Carnegie Mellon

Synchronization: Basics

15-213 / 18-213: Introduction to Computer Systems
24t Lecture, April 14, 2014

Instructors:
Seth Copen Goldstein, Franz Franchetti, Greg Kesden

Carnegie Mellon

Today

m Threads review
m Sharing

m Mutual exclusion
m Semaphores

Carnegie Mellon

Process: Traditional View

m Process = process context + code, data, and stack

Process context Code, data, and stack
Program context: Sp —s stack
Data registers
Condition codes shared libraries
Stack pointer (SP) brk —
Program counter (PC) r . run-time heap
Kernel context: read/write data
VM structures PC—> read-only code/data
Descriptor table

brk pointer

Process: Alternative View

m Process = thread + code, data, and kernel context

Thread Code, data, and kernel context
Program context: shared libraries
Data registers brk —
Condition codes run-time heap
Stack pointer (SP) read/write data
Program counter (PC) PC — read-only code/data
0
‘ stack
SP— Kernel context:

VM structures
Descriptor table
brk pointer

Carnegie Mellon

Process with Two Threads

Thread 1
Program context:
Data registers Code, data, and kernel context
Condition codes shared libraries
Stack pointer (SP) brk —
Program counter (PC) f ' run-time heap
read/write data
Sp — stack PC—> read-only code/data
0
Thread 2
Program context: Kernel context:
Data registers VIVIStriicilires
Condition codes Descrlptor table
Stack pointer (SP) brk pointer

Program counter (PC)

stack

v

SP

Carnegie Mellon

pThreads vs. Processes

m Threads and processes: similarities
= Each has its own logical control flow
= Each can run concurrently with others
= Eachis context switched (scheduled) by the kernel

m Threads and processes: differences
" Threads share code and data, processes (typically) do not
" Threads are less expensive than processes

= Process control (creating and reaping) is more expensive as
thread control

= Context switches for processes more expensive than for
threads

Carnegie Mellon

Pros and Cons of Thread-Based Designs

m + Easy to share data structures between threads
= e.g., logging information, file cache

m + Threads are more efficient than processes

m - Unintentional sharing can introduce subtle and
hard-to-reproduce errors!

Carnegie Mellon

Today

m Threads review
m Sharing
m Mutual exclusion

m Semaphores

Carnegie Mellon

Shared Variables in Threaded C Programs

m Question: Which variables in a threaded C program are
shared?

= The answer is not as simple as “global variables are shared” and
“stack variables are private”

m Requires answers to the following questions:
= What is the memory model for threads?
" How are instances of variables mapped to memory?
= How many threads might reference each of these instances?

m Def: A variable X is shared if and only if multiple threads
reference some instance of X.

Carnegie Mellon

Threads Memory Model

m Conceptual model:
= Multiple threads run within the context of a single process

= Each thread has its own separate thread context
= Thread ID, stack, stack pointer, PC, condition codes, and GP registers

= All threads share the remaining process context
= Code, data, heap, and shared library segments of the process virtual address space
= QOpen files and installed handlers

m Operationally, this model is not strictly enforced:
= Register values are truly separate and protected, but...
= Any thread can read and write the stack of any other thread

Could you do something to help with this?
The mismatch betwe (at least for debugging)
is a source of confusion and errors

10

Carnegie Mellon

Example Program to lllustrate Sharing

char **ptr; /* global */ /* thread routine */
void *thread(void *vargp)
int mainQ) {
{ int myid = (int) vargp;
int i; static int cnt = O;
pthread t tid;
char *msgs[2] = { printf("'[%d]: %s (svar=%d)\n",
"Hello from foo", myid, ptr[myid], ++cnt);
"Hello from bar" }
}:
ptr = msgs; ///
Peer threads reference main thread’s stack
for (i = 0; 1 < 2; i++) indirectly through global ptr variable
Pthread create(&tid,
NULL,
thread,
(void *)i3gm — .
Pthread_exit(NULL); ~{ Note: passing I, not &l]
+

11

Carnegie Mellon

Mapping Variable Instances to Memory

m Global variables

= Def: Variable declared outside of a function
= Virtual memory contains exactly one instance of any global variable

m Local variables
= Def: Variable declared inside function without static attribute
= Each thread stack contains one instance of each local variable

m Local static variables
= Def: Variable declared inside function with the static attribute

= Virtual memory contains exactly one instance of any local static
variable.

