
1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

The course that gives CMU its “Zip”!

Course Overview

15-213: Introduction to Computer Systems
1st Lecture, Jan. 12, 2016

Instructors:
Seth Copen Goldstein, Franz Franchetti, Ralf Brown, and Brian Railing

2 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Overview

 Course theme
 Five realities
 How the course fits into the CS/ECE curriculum
 Academic integrity

3 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Theme:
Abstraction Is Good But Don’t Forget Reality
 Most CS and CE courses emphasize abstraction
 Abstract data types
 Asymptotic analysis

 These abstractions have limits
 Especially in the presence of bugs
 Need to understand details of underlying implementations

 Useful outcomes from taking 213
 Become more effective programmers
 Able to find and eliminate bugs efficiently
 Able to understand and tune for program performance

 Prepare for later “systems” classes in CS & ECE
 Compilers, Operating Systems, Networks, Computer Architecture,

Embedded Systems, Storage Systems, etc.

4 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #1:
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

 Float’s: Yes!

 Int’s:
 40000 * 40000 --> 1600000000
 50000 * 50000 --> ?

 Example 2: Is (x + y) + z = x + (y + z)?
 Unsigned & Signed Int’s: Yes!
 Float’s:
 (1e20 + -1e20) + 3.14 --> 3.14
 1e20 + (-1e20 + 3.14) --> ??

Source: xkcd.com/571

5 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Computer Arithmetic

 Does not generate random values
 Arithmetic operations have important mathematical properties

 Cannot assume all “usual” mathematical properties
 Due to finiteness of representations
 Integer operations satisfy “ring” properties
 Commutativity, associativity, distributivity

 Floating point operations satisfy “ordering” properties
 Monotonicity, values of signs

 Observation
 Need to understand which abstractions apply in which contexts
 Important issues for compiler writers and serious application programmers

6 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #2:
You’ve Got to Know Assembly
 Chances are, you’ll never write programs in assembly
 Compilers are much better & more patient than you are

 But: Understanding assembly is key to machine-level execution
model
 Behavior of programs in presence of bugs
 High-level language models break down

 Tuning program performance
 Understand optimizations done / not done by the compiler
 Understanding sources of program inefficiency

 Implementing system software
 Compiler has machine code as target
 Operating systems must manage process state

 Creating / fighting malware
 x86 assembly is the language of choice!

7 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

 Memory is not unbounded
 It must be allocated and managed
 Many applications are memory dominated

 Memory referencing bugs especially pernicious
 Effects are distant in both time and space

 Memory performance is not uniform
 Cache and virtual memory effects can greatly affect program performance
 Adapting program to characteristics of memory system can lead to major

speed improvements

8 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Referencing Bug Example

 Result is system specific

fun(0) --> 3.14
fun(1) --> 3.14
fun(2) --> 3.1399998664856
fun(3) --> 2.00000061035156
fun(4) --> 3.14
fun(6) --> Segmentation fault

typedef struct {
 int a[2];
 double d;
} struct_t;

double fun(int i) {
 volatile struct_t s;
 s.d = 3.14;
 s.a[i] = 1073741824; /* Possibly out of bounds */
 return s.d;
}

9 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Referencing Bug Example
typedef struct {
 int a[2];
 double d;
} struct_t;

fun(0) --> 3.14
fun(1) --> 3.14
fun(2) --> 3.1399998664856
fun(3) --> 2.00000061035156
fun(4) --> 3.14
fun(6) --> Segmentation fault

Location accessed by
fun(i)

Explanation:

Critical State 6

? 5

? 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t

10 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Referencing Errors

 C and C++ do not provide any memory protection
 Out of bounds array references
 Invalid pointer values
 Abuses of malloc/free

 Can lead to nasty bugs
 Whether or not bug has any effect depends on system and compiler
 Action at a distance
 Corrupted object logically unrelated to one being accessed
 Effect of bug may be first observed long after it is generated

