
Carnegie Mellon

1

Synchronization: Basics

15-213 / 18-213: Introduction to Computer Systems
24th Lecture, April 14, 2014

Instructors:
Seth Copen Goldstein, Franz Franchetti, Greg Kesden

Carnegie Mellon

2

Today
 Threads review
 Sharing
 Mutual exclusion
 Semaphores

Carnegie Mellon

3

Process: Traditional View
 Process = process context + code, data, and stack

shared libraries

run-time heap

0

read/write data

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and stack

read-only code/data

stack
SP

PC

brk

Process context

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Carnegie Mellon

4

Process: Alternative View
 Process = thread + code, data, and kernel context

shared libraries

run-time heap

0

read/write data

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and kernel context

read-only code/data

stack
SP

PC

brk

Thread

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Carnegie Mellon

5

Process with Two Threads

shared libraries

run-time heap

0

read/write data

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and kernel context

read-only code/data stack
SP PC

brk

Thread 1

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

stack
SP

Thread 2

Carnegie Mellon

6

Threads vs. Processes
 Threads and processes: similarities
 Each has its own logical control flow
 Each can run concurrently with others
 Each is context switched (scheduled) by the kernel

 Threads and processes: differences
 Threads share code and data, processes (typically) do not
 Threads are less expensive than processes

 Process control (creating and reaping) is more expensive as
thread control

 Context switches for processes more expensive than for
threads

p

Carnegie Mellon

7

Pros and Cons of Thread-Based Designs
 + Easy to share data structures between threads
 e.g., logging information, file cache

 + Threads are more efficient than processes

 – Unintentional sharing can introduce subtle and
 hard-to-reproduce errors!

Carnegie Mellon

8

Today
 Threads review
 Sharing
 Mutual exclusion
 Semaphores

Carnegie Mellon

9

Shared Variables in Threaded C Programs
 Question: Which variables in a threaded C program are

shared?
 The answer is not as simple as “global variables are shared” and

“stack variables are private”

 Requires answers to the following questions:
 What is the memory model for threads?
 How are instances of variables mapped to memory?
 How many threads might reference each of these instances?

 Def: A variable x is shared if and only if multiple threads
reference some instance of x.

Carnegie Mellon

10

Threads Memory Model
 Conceptual model:
 Multiple threads run within the context of a single process
 Each thread has its own separate thread context

 Thread ID, stack, stack pointer, PC, condition codes, and GP registers

 All threads share the remaining process context
 Code, data, heap, and shared library segments of the process virtual address space
 Open files and installed handlers

 Operationally, this model is not strictly enforced:
 Register values are truly separate and protected, but…
 Any thread can read and write the stack of any other thread

The mismatch between the conceptual and operation model
is a source of confusion and errors

Could you do something to help with this?
(at least for debugging)

Carnegie Mellon

11

Example Program to Illustrate Sharing

char **ptr; /* global */

int main()
{
 int i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };
 ptr = msgs;

 for (i = 0; i < 2; i++)
 Pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 Pthread_exit(NULL);
}

/* thread routine */
void *thread(void *vargp)
{
 int myid = (int) vargp;
 static int cnt = 0;

 printf("[%d]: %s (svar=%d)\n",
 myid, ptr[myid], ++cnt);
}

Peer threads reference main thread’s stack
indirectly through global ptr variable

Note: passing i, not &i

Carnegie Mellon

12

Mapping Variable Instances to Memory
 Global variables
 Def: Variable declared outside of a function
 Virtual memory contains exactly one instance of any global variable

 Local variables
 Def: Variable declared inside function without static attribute
 Each thread stack contains one instance of each local variable

 Local static variables
 Def: Variable declared inside function with the static attribute
 Virtual memory contains exactly one instance of any local static

variable.

Carnegie Mellon

13

Mapping Variable Instances to Memory

char **ptr; /* global */

int main()
{
 int i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };
 ptr = msgs;

 for (i = 0; i < 2; i++)
 Pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 Pthread_exit(NULL);
}

/* thread routine */
void *thread(void *vargp)
{
 int myid = (int)vargp;
 static int cnt = 0;

 printf("[%d]: %s (svar=%d)\n",
 myid, ptr[myid], ++cnt);
}

Global var: 1 instance (ptr [data])

Local static var: 1 instance (cnt [data])

Local vars: 1 instance (i.m, msgs.m)

Local var: 2 instances (
 myid.p0 [peer thread 0’s stack],
 myid.p1 [peer thread 1’s stack]
)

Carnegie Mellon

14

char **ptr; /* global */
int main() {
 int i;
 pthread_t tid;
 char *msgs[2] = {“Hello from foo",
 "Hello from bar"};
 ptr = msgs;
 for (i = 0; i < 2; i++)
 Pthread_create(&tid,…, (void *)i);
 Pthread_exit(NULL);

Shared Variable Analysis
 Which variables are shared?