12

Mapping Variable Instances to Memory

Global var: 1 instance (ptr [data])
Local vars: 1 instance (1 .m, msgs.m)

7

Local var: 2 instances (
myid.pO [peerthread 0’s stack],
myid.pl [peer thread 1’s stack]

| /
char *msgs[2] = { /* thread rougine */

“Hello from foo" void *threadf(void *vargp)
"Hello from bar" {

char **ptr; /* global *

int main()
{
int 1;
pthread t

¥ int myid = (int)vargp;
p% - msgs: static int cnt = 0;
printf(""[%d]f %s (svar=%d)\n",

T I =0; 1 <2; i++
or (1 : I+ myid, rimyid], ++cnt);

Pthread create(&tid,

NULL, ¥
thread, /
(void *)i); Local static var: 1 instance (cnt [data])

Pthread exit(NULL);

13

Shared Variable Analysis

m Which variables are shared?

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes
cnt no yes yes
i.m yes no no
msgs.-m yes yes yes
myid.pO no yes no
myid.pl no no yes
char **ptr; /* global */
int main() { /* thread routine */
int i1; void *thread(void *vargp)
pthread t tid; {
char *msgs[2] = {“Hello from foo", int myid = (int)vargp;
"Hello from bar'}; static iInt cnt = O;
ptr = msgs;
for (i = 0; 1 < 2; 1++) printf(C'[%d]: %s (svar=%d)\n",
Pthread create(&tid,.., (void *)i1); myid, ptr[myid], ++cnt);

Pthread_exit(NULL); }

Shared Variable Analysis

m Which variables are shared?

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes
cnt no yes yes
i.m yes no no
msgs.m yes yes yes
myid.pO no yes no
myid.pl no no yes

m Answer: A variable X is shared iff multiple threads
reference at least one instance of X. Thus:

m ptr, cnt, and msgs are shared
= 1 and myid are not shared

15

Carnegie Mellon

Today

m Threads review
m Sharing

m Mutual exclusion
m Semaphores

16

badcnt.c: Improper Synchronization

{

}

volatile int cnt = 0; /* global */

int main(int argc, char **argv)

int niters = atoi(argv[l]);
pthread t tidl, tid2;

Pthread create(&tidl, NULL,
thread, &niters);
Pthread create(&tid2, NULL,
thread, &niters);
Pthread join(tidl, NULL);
Pthread join(tid2, NULL);

/* Check result */
iIT (cnt 1= (2 * niters))
printf('BOOM! cnt=%d\n”’, cnt);
else
printf("'OK cnt=%d\n", cnt);
exi1t(0);

/* Thread
void *thread(void

{

}

routine */
*vargp)

int i, niters = *((int *)vargp):

for (1 = 0; 1 < niters; 1++)

cnt++;

return NULL;

linux> ./badcnt 10000
OK cnt=20000

linux> ./badcnt 10000
BOOM! cnt=13051

1 1nux>

cnt should equal 20,000.

What went wrong?

17

Carnegie Mellon

Assembly Code for Counter Loop

C code for counter loop in thread i
for (i=0; i < niters; i++)
cnt++;

Corresponding assembly code

movl (%rdi) ,%ecx)
movl $0,%edx . Head (H)
cmpl %ecx,%edx !
Jjge .L13
AP B 3
movl cnt(%rip),%eax Load cnt (L))
incl %eax > Update cnt (Ui)
movl %eax,cnt(%rip) J Storecnt (S:)
------ el -edXx—————————
cmpl %ecx,%edx]
I o.L11 . Tail (T;)
-L13:)

18

Carnegie Mellon

Concurrent Execution

m Keyidea: In general, any sequentially consistent interleaving
is possible, but some give an unexpected result!

= |. denotes that thread i executes instruction |
= %eax;is the content of %eax in thread i’s context

i (thread) instr, %eax, %eax, cnt

Y
L
f—

Thread 1
critical section

=)

Y

0
1 -
1

Thread 2
critical section

=)

N

N

N
1
NININ|[=|

N

=ININIINININ(==] =
—I—IMC\I,-IU?CF

1
NININ|I=|=|=|=IOI0|0

Y
Y
]

OK

19

Carnegie Mellon

Concurrent Execution (cont)

m Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2

i (thread) instr, %eax, %eax, cnt
1 H, - 0
1 L, 0 - 0
1 U, 1 - 0
2 H, - 0
2 L, - 0 0
1 S, 1 - 1
1 T, 1 1
2 u, - 1 1
2 S, - 1 1
2 T, - 1 1 Oops!

20

Carnegie Mellon

Concurrent Execution (cont)

m How about this ordering?

i (thread) instr, %eax, %eax, cnt
1 H, 0
1 L, 0
2 H,

2 L, 0

2 U, 1

2 S, 1 1

1 U, 1

1 S, 1 1

1 T,

5 T, | Oops!

m We can analyze the behavior using a progress graph

21

Progress Graphs

Thread 2

(I-1:.Sz)

*— Thread 1

Carnegie Mellon

A progress graph depicts
the discrete execution
state space of concurrent
threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst,, Inst,).

