Carnegie Mellon

Course Overview

15-213: Introduction to Computer Systems
15t Lecture, Jan. 12, 2016

Instructors:
Seth Copen Goldstein, Franz Franchetti, Ralf Brown, and Brian Railing

The course that gives CMU its “Zip”!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Overview

m Course theme

m Five realities

m How the course fits into the CS/ECE curriculum
m Academic integrity

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Course Theme:

Abstraction Is Good But Don’t Forget Reality

m Most CS and CE courses emphasize abstraction
= Abstract data types
= Asymptotic analysis

m These abstractions have limits

= Especially in the presence of bugs
= Need to understand details of underlying implementations

m Useful outcomes from taking 213
"= Become more effective programmers
= Able to find and eliminate bugs efficiently
= Able to understand and tune for program performance
" Prepare for later “systems” classes in CS & ECE

= Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems, Storage Systems, etc.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Great Reality #1:
Ints are not Integers, Floats are not Reals

m Example 1: Is x2 > 0?

" Float’s: Yes!

" |nt’s:

Carnegie Mellon

Joea 2.0

o

-

.)306... 1,307...

BanA

5D
e

—

... 32,767...-32,768...

25

i=]

v =32,767... 32,766 ...

=

= 40000 * 40000 --> 1600000000
= 50000 * 50000 -->?

m Example 2:Is (x +y)+z = x+(y +2)?
= Unsigned & Signed Int’s: Yes!

" Float’s:

= (1e20+-1e20) +3.14-->3.14
= 1e20 + (-1e20 + 3.14) --> ??

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Source: xked.com/571 4

Carnegie Mellon

Computer Arithmetic

m Does not generate random values
= Arithmetic operations have important mathematical properties

I (] I”

m Cannot assume all “usual” mathematical properties
"= Due to finiteness of representations
" Integer operations satisfy “ring” properties
= Commutativity, associativity, distributivity
" Floating point operations satisfy “ordering” properties
= Monotonicity, values of signs

m Observation
" Need to understand which abstractions apply in which contexts
" Important issues for compiler writers and serious application programmers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Great Reality #2:

You’'ve Got to Know Assembly

m Chances are, you’ll never write programs in assembly
= Compilers are much better & more patient than you are

m But: Understanding assembly is key to machine-level execution
model

Behavior of programs in presence of bugs

= High-level language models break down

Tuning program performance
= Understand optimizations done / not done by the compiler
= Understanding sources of program inefficiency

Implementing system software
= Compiler has machine code as target
= Operating systems must manage process state

Creating / fighting malware
= x86 assembly is the language of choice!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Great Reality #3: Memory Matters

Random Access Memory Is an Unphysical Abstraction

m Memory is not unbounded
® |t must be allocated and managed
®= Many applications are memory dominated

m Memory referencing bugs especially pernicious

= Effects are distant in both time and space

m Memory performance is not uniform
® Cache and virtual memory effects can greatly affect program performance

= Adapting program to characteristics of memory system can lead to major
speed improvements

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Memory Referencing Bug Example

typedef struct {
int a[2];
double d;

} struct_t;

double fun(int 1) {
volatile struct t s;
s.d = 3.14;
s.a[1] = 1073741824; /* Possibly out of bounds */
return s.d;

}

fun(0) --> 3.14

fun(l) --> 3.14

fun(2) --> 3.1399998664856
fun(3) --> 2.00000061035156
fun(4) --> 3.14

fun(6) --> Segmentation fault

= Result is system specific

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Memory Referencing Bug Example

typedef struct { fun(0) --> 3.14
int a[2]; fun(l) --> 3.14
dollo.@ € fun(2) --> 3.1399998664856
J struct_t; fun(3) > 2.00000061035156
fun(4) --> 3.14
fun(6) --> Segmentation fault
Explanation:
Critical State 6 A
? 5
? 4
g d7 ... da 3 Location accessed by
J e a0] o funci)
struct_t
— a[1] 1
_ af[0] 0)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Memory Referencing Errors

m C and C++ do not provide any memory protection
® Qut of bounds array references
" |nvalid pointer values
= Abuses of malloc/free

m Can lead to nasty bugs
= Whether or not bug has any effect depends on system and compiler
= Action at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated

m How can | deal with this?
" Program in Java, Ruby, Python, ML, ...
= Understand what possible interactions may occur
= Use or develop tools to detect referencing errors (e.g. Valgrind)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Great Reality #4: There’s more to

performance than asymptotic complexity

m Constant factors matter too!

