2 =

-8 4 2 1

0 0 1 0

-6 =

-16 8 4 2 1

1 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

No sign change

10 mod 16 = 10U mod 16 = 10U = -6

-10 mod 16 = 22U mod 16 = 6U = 6

2 mod 16 = 2

-6 mod 16 = 26U mod 16 = 10U = -6

Carnegie Mellon

43 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary:
Expanding, Truncating: Basic Rules
 Expanding (e.g., short int to int)
 Unsigned: zeros added
 Signed: sign extension
 Both yield expected result

 Truncating (e.g., unsigned to unsigned short)
 Unsigned/signed: bits are truncated
 Result reinterpreted
 Unsigned: mod operation
 Signed: similar to mod
 For small numbers yields expected behavior

Carnegie Mellon

44 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Today: Bits, Bytes, and Integers
 Representing information as bits
 Bit-level manipulations
 Integers
 Representation: unsigned and signed
 Conversion, casting
 Expanding, truncating
 Addition, negation, multiplication, shifting

 Representations in memory, pointers, strings
 Summary

	Bits, Bytes, and Integers��15-213: Introduction to Computer Systems�2nd Lecture, Jan. 14, 2016
	1/18 is MLK Day—No Recitations
	 Waitlist questions
	 Autolab accounts
	Blackboard and Piazza
	 Linux Bootcamp
	 First Assignment: Data Lab
	Today: Bits, Bytes, and Integers
	Everything is bits
	For example, can count in binary
	Encoding Byte Values
	Example Data Representations
	Today: Bits, Bytes, and Integers
	Boolean Algebra
	General Boolean Algebras
	Example: Representing & Manipulating Sets
	Bit-Level Operations in C
	Bit-Level Operations in C
	Contrast: Logic Operations in C
	Shift Operations
	Today: Bits, Bytes, and Integers
	Encoding Integers
	Two-complement: Simple Example
	Two-complement Encoding Example (Cont.)
	Numeric Ranges
	Values for Different Word Sizes
	Unsigned & Signed Numeric Values
	Today: Bits, Bytes, and Integers
	Mapping Between Signed & Unsigned
	Mapping Signed  Unsigned
	Mapping Signed  Unsigned
	Relation between Signed & Unsigned
	Conversion Visualized
	Signed vs. Unsigned in C
	Casting Surprises
	Summary�Casting Signed ↔ Unsigned: Basic Rules
	Today: Bits, Bytes, and Integers
	Sign Extension
	Sign Extension: Simple Example
	Larger Sign Extension Example
	Truncation
	Truncation: Simple Example
	Summary:�Expanding, Truncating: Basic Rules
	Summary of Today: Bits, Bytes, and Integers