E.g., (L,, S,) denotes state
where thread 1 has
completed L, and thread
2 has completed S,.

22

Carnegie Mellon

Trajectories in Progress Graphs

Thread 2
A trajectory is a sequence of legal
¢ o o o O state transitions that describes one
T, x possible concurrent execution of the
threads.
o o o [[
S, T Example:
i ° ¢ ° ¢ x H1, L1, U1, H2, L2, S1,T1, U2, S2, T2
— —
o o

o T *— Thread 1

23

Carnegie Mellon

Critical Sections and Unsafe Regions

Thread 2
L, U, and S form a critical
! o o o o o section Wlt.h respect to the
shared variable cnt
T,
9 ° ° ° ® ° Instructions in critical
S, sections (wrt to some shared
critical ! o . . o o variable) should not be
section U _ interleaved
wrt < 2 Unsafe region
cnt 7 ® ° ° ° L Sets of states where such
L, interleaving occurs form
! unsdfe regions
H,
¢ ¢ ¢ ¢ ¢ *— Thread 1
H, L, U, S, T,
N\ J
'

critical section wrt cnt

24

Carnegie Mellon

Critical Sections and Unsafe Regions

Thread 2

. o — > . . L
Def: A trajectory is safe iff it does
T, not enter any unsafe region

9 ® @
S, | x Claim: A trajectory is correct (wrt
critical cnt) iff it is safe

x_P. o [) o
section .
wrt < U, Unsafe region
cnt — —
unsafe
o o

¢ T *— Thread 1

critical section wrt cnt

25

Enforcing Mutual Exclusion

m Question: How can we guarantee a safe trajectory?

m Answer: We must synchronize the execution of the threads so
that they never have an unsafe trajectory.
= j.e., need to guarantee mutually exclusive access to critical regions

m Classic solution:
= Semaphores (Edsger Dijkstra)

m Other approaches (out of our scope)
= Mutex and condition variables (Pthreads)
= Monitors (Java)

26

Carnegie Mellon

Today

m Threads review
m Sharing

m Mutual exclusion
m Semaphores

27

Carnegie Mellon

Semaphores

m Semaphore: non-negative global integer synchronization
variable

m Manipulated by P and V operations:
= P(s): [while (s == 0) wait(); s--; |
= Dutch for "Proberen" (test)
" V(s): [st+; |
= Dutch for "Verhogen" (increment)

m OS kernel guarantees that operations between brackets [] are
executed indivisibly

= Only one P or V operation at a time can modify s.
= Whenwhileloopin Pterminates, only that P can decrement S

m Semaphore invariant: (s >= 0)

28

Carnegie Mellon

C Semaphore Operations

Pthreads functions:

#include <semaphore.h>
int sem _Init(sem _t *sem, 0, unsigned int val);} /7* s = val */

Int sem wait(sem t *s); /* P(s) */
Int sem post(sem t *s); /* V(s) */

CS:APP wrapper functions:

#include "'csapp.h”

voild P(sem_t *s); /* Wrapper function for sem wait */
void V(sem_t *s); /* Wrapper function for sem post */

29

badcnt.c: Improper Synchronization

{

}

volatile int cnt = 0; /* global */

int main(int argc, char **argv)

int niters = atoi(argv[l]);
pthread t tidl, tid2;

Pthread create(&tidl, NULL,
thread, &niters);
Pthread create(&tid2, NULL,
thread, &niters);
Pthread join(tidl, NULL);
Pthread join(tid2, NULL);

/* Check result */
iIT (cnt 1= (2 * niters))
printf('BOOM! cnt=%d\n”’, cnt);
else
printf("'OK cnt=%d\n", cnt);
exi1t(0);

/* Thread
void *thread(void

{

}

*/
*vargp)

routine

int i, niters = *((int *)vargp):

for (1 = 0; 1 < niters; 1++)

cnt++;

return NULL;

How can we fix this using
semaphores?

30

Carnegie Mellon

Using Semaphores for Mutual Exclusion

m Basicidea:

= Associate a unique semaphore mutex, initially 1, with each shared
variable (or related set of shared variables).

= Surround corresponding critical sections with P(mutex) and
V(mutex) operations.

m Terminology:
" Binary semaphore: semaphore whose value is always 0 or 1
= Mutex: binary semaphore used for mutual exclusion
= P operation: “locking” the mutex
= V operation: “unlocking” or “releasing” the mutex
= “Holding” a mutex: locked and not yet unlocked.

= Counting semaphore: used as a counter for set of available
resources.