m And even exact op count does not predict performance
= Easily see 10:1 performance range depending on how code written
" Must optimize at multiple levels: algorithm, data representations,
procedures, and loops
m Must understand system to optimize performance
" How programs compiled and executed
" How to measure program performance and identify bottlenecks

" How to improve performance without destroying code modularity and
generality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Memory System Performance Example

void copyij(int src[2048][2048], | |void copyji(int src[2048]][2048],

int dst[2048][2048]) int dst[2048][2048])
{ {
int 1,j; int i,j;
for (1 = 0; 1 < 2048; 1++) for (J = 0; jJ < 2048; j++)
for (j = 0; j < 2048; j++) > for (i = 0; i < 2048; i++)
dst[il[4] = srclillil; dstlil[j] = srclillil;
} by
4.3ms 81.8ms

2.0 GHz Intel Core i7 Haswell

m Hierarchical memory organization
m Performance depends on access patterns

" Including how step through multi-dimensional array

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Why The Performance Differs

copylij

,,_._-—-—-"'"_'_'_H_'_‘
——
— — =

16000 Jlr/" o
l

| -

14000 T’“ﬁ

12000 #’ }

10000

]

/| A%
8000 - ' _ | Y
6000 - ‘

4000 |

Read throughput (MB/s)

2000
0
sl
<3 128k
s5 512k
s7 2m
Stride (x8 bytes) s9 8m Size (bytes)
32m
sll
128m

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Great Reality #5:

Computers do more than execute programs

m They need to get data in and out

= |/O system critical to program reliability and performance

m They communicate with each other over networks
= Many system-level issues arise in presence of network
= Concurrent operations by autonomous processes
= Coping with unreliable media
= Cross platform compatibility
= Complex performance issues

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Course Perspective

m Most Systems Courses are Builder-Centric
= Computer Architecture
= Design pipelined processor in Verilog
® Operating Systems
= Implement sample portions of operating system
= Compilers
= Write compiler for simple language
= Networking
= Implement and simulate network protocols

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Course Perspective (Cont.)

m Our Course is Programmer-Centric

= Purpose is to show that by knowing more about the underlying system,
one can be more effective as a programmer

"= Enable youto
= Write programs that are more reliable and efficient
= [ncorporate features that require hooks into OS
— E.g., concurrency, signal handlers
= Cover material in this course that you won’t see elsewhere
= Not just a course for dedicated hackers
= We bring out the hidden hacker in everyone!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Role within CS/ECE Curriculum

CS412 ECE 545/549
OS Practicum Capstone
CS 415 CS 441 s 41.0 Cs411 EC.E .340 ECE 447 ECE 349 ECE 348
Operating . Digital . Embedded Embedded
Databases Networks Compilers . Architecture
Systems Computation Systems System Eng.

N) / / /
Network Processes Machine

Data Reps. Execution Model
Memory Model Memory System

CS 440
Pistributed*——— Network Prog

systems Concurrency \

Protocols Mem. Mgmt Code Arithmetic

Foundation of Computer Systems
1 Underlying principles for hardware,
software, and networking

CS 122
Imperative
Programming

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Instructors

Franz
Franchetti

Seth Copen
Goldstein

Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

EEEEEEE———————————————————————
15-213/18-213 and 15-513

m 15-213/18-213

" Only undergraduates
12-credits
Live lectures and recitations
Lectures on TR 1:30-2:50
Style grading on labs

m 15-513

" Only Masters students
= 6-12 credits
= |f you have the proper background, take 6 credits

= |f this is all new to you, take 12 credits
= |ectures and recitations by video (on the website and panopto)
= Optional recitation Monday evening (see website)

m Everything else is the same for all the courses

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Cheating: Description

m Please pay close attention, especially if this is your first semester at
cCMU

m What is cheating?
= Sharing code: by copying, retyping, looking at, or supplying a file
= Describing: verbal description of code from one person to another.
® Coaching: helping your friend to write a lab, line by line
= Searching the Web for solutions
= Copying code from a previous course or online solution
= You are only allowed to use code we supply, or from the CS:APP website

m What is NOT cheating?