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr
cnt
i.m
msgs.m
myid.p0
myid.p1

yes yes yes
no yes yes
yes no no
yes yes yes
no yes no
no no yes

/* thread routine */
void *thread(void *vargp)
{
 int myid = (int)vargp;
 static int cnt = 0;

 printf("[%d]: %s (svar=%d)\n",
 myid, ptr[myid], ++cnt);
}

Carnegie Mellon

15

Shared Variable Analysis
 Which variables are shared?

 Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:
 ptr, cnt, and msgs are shared
 i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr
cnt
i.m
msgs.m
myid.p0
myid.p1

yes yes yes
no yes yes
yes no no
yes yes yes
no yes no
no no yes

Carnegie Mellon

16

Today
 Threads review
 Sharing
 Mutual exclusion
 Semaphores

Carnegie Mellon

17

badcnt.c: Improper Synchronization

volatile int cnt = 0; /* global */

int main(int argc, char **argv)
{
 int niters = atoi(argv[1]);
 pthread_t tid1, tid2;

 Pthread_create(&tid1, NULL,
 thread, &niters);
 Pthread_create(&tid2, NULL,
 thread, &niters);
 Pthread_join(tid1, NULL);
 Pthread_join(tid2, NULL);

 /* Check result */
 if (cnt != (2 * niters))
 printf("BOOM! cnt=%d\n”, cnt);
 else
 printf("OK cnt=%d\n", cnt);
 exit(0);
}

/* Thread routine */
void *thread(void *vargp)
{
 int i, niters = *((int *)vargp);

 for (i = 0; i < niters; i++)
 cnt++;

 return NULL;
}

linux> ./badcnt 10000
OK cnt=20000
linux> ./badcnt 10000
BOOM! cnt=13051
linux>

cnt should equal 20,000.

What went wrong?

Carnegie Mellon

18

Assembly Code for Counter Loop

 movl (%rdi),%ecx
 movl $0,%edx
 cmpl %ecx,%edx
 jge .L13
.L11:
 movl cnt(%rip),%eax
 incl %eax
 movl %eax,cnt(%rip)
 incl %edx
 cmpl %ecx,%edx
 jl .L11
.L13:

Corresponding assembly code

for (i=0; i < niters; i++)
 cnt++;

C code for counter loop in thread i

Head (Hi)

Tail (Ti)

Load cnt (Li)
Update cnt (Ui)
Store cnt (Si)

Carnegie Mellon

19

Concurrent Execution
 Key idea: In general, any sequentially consistent interleaving

is possible, but some give an unexpected result!
 Ii denotes that thread i executes instruction I
 %eaxi is the content of %eax in thread i’s context

H1
L1
U1
S1
H2
L2
U2
S2
T2
T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instri cnt %eax1

OK

-
-
-
-
-
1
2
2
2
-

%eax2

Thread 1
critical section

Thread 2
critical section

Carnegie Mellon

20

Concurrent Execution (cont)
 Incorrect ordering: two threads increment the counter,

but the result is 1 instead of 2

H1
L1
U1
H2
L2
S1
T1
U2
S2
T2

1
1
1
2
2
1
1
2
2
2

-
0
1
-
-
1
1
-
-
-

0
0
0
0
0
1
1
1
1
1

i (thread) instri cnt %eax1
-
-
-
-
0
-
-
1
1
1

%eax2

Oops!

Carnegie Mellon

21

Concurrent Execution (cont)
 How about this ordering?

 We can analyze the behavior using a progress graph

H1
L1
H2
L2
U2
S2
U1
S1
T1
T2

1
1
2
2
2
2
1
1
1
2

i (thread) instri cnt %eax1 %eax2

0
0

0
1
1 1

1
1 1

1 Oops!

Carnegie Mellon

22

Progress Graphs
A progress graph depicts
the discrete execution
state space of concurrent
 threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst1, Inst2).