 How can I deal with this?
 Program in Java, Ruby, Python, ML, …
 Understand what possible interactions may occur
 Use or develop tools to detect referencing errors (e.g. Valgrind)

11 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #4: There’s more to
performance than asymptotic complexity

 Constant factors matter too!
 And even exact op count does not predict performance
 Easily see 10:1 performance range depending on how code written
 Must optimize at multiple levels: algorithm, data representations,

procedures, and loops

 Must understand system to optimize performance
 How programs compiled and executed
 How to measure program performance and identify bottlenecks
 How to improve performance without destroying code modularity and

generality

12 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory System Performance Example

 Hierarchical memory organization
 Performance depends on access patterns
 Including how step through multi-dimensional array

void copyji(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

81.8ms 4.3ms
2.0 GHz Intel Core i7 Haswell

13 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Why The Performance Differs

128m
32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9
s11

Size (bytes)

R
ea

d
th

ro
ug

hp
ut

 (M
B

/s
)

Stride (x8 bytes)

copyij

copyji

14 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #5:
Computers do more than execute programs
 They need to get data in and out
 I/O system critical to program reliability and performance

 They communicate with each other over networks
 Many system-level issues arise in presence of network
 Concurrent operations by autonomous processes
 Coping with unreliable media
 Cross platform compatibility
 Complex performance issues

15 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Perspective

 Most Systems Courses are Builder-Centric
 Computer Architecture
 Design pipelined processor in Verilog

 Operating Systems
 Implement sample portions of operating system

 Compilers
 Write compiler for simple language

 Networking
 Implement and simulate network protocols

16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Perspective (Cont.)

 Our Course is Programmer-Centric
 Purpose is to show that by knowing more about the underlying system,

one can be more effective as a programmer
 Enable you to
 Write programs that are more reliable and efficient
 Incorporate features that require hooks into OS

– E.g., concurrency, signal handlers
 Cover material in this course that you won’t see elsewhere
 Not just a course for dedicated hackers
 We bring out the hidden hacker in everyone!

17 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Role within CS/ECE Curriculum

CS 410
Operating
Systems

CS 411
Compilers

Processes
Mem. Mgmt

CS 441
Networks

Network
Protocols

ECE 447
Architecture

ECE 349
Embedded

Systems

CS 412
OS Practicum

CS 122
Imperative
 Programming

CS 415
Databases

Data Reps.
Memory Model

ECE 340
Digital

Computation

Machine
Code Arithmetic

ECE 348
Embedded

System Eng.

Foundation of Computer Systems
Underlying principles for hardware,
software, and networking

Execution Model
Memory System

213

ECE 545/549
Capstone

CS 440
Distributed

systems
Network Prog
Concurrency

18 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon
Carnegie Mellon

Instructors

Franz
Franchetti

Seth Copen
Goldstein

Brian Railing

19 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon
Carnegie Mellon

15-213/18-213 and 15-513
 15-213/18-213
 Only undergraduates
 12-credits
 Live lectures and recitations
 Lectures on TR 1:30-2:50
 Style grading on labs

 15-513
 Only Masters students
 6-12 credits
 If you have the proper background, take 6 credits
 If this is all new to you, take 12 credits

 lectures and recitations by video (on the website and panopto)
 Optional recitation Monday evening (see website)

 Everything else is the same for all the courses

20 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating: Description
 Please pay close attention, especially if this is your first semester at

CMU

 What is cheating?
 Sharing code: by copying, retyping, looking at, or supplying a file
 Describing: verbal description of code from one person to another.
 Coaching: helping your friend to write a lab, line by line
 Searching the Web for solutions
 Copying code from a previous course or online solution
 You are only allowed to use code we supply, or from the CS:APP website

 What is NOT cheating?
 Explaining how to use systems or tools
 Helping others with high-level design issues

 See the course syllabus for details.
 Ignorance is not an excuse

21 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating: Consequences
 Penalty for cheating:
 Removal from course with failing grade (no exceptions!)
 Permanent mark on your record
 Your instructors’ personal contempt
 If you do cheat – come clean asap!