= Explaining how to use systems or tools
= Helping others with high-level design issues

m See the course syllabus for details.
® |gnorance is hot an excuse

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Cheating: Consequences

m Penalty for cheating:

Removal from course with failing grade (no exceptions!)
Permanent mark on your record

Your instructors’ personal contempt

If you do cheat — come clean asap!

m Detection of cheating:
= We have sophisticated tools for detecting code plagiarism
= Last Fall, 20 students were caught cheating and failed the course.
= Some were expelled from the University

m Don’t do it!
= Start early
= Ask the staff for help when you get stuck

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Some Concrete Examples:

m This is Cheating:

Searching the internet with the phrase 15-213, 15213, 213, 18213, etc.
That’s right, just entering it in a search engine

Looking at someone’s code on the computer next to yours

Giving your code to someone else, now or in the future

Posting your code on the internet, now or in the future

Hacking the course infrastructure

m This is OK (and encouraged):
Googling a man page for fputs

Asking a friend for help with gdb

Asking a TA or course instructor for help, showing them your code, ...

Looking in the textbook for a code snipet

Talking about a (high-level) approach to the lab with a classmate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

A Scenarios

Alice is working on malloc lab and is just plain stuck. her code is seg
faulting and she doesn't know why. It is only 2 days until malloc lab

is due and she has 3 other assignments due this same week. She is
in the cluster.

Bob is sitting next to her. He is pretty much done.
Sitting next to Bob is Charlie. He is also stuck.

m 1. Charlie gets up for a break and Bob makes a printout of his
code and leaves it on Charlie’s chair.

m 2. Charlie finds a copy of the malloc code on the floor, looks it

over, and then copies one function, but changes the names of all
the variables.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Some More Scenarios

Alice is working on malloc lab and is just plain stuck. her code is seg faulting and
she doesn't know why. Itis only 2 days until malloc lab is due and she has 3
other assignments due this same week. She is in the cluster.

Bob is sitting next to her. He is pretty much done.
Sitting next to Bob is Charlie. He is also stuck.

m 1. Bob offers to help Alice and they go over her code together.

m 2. Bob gets up to go to the bathroom and Charlie looks over at his
screen to see how Bob implemented his free list.

m 3. Alice asks Charlie how to set a conditional breakpoint so her
program only stops on certain conditions. Charlie tells her how.

m 4. Alice shows her code to a TA and the TA points out where the
seg fault is happening.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Textbooks

m Randal E. Bryant and David R. O’Hallaron,

= Computer Systems: A Programmer’s Perspective, Third Edition (CS:APP3e),
Pearson, 2016

" http://csapp.cs.cmu.edu
® This book really matters for the course!
= How to solve labs
= Practice problems typical of exam problems

m Brian Kernighan and Dennis Ritchie,

= The C Programming Language, Second Edition, Prentice Hall, 1988
= Still the best book about C, from the originators

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Course Components

m Lectures
" Higher level concepts
m Recitations

= Applied concepts, important tools and skills for labs, clarification of
lectures, exam coverage

m Labs (7)

= The heart of the course
= 1-2 weeks each
" Provide in-depth understanding of an aspect of systems
® Programming and measurement
m Exams (midterm + final)