E.g., (L1, S2) denotes state
where thread 1 has
completed L1 and thread
2 has completed S2. H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(L1, S2)

Carnegie Mellon

23

Trajectories in Progress Graphs

A trajectory is a sequence of legal
state transitions that describes one
possible concurrent execution of the
threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Carnegie Mellon

24

Critical Sections and Unsafe Regions

L, U, and S form a critical
section with respect to the
shared variable cnt

Instructions in critical
sections (wrt to some shared
variable) should not be
interleaved

Sets of states where such
interleaving occurs form
unsafe regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

Carnegie Mellon

25

Critical Sections and Unsafe Regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

Def: A trajectory is safe iff it does
not enter any unsafe region

Claim: A trajectory is correct (wrt
cnt) iff it is safe

unsafe

safe

Carnegie Mellon

26

Enforcing Mutual Exclusion
 Question: How can we guarantee a safe trajectory?

 Answer: We must synchronize the execution of the threads so

that they never have an unsafe trajectory.
 i.e., need to guarantee mutually exclusive access to critical regions

 Classic solution:
 Semaphores (Edsger Dijkstra)

 Other approaches (out of our scope)
 Mutex and condition variables (Pthreads)
 Monitors (Java)

Carnegie Mellon

27

Today
 Threads review
 Sharing
 Mutual exclusion
 Semaphores

Carnegie Mellon

28

Semaphores
 Semaphore: non-negative global integer synchronization

variable

 Manipulated by P and V operations:
 P(s): [while (s == 0) wait(); s--;]

 Dutch for "Proberen" (test)
 V(s): [s++;]

 Dutch for "Verhogen" (increment)

 OS kernel guarantees that operations between brackets [] are
executed indivisibly

 Only one P or V operation at a time can modify s.
 When while loop in P terminates, only that P can decrement s

 Semaphore invariant: (s >= 0)

Carnegie Mellon

29

C Semaphore Operations

Pthreads functions:
#include <semaphore.h>

int sem_init(sem_t *sem, 0, unsigned int val);} /* s = val */

int sem_wait(sem_t *s); /* P(s) */
int sem_post(sem_t *s); /* V(s) */

CS:APP wrapper functions:
 #include "csapp.h”

void P(sem_t *s); /* Wrapper function for sem_wait */
void V(sem_t *s); /* Wrapper function for sem_post */

Carnegie Mellon

30

badcnt.c: Improper Synchronization

volatile int cnt = 0; /* global */

int main(int argc, char **argv)
{
 int niters = atoi(argv[1]);
 pthread_t tid1, tid2;

 Pthread_create(&tid1, NULL,
 thread, &niters);
 Pthread_create(&tid2, NULL,
 thread, &niters);
 Pthread_join(tid1, NULL);
 Pthread_join(tid2, NULL);

 /* Check result */
 if (cnt != (2 * niters))
 printf("BOOM! cnt=%d\n”, cnt);
 else
 printf("OK cnt=%d\n", cnt);
 exit(0);
}

/* Thread routine */
void *thread(void *vargp)
{
 int i, niters = *((int *)vargp);

 for (i = 0; i < niters; i++)
 cnt++;

 return NULL;
}

How can we fix this using
semaphores?

Carnegie Mellon

31

Using Semaphores for Mutual Exclusion
 Basic idea:
 Associate a unique semaphore mutex, initially 1, with each shared

variable (or related set of shared variables).
 Surround corresponding critical sections with P(mutex) and
 V(mutex) operations.

 Terminology:
 Binary semaphore: semaphore whose value is always 0 or 1
 Mutex: binary semaphore used for mutual exclusion

 P operation: “locking” the mutex
 V operation: “unlocking” or “releasing” the mutex
 “Holding” a mutex: locked and not yet unlocked.

 Counting semaphore: used as a counter for set of available
resources.

Carnegie Mellon

32

goodcnt.c: Proper Synchronization
 Define and initialize a mutex for the shared variable cnt:

 volatile int cnt = 0; /* Counter */
 sem_t mutex; /* Semaphore that protects cnt */

 Sem_init(&mutex, 0, 1); /* mutex = 1 */

 Surround critical section with P and V:

 for (i = 0; i < niters; i++) {
 P(&mutex);
 cnt++;
 V(&mutex);
 }

linux> ./goodcnt 10000
OK cnt=20000
linux> ./goodcnt 10000
OK cnt=20000
linux>

Warning: It’s much slower
than badcnt.c.