 Detection of cheating:
 We have sophisticated tools for detecting code plagiarism
 Last Fall, 20 students were caught cheating and failed the course.
 Some were expelled from the University

 Don’t do it!
 Start early
 Ask the staff for help when you get stuck

22 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Some Concrete Examples:

 This is Cheating:
 Searching the internet with the phrase 15-213, 15213, 213, 18213, etc.
 That’s right, just entering it in a search engine
 Looking at someone’s code on the computer next to yours
 Giving your code to someone else, now or in the future
 Posting your code on the internet, now or in the future
 Hacking the course infrastructure

 This is OK (and encouraged):
 Googling a man page for fputs
 Asking a friend for help with gdb
 Asking a TA or course instructor for help, showing them your code, …
 Looking in the textbook for a code snipet
 Talking about a (high-level) approach to the lab with a classmate

23 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

A Scenarios
Alice is working on malloc lab and is just plain stuck. her code is seg
faulting and she doesn't know why. It is only 2 days until malloc lab
is due and she has 3 other assignments due this same week. She is
in the cluster.
Bob is sitting next to her. He is pretty much done.
Sitting next to Bob is Charlie. He is also stuck.

 1. Charlie gets up for a break and Bob makes a printout of his

code and leaves it on Charlie’s chair.

 2. Charlie finds a copy of the malloc code on the floor, looks it
over, and then copies one function, but changes the names of all
the variables.

24 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Some More Scenarios
Alice is working on malloc lab and is just plain stuck. her code is seg faulting and
she doesn't know why. It is only 2 days until malloc lab is due and she has 3
other assignments due this same week. She is in the cluster.
Bob is sitting next to her. He is pretty much done.
Sitting next to Bob is Charlie. He is also stuck.

 1. Bob offers to help Alice and they go over her code together.

 2. Bob gets up to go to the bathroom and Charlie looks over at his
screen to see how Bob implemented his free list.

 3. Alice asks Charlie how to set a conditional breakpoint so her
program only stops on certain conditions. Charlie tells her how.

 4. Alice shows her code to a TA and the TA points out where the
seg fault is happening.

25 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Textbooks

 Randal E. Bryant and David R. O’Hallaron,
 Computer Systems: A Programmer’s Perspective, Third Edition (CS:APP3e),

Pearson, 2016
 http://csapp.cs.cmu.edu
 This book really matters for the course!
 How to solve labs
 Practice problems typical of exam problems

 Brian Kernighan and Dennis Ritchie,
 The C Programming Language, Second Edition, Prentice Hall, 1988
 Still the best book about C, from the originators

26 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Components
 Lectures
 Higher level concepts

 Recitations
 Applied concepts, important tools and skills for labs, clarification of

lectures, exam coverage

 Labs (7)
 The heart of the course
 1-2 weeks each
 Provide in-depth understanding of an aspect of systems
 Programming and measurement

 Exams (midterm + final)
 Test your understanding of concepts & mathematical principles

 Optional Homeworks

27 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Getting Help

 Class Web page: http://www.cs.cmu.edu/~213
 Complete schedule of lectures, exams, and assignments
 Copies of lectures, assignments, exams, solutions
 Clarifications to assignments
 Please check out the “What's New?” section on the web page

 Blackboard and Piazza
 We won’t be using Blackboard or Piazza for the course

28 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Getting Help
 Staff mailing list: 15-213-staff@cs.cmu.edu
 Use this for all communication with the teaching staff
 Always CC staff mailing list during email exchanges
 Send email to individual instructors only to schedule appointments

 Office hours (starting Tue Jan 19):
 SMWR, 5:00-9:00pm, T 5:30pm-9:00pm, WeH 5207

 1:1 Appointments
 You can schedule 1:1 appointments with any of the teaching staff

29 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Policies: Labs And Exams

 Work groups
 You must work alone on all lab assignments

 Handins
 Labs due at 11:59pm on Tues or Thurs
 Electronic handins using Autolab (no exceptions!)