= Test your understanding of concepts & mathematical principles

m Optional Homeworks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Getting Help

m Class Web page: http://www.cs.cmu.edu/~213
" Complete schedule of lectures, exams, and assignments
= Copies of lectures, assignments, exams, solutions
= Clarifications to assignments
= Please check out the “What's New?” section on the web page

m Blackboard and Piazza
= We won’t be using Blackboard or Piazza for the course

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Getting Help

m Staff mailing list: 15-213-staff@cs.cmu.edu

= Use this for all communication with the teaching staff
= Always CC staff mailing list during email exchanges
= Send email to individual instructors only to schedule appointments

m Office hours (starting Tue Jan 19):
= SMWR, 5:00-9:00pm, T 5:30pm-9:00pm, WeH 5207

m 1:1 Appointments

® You can schedule 1:1 appointments with any of the teaching staff

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Policies: Labs And Exams

m Work groups

® You must work alone on all lab assignments

m Handins
" Labs due at 11:59pm on Tues or Thurs
= Electronic handins using Autolab (no exceptions!)

m Exams
= Exams will be online in network-isolated clusters
= Held over multiple days. Self-scheduled; just sign up!

m Appealing grades

" |n writing and email to Prof. Goldstein within 7 days of completion of
grading (7111GHC and seth@cmu.edu)

® Follow formal procedure described in syllabus

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Facilities

m Labs will use the Intel Computer Systems Cluster

" The “shark machines”
= l1nux> ssh shark.i1cs.cs.cmu.edu

= 21 servers donated by Intel for 213
= 10 student machines (for student logins)
= 1 head node (for Autolab server and instructor logins)
= 10 grading machines (for autograding)
= Each server: Intel Core i7: 8 Nehalem cores, 32 GB DRAM, RHEL 6.1
= Rack-mounted in Gates machine room
® |Login using your Andrew ID and password

m Getting help with the cluster machines:
" Please direct questions to staff mailing list

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Timeliness

m Grace days
= 5 grace days for the semester

= Limit of up to 2 grace days per lab used automatically
one grace day only for the first 2 labs, no grace day for the last lab

= Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks
= Save them until late in the term!

m Lateness penalties
® Once grace day(s) used up, get penalized 15% per day
" No handins later than 3 days after due date

m Catastrophic events

= Major illness, death in family, ...
" Formulate a pla

aaie Really, Really Hard!

® Once you start running late, it’s really hard to catch up

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Other Rules of the Lecture Hall

m Laptops: permitted

m Electronic communications: forbidden
" No email, instant messaging, cell phone calls, etc

m Presence in lectures, recitations: voluntary, recommended

m No recordings of ANY KIND

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Policies: Grading

m Exams (50%): midterm (20%), final (30%)
m Labs (50%): weighted according to effort

m Final grades based on a straight scale
with possibly a small amount of curving
(and possibly influenced by the homeworks)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Programs and Data

m Topics
= Bits operations, arithmetic, assembly language programs
= Representation of C control and data structures
" Includes aspects of architecture and compilers

m Assighments
= |1 (datalab): Manipulating bits
= |2 (bomblab): Defusing a binary bomb
= |3 (attacklab): The basics of code injection attacks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

The Memory Hierarchy

m Topics
= Memory technology, memory hierarchy, caches, disks, locality
" Includes aspects of architecture and OS

m Assighments
= |4 (cachelab): Building a cache simulator and optimizing for locality.
= Learn how to exploit locality in your programs.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Exceptional Control Flow

m Topics

= Hardware exceptions, processes, process control, Unix signals,
nonlocal jumps

" Includes aspects of compilers, OS, and architecture

m Assighments
= L5 (tshlab): Writing your own Unix shell.
= A first introduction to concurrency

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Virtual Memory

m Topics
= Virtual memory, address translation, dynamic storage allocation
" Includes aspects of architecture and OS

m Assignments
= |6 (malloclab): Writing your own malloc package
= Get a real feel for systems-level programming

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Networking, and Concurrency

m Topics
= High level and low-level I/O, network programming
" |nternet services, Web servers
= concurrency, concurrent server design, threads

|/0 multiplexing with select

Includes aspects of networking, OS, and architecture

m Assighments
= L7 (proxylab): Writing your own Web proxy

= Learn network programming and more about concurrency and
synchronization.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Lab Rationale

m Each lab has a well-defined goal such as solving a puzzle or
winning a contest

m Doing the lab should result in new skills and concepts

m We try to use competition in a fun and healthy way
= Set a reasonable threshold for full credit
= Post intermediate results (anonymized) on Autolab scoreboard for glory!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Autolab (https://autolab.cs.cmu.edu)

m Labs are provided by the CMU Autolab system
" Project page: http://autolab.cs.cmu.edu
"= Developed by CMU faculty and students
= Key ideas: Autograding and Scoreboards
= Autograding: Providing you with instant feedback.
= Scoreboards: Real-time, rank-ordered, and anonymous summary.