Carnegie Mellon

33

goodcnt.c: Proper Synchronization
 Define and initialize a mutex for the shared variable cnt:

 volatile int cnt = 0; /* Counter */
 sem_t mutex; /* Semaphore that protects cnt */

 Sem_init(&mutex, 0, 1); /* mutex = 1 */

 Surround critical section with P and V:

 for (i = 0; i < niters; i++) {
 P(&mutex);
 cnt++;
 V(&mutex);
 }

linux> ./goodcnt 10000
OK cnt=20000
linux> ./goodcnt 10000
OK cnt=20000
linux>

Warning: It’s much slower
than badcnt.c.

 OK cnt=2000000 BOOM! cnt=1036525 Slowdown

real 0m0.138s 0m0.007s 20X
user 0m0.120s 0m0.008s 15X
sys 0m0.108s 0m0.000s NaN

And slower means much slower!

Carnegie Mellon

34

Unsafe region

Why Mutexes Work
Provide mutually exclusive
access to shared variable by
surrounding critical section
with P and V operations on
semaphore s (initially set to 1)

Semaphore invariant
creates a forbidden region
that encloses unsafe region
that cannot be entered by any
trajectory.

H1 P(s) V(s) T1
Thread 1

Thread 2

L1 U1 S1

H2

P(s)

V(s)

T2

L2

U2

S2

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Initially
s = 1

Forbidden region

Carnegie Mellon

35

Summary
 Programmers need a clear model of how variables are

shared by threads.

 Variables shared by multiple threads must be protected
to ensure mutually exclusive access.

 Semaphores are a fundamental mechanism for enforcing
mutual exclusion.

Carnegie Mellon

36

Threads vs. Processes (cont.)
 Processes form a tree hierarchy
 Threads form a pool of peers
 Each thread can kill any other
 Each thread can wait for any other thread to terminate
 Main thread: first thread to run in a process

P0

P1

sh sh sh

foo

T1

Process hierarchy Thread pool

T2
T4

T5 T3

shared code, data
and kernel context

Carnegie Mellon

37

Posix Threads (Pthreads) Interface
 Pthreads: Standard interface for ~60 functions that manipulate

threads from C programs
 Threads run thread routines:

 void *threadroutine(void *vargp)

 Creating and reaping threads
 pthread_create(pthread_t *tid, …, func *f, void *arg)
 pthread_join(pthread_t tid, void **thread_return)

 Determining your thread ID
 pthread_self()

 Terminating threads
 pthread_cancel(pthread_t tid)
 pthread_exit(void *tread_return)
 return (in primary thread routine terminates the thread)
 exit (terminates all threads)

Carnegie Mellon

38

The Pthreads “Hello, world" Program
/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"

void *thread(void *vargp);

int main() {
 pthread_t tid;

 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

/* thread routine */
void *thread(void *vargp) {
 printf("Hello, world!\n");
 return NULL;
}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

assigns return value
(void **p)

	Synchronization: Basics��15-213 / 18-213: Introduction to Computer Systems�24th Lecture, April 14, 2014
	Today
	Process: Traditional View
	Process: Alternative View
	Process with Two Threads
	Threads vs. Processes
	Pros and Cons of Thread-Based Designs
	Today
	Shared Variables in Threaded C Programs
	Threads Memory Model
	Example Program to Illustrate Sharing
	Mapping Variable Instances to Memory
	Mapping Variable Instances to Memory
	Shared Variable Analysis
	Shared Variable Analysis
	Today
	badcnt.c: Improper Synchronization
	Assembly Code for Counter Loop
	Concurrent Execution
	Concurrent Execution (cont)
	Concurrent Execution (cont)
	Progress Graphs
	Trajectories in Progress Graphs
	Critical Sections and Unsafe Regions
	Critical Sections and Unsafe Regions
	Enforcing Mutual Exclusion
	Today
	Semaphores
	C Semaphore Operations
	badcnt.c: Improper Synchronization
	Using Semaphores for Mutual Exclusion
	goodcnt.c: Proper Synchronization
	goodcnt.c: Proper Synchronization
	Why Mutexes Work
	Summary
	Threads vs. Processes (cont.)
	Posix Threads (Pthreads) Interface
	The Pthreads “Hello, world" Program