 Exams
 Exams will be online in network-isolated clusters
 Held over multiple days. Self-scheduled; just sign up!

 Appealing grades
 In writing and email to Prof. Goldstein within 7 days of completion of

grading (7111GHC and seth@cmu.edu)
 Follow formal procedure described in syllabus

30 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Facilities

 Labs will use the Intel Computer Systems Cluster
 The “shark machines”
 linux> ssh shark.ics.cs.cmu.edu

 21 servers donated by Intel for 213
 10 student machines (for student logins)
 1 head node (for Autolab server and instructor logins)
 10 grading machines (for autograding)

 Each server: Intel Core i7: 8 Nehalem cores, 32 GB DRAM, RHEL 6.1
 Rack-mounted in Gates machine room
 Login using your Andrew ID and password

 Getting help with the cluster machines:
 Please direct questions to staff mailing list

31 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Timeliness
 Grace days
 5 grace days for the semester
 Limit of up to 2 grace days per lab used automatically

one grace day only for the first 2 labs, no grace day for the last lab
 Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks
 Save them until late in the term!

 Lateness penalties
 Once grace day(s) used up, get penalized 15% per day
 No handins later than 3 days after due date

 Catastrophic events
 Major illness, death in family, …
 Formulate a plan (with your academic advisor) to get back on track

 Advice
 Once you start running late, it’s really hard to catch up

Really, Really Hard!

32 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Other Rules of the Lecture Hall

 Laptops: permitted

 Electronic communications: forbidden
 No email, instant messaging, cell phone calls, etc

 Presence in lectures, recitations: voluntary, recommended

 No recordings of ANY KIND

33 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Policies: Grading

 Exams (50%): midterm (20%), final (30%)

 Labs (50%): weighted according to effort

 Final grades based on a straight scale

with possibly a small amount of curving
(and possibly influenced by the homeworks)

34 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Programs and Data

 Topics
 Bits operations, arithmetic, assembly language programs
 Representation of C control and data structures
 Includes aspects of architecture and compilers

 Assignments
 L1 (datalab): Manipulating bits
 L2 (bomblab): Defusing a binary bomb
 L3 (attacklab): The basics of code injection attacks

35 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

The Memory Hierarchy

 Topics
 Memory technology, memory hierarchy, caches, disks, locality
 Includes aspects of architecture and OS

 Assignments
 L4 (cachelab): Building a cache simulator and optimizing for locality.
 Learn how to exploit locality in your programs.

36 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Exceptional Control Flow

 Topics
 Hardware exceptions, processes, process control, Unix signals,

nonlocal jumps
 Includes aspects of compilers, OS, and architecture

 Assignments
 L5 (tshlab): Writing your own Unix shell.
 A first introduction to concurrency

37 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

 Virtual Memory

 Topics
 Virtual memory, address translation, dynamic storage allocation
 Includes aspects of architecture and OS

 Assignments
 L6 (malloclab): Writing your own malloc package
 Get a real feel for systems-level programming

38 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

 Networking, and Concurrency

 Topics
 High level and low-level I/O, network programming
 Internet services, Web servers
 concurrency, concurrent server design, threads
 I/O multiplexing with select
 Includes aspects of networking, OS, and architecture

 Assignments
 L7 (proxylab): Writing your own Web proxy
 Learn network programming and more about concurrency and

synchronization.

39 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Lab Rationale

 Each lab has a well-defined goal such as solving a puzzle or
winning a contest

 Doing the lab should result in new skills and concepts

 We try to use competition in a fun and healthy way
 Set a reasonable threshold for full credit
 Post intermediate results (anonymized) on Autolab scoreboard for glory!