= Used by over 3,000 students each semester

m With Autolab you can use your Web browser to:

= Download the lab materials

" Handin your code for autograding by the Autolab server

= View the class scoreboard

= View the complete history of your code handins, autograded results,
instructor’s evaluations, and gradebook.

= View the TA annotations of your code for Style points.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

http://autolab.cs.cmu.edu/

Carnegie Mellon

Autolab accounts

m Students enrolled 10am on Mon, Jan 11 have Autolab accounts

m You must be enrolled to get an account
= Autolab is not tied in to the Hub’s rosters

= |f you do NOT have an Autolab account for 213/513 this semester, please
add your name to the following Google form. The link is available from the
course web page.
https://docs.google.com/forms/d/1M3dHRvEraM8eCpk9jg46rkgDgeEho_f
fhdce7F25rqY/viewform?usp=send form

We will update the autolab accounts once a day, so check back in 24
hours.

m For those who are waiting to add in, the first lab (datalab) will
be available on the Schedule page of the course Web site.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

https://docs.google.com/forms/d/1M3dHRvEraM8eCpk9jq46rkqDqeEho_ffhdce7F25rqY/viewform?usp=send_form
https://docs.google.com/forms/d/1M3dHRvEraM8eCpk9jq46rkqDqeEho_ffhdce7F25rqY/viewform?usp=send_form

Carnegie Mellon

Waitlist questions

m 15-213: Catherine Fichtner (cathyf@cs.cmu.edu)
m 18-213: Zara Collier (zcollier@andrew.cmu.edu)
m 15-513: Catherine Fichtner (cathyf@cs.cmu.edu)

m Please don’t contact the instructors with waitlist questions.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

mailto:cathyf@cs.cmu.edu
mailto:zcollier@andrew.cmu.edu
mailto:cathyf@cs.cmu.edu

Carnegie Mellon

Linux Bootcamp

m We will hold a linux bootcamp Sunday evening, Jan 17,
8pm in GHC4401.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Welcome
and Enjoy!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

	Slide Number 1
	Overview
	Course Theme:�Abstraction Is Good But Don’t Forget Reality
	Great Reality #1: �Ints are not Integers, Floats are not Reals
	Computer Arithmetic
	Great Reality #2: �You’ve Got to Know Assembly
	Great Reality #3: Memory Matters�Random Access Memory Is an Unphysical Abstraction�
	Memory Referencing Bug Example
	Memory Referencing Bug Example
	Memory Referencing Errors
	Great Reality #4: There’s more to performance than asymptotic complexity�
	Memory System Performance Example
	Why The Performance Differs
	Great Reality #5:�Computers do more than execute programs
	Course Perspective
	Course Perspective (Cont.)
	Role within CS/ECE Curriculum
	Instructors
	15-213/18-213 and 15-513
	Cheating: Description
	Cheating: Consequences
	Some Concrete Examples:
	A Scenarios
	Some More Scenarios
	Textbooks
	Course Components
	Getting Help	
	Getting Help	
	Policies: Labs And Exams
	Facilities
	Timeliness
	Other Rules of the Lecture Hall
	Policies: Grading
	Programs and Data
	The Memory Hierarchy
	Exceptional Control Flow
	 Virtual Memory
	 Networking, and Concurrency
	Lab Rationale
	 Autolab	(https://autolab.cs.cmu.edu)
	 Autolab accounts
	 Waitlist questions
	 Linux Bootcamp
	Welcome and Enjoy!