31

goodcnt.c: Proper Synchronization

m Define and initialize a mutex for the shared variable cnt:

volatile iInt cnt = O; /* Counter */
sem_t mutex; /* Semaphore that protects cnt */

Sem init(&mutex, 0, 1); /* mutex =1 */

m Surround critical section with P and V:

for (1 = 0; 1 < niters; 1++) { linux> ./goodcnt 10000
P(&mutex) ; OK cnt=20000
cnt++; linux> ./goodcnt 10000
V(&mutex) ; OK cnt=20000

} 1 1nux>

Warning: It’s much slower
than badcnt.c.

32

goodcnt.c: Proper Synchronization

m Define and initialize a mutex for the shared variable cnt:

volatile iInt cnt = O; /* Counter */
sem_t mutex; /* Semaphore that protects cnt */

Sem init(&mutex, 0, 1); /* mutex =1 */

_—_ClJm_mA_an:Llangka_w 1/7.

OK cnt=2000000 BOOM! cnt=1036525 Slowdown

real O0mO0.138s Om0.007s 20X
user 0m0.120s OmO0.008s 15X
sys 0mO0.108s OmO0.000s NaN

And slower means much slower! rer

33

Why Mutexes Work

Thread 2
. . 0 0 0 0 . . Provide mutually exc.:luswe
' ¢ ¢ ¢ * * * g access to shared variable by
T, surrounding critical section
1 1 0 0 0 0 1 1 . .
i with P and V operations on
V(s) Forbidden region semaphore S (initially set to 1)
0 0 0 0
S, ! ! 4 Semaphore invariant
| 0 eV el el ed e eV G0 creates a forbidden region
U that encloses unsafe region
2 SR O L0 that cannot be entered by any
trajectory.
I'2
0 0 1 -1 1 1 0 0
P(s) 1 1 0 0 0 0 1 1
HZ
1 A Lo 0 0 0 Ll el Thread 1
A H Pls) L U S V) T,
Initially

s=1 34

Carnegie Mellon

Summary

m Programmers need a clear model of how variables are
shared by threads.

m Variables shared by multiple threads must be protected
to ensure mutually exclusive access.

m Semaphores are a fundamental mechanism for enforcing
mutual exclusion.

35

Carnegie Mellon

Threads vs. Processes (cont.)

m Processes form a tree hierarchy

m Threads form a pool of peers
= Each thread can kill any other
= Each thread can wait for any other thread to terminate
" Main thread: first thread to run in a process

Process hierarchy Thread pool

S

(rr
OJOXO),

S
-
‘e
3

s shared code, data
and kernel context

36

Posix Threads (Pthreads) Interface

m Pthreads: Standard interface for ~60 functions that manipulate
threads from C programs

®" Threads run thread routines:
= void *threadroutine(void *vargp)

" Creating and reaping threads
= pthread create(pthread t *tid, .., func *f, void *arg)
= pthread _join(pthread t tid, void **thread return)

= Determining your thread ID
= pthread _self()

= Terminating threads
= pthread _cancel(pthread t tid)
= pthread _exit(void *tread return)

= return (in primary thread routine terminates the thread)

= exit (terminates all threads)

37

Carnegie Mellon

The Pthreads “Hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
*/
#include "csapp-h" Thread attributes

1 (usually NULL)

void *thread(void *vargp);

int main() { Thread arguments

pthread t tid; ‘///////’ (void *p)

Pthread create(&tid, NULL, thread, NULL);
Pthread join(tid, NULL);

exit(0): ““--_______~_---
¥

/* thread routine */

void *thread(void *vargp) {
printf("'Hello, world!\n");
return NULL;

}

assigns return value
(void **p)

38

	Synchronization: Basics��15-213 / 18-213: Introduction to Computer Systems�24th Lecture, April 14, 2014
	Today
	Process: Traditional View
	Process: Alternative View
	Process with Two Threads
	Threads vs. Processes
	Pros and Cons of Thread-Based Designs
	Today
	Shared Variables in Threaded C Programs
	Threads Memory Model
	Example Program to Illustrate Sharing
	Mapping Variable Instances to Memory
	Mapping Variable Instances to Memory
	Shared Variable Analysis
	Shared Variable Analysis
	Today
	badcnt.c: Improper Synchronization
	Assembly Code for Counter Loop
	Concurrent Execution
	Concurrent Execution (cont)
	Concurrent Execution (cont)
	Progress Graphs
	Trajectories in Progress Graphs
	Critical Sections and Unsafe Regions
	Critical Sections and Unsafe Regions
	Enforcing Mutual Exclusion
	Today
	Semaphores
	C Semaphore Operations
	badcnt.c: Improper Synchronization
	Using Semaphores for Mutual Exclusion
	goodcnt.c: Proper Synchronization
	goodcnt.c: Proper Synchronization
	Why Mutexes Work
	Summary
	Threads vs. Processes (cont.)
	Posix Threads (Pthreads) Interface
	The Pthreads “Hello, world" Program