40 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

 Autolab (https://autolab.cs.cmu.edu)
 Labs are provided by the CMU Autolab system
 Project page: http://autolab.cs.cmu.edu
 Developed by CMU faculty and students
 Key ideas: Autograding and Scoreboards
 Autograding: Providing you with instant feedback.
 Scoreboards: Real-time, rank-ordered, and anonymous summary.

 Used by over 3,000 students each semester

 With Autolab you can use your Web browser to:
 Download the lab materials
 Handin your code for autograding by the Autolab server
 View the class scoreboard
 View the complete history of your code handins, autograded results,

instructor’s evaluations, and gradebook.
 View the TA annotations of your code for Style points.

http://autolab.cs.cmu.edu/

41 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

 Autolab accounts

 Students enrolled 10am on Mon, Jan 11 have Autolab accounts

 You must be enrolled to get an account
 Autolab is not tied in to the Hub’s rosters
 If you do NOT have an Autolab account for 213/513 this semester, please

add your name to the following Google form. The link is available from the
course web page.
https://docs.google.com/forms/d/1M3dHRvEraM8eCpk9jq46rkqDqeEho_f
fhdce7F25rqY/viewform?usp=send_form
We will update the autolab accounts once a day, so check back in 24
hours.

 For those who are waiting to add in, the first lab (datalab) will
be available on the Schedule page of the course Web site.

https://docs.google.com/forms/d/1M3dHRvEraM8eCpk9jq46rkqDqeEho_ffhdce7F25rqY/viewform?usp=send_form
https://docs.google.com/forms/d/1M3dHRvEraM8eCpk9jq46rkqDqeEho_ffhdce7F25rqY/viewform?usp=send_form

42 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

 Waitlist questions

 15-213: Catherine Fichtner (cathyf@cs.cmu.edu)
 18-213: Zara Collier (zcollier@andrew.cmu.edu)
 15-513: Catherine Fichtner (cathyf@cs.cmu.edu)

 Please don’t contact the instructors with waitlist questions.

mailto:cathyf@cs.cmu.edu
mailto:zcollier@andrew.cmu.edu
mailto:cathyf@cs.cmu.edu

43 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

 Linux Bootcamp

 We will hold a linux bootcamp Sunday evening, Jan 17,
8pm in GHC4401.

44 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Welcome
and Enjoy!

	Slide Number 1
	Overview
	Course Theme:�Abstraction Is Good But Don’t Forget Reality
	Great Reality #1: �Ints are not Integers, Floats are not Reals
	Computer Arithmetic
	Great Reality #2: �You’ve Got to Know Assembly
	Great Reality #3: Memory Matters�Random Access Memory Is an Unphysical Abstraction�
	Memory Referencing Bug Example
	Memory Referencing Bug Example
	Memory Referencing Errors
	Great Reality #4: There’s more to performance than asymptotic complexity�
	Memory System Performance Example
	Why The Performance Differs
	Great Reality #5:�Computers do more than execute programs
	Course Perspective
	Course Perspective (Cont.)
	Role within CS/ECE Curriculum
	Instructors
	15-213/18-213 and 15-513
	Cheating: Description
	Cheating: Consequences
	Some Concrete Examples:
	A Scenarios
	Some More Scenarios
	Textbooks
	Course Components
	Getting Help	
	Getting Help	
	Policies: Labs And Exams
	Facilities
	Timeliness
	Other Rules of the Lecture Hall
	Policies: Grading
	Programs and Data
	The Memory Hierarchy
	Exceptional Control Flow
	 Virtual Memory
	 Networking, and Concurrency
	Lab Rationale
	 Autolab	(https://autolab.cs.cmu.edu)
	 Autolab accounts
	 Waitlist questions
	 Linux Bootcamp
	Welcome and Enjoy!

