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Synchronization: Basics 
 
15-213 / 18-213: Introduction to Computer Systems 
24th Lecture, April 14, 2014 

Instructors:  
Seth Copen Goldstein, Franz Franchetti, Greg Kesden 
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Today 
 Threads review 
 Sharing 
 Mutual exclusion 
 Semaphores 
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Process: Traditional View 
 Process = process context + code, data, and stack 

shared libraries 

run-time heap 

0 

read/write data 

Program context: 
    Data registers 
    Condition codes 
    Stack pointer (SP) 
    Program counter (PC) 

Code, data, and stack 

read-only code/data 

stack 
SP 

PC 

brk 

Process context 

Kernel context: 
    VM structures 
    Descriptor table 
    brk pointer 
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Process: Alternative View 
 Process = thread + code, data, and kernel context 

shared libraries 

run-time heap 

0 

read/write data 

Program context: 
    Data registers 
    Condition codes 
    Stack pointer (SP) 
    Program counter (PC) 

Code, data, and kernel context 

read-only code/data 

stack 
SP 

PC 

brk 

Thread 

Kernel context: 
    VM structures 
    Descriptor table 
    brk pointer 
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Process with Two Threads 

shared libraries 

run-time heap 

0 

read/write data 

Program context: 
    Data registers 
    Condition codes 
    Stack pointer (SP) 
    Program counter (PC) 

Code, data, and kernel context 

read-only code/data stack 
SP PC 

brk 

Thread 1 

Kernel context: 
    VM structures 
    Descriptor table 
    brk pointer 

Program context: 
    Data registers 
    Condition codes 
    Stack pointer (SP) 
    Program counter (PC) 

stack 
SP 

Thread 2 
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Threads vs. Processes 
 Threads and processes: similarities 
 Each has its own logical control flow 
 Each can run concurrently with others 
 Each is context switched (scheduled) by the kernel 

 
 Threads and processes: differences 
 Threads share code and data, processes (typically) do not 
 Threads are less expensive than processes 

 Process control (creating and reaping) is more expensive as 
thread control 

 Context switches for processes more expensive than for 
threads 

p 
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Pros and Cons of Thread-Based Designs 
 + Easy to share data structures between threads 
 e.g., logging information, file cache 

 + Threads are more efficient than processes 
 

 – Unintentional sharing can introduce subtle and 
   hard-to-reproduce errors! 
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Today 
 Threads review 
 Sharing 
 Mutual exclusion 
 Semaphores 
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Shared Variables in Threaded C Programs 
 Question: Which variables  in a threaded C program are 

shared? 
 The answer is not as simple as “global variables are shared” and  

“stack variables are private” 

 
 Requires answers to the following questions: 
 What is the memory model for threads? 
 How are instances of variables mapped to memory? 
 How many threads might reference each of these instances? 
 

 Def: A variable x is shared if and only if multiple threads 
reference some instance of x.  
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Threads Memory Model 
 Conceptual model: 
 Multiple threads run within the context of a single process 
 Each thread has its own separate thread context 

 Thread ID, stack, stack pointer, PC, condition codes, and GP registers 

 All threads share the remaining process context 
 Code, data, heap, and shared library segments of the process virtual address space 
 Open files and installed handlers 

 Operationally, this model is not strictly enforced: 
 Register values are truly separate and protected, but… 
 Any thread can read and write the stack of any other thread 

 

The mismatch between the conceptual and operation model  
is a source of confusion and errors 

Could you do something to help with this? 
(at least for debugging) 
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Example Program to Illustrate Sharing 

char **ptr;  /* global */ 
 
int main() 
{ 
    int i; 
    pthread_t tid; 
    char *msgs[2] = { 
        "Hello from foo", 
        "Hello from bar" 
    }; 
    ptr = msgs; 
 
    for (i = 0; i < 2; i++) 
        Pthread_create(&tid,  
            NULL,  
            thread,  
            (void *)i); 
    Pthread_exit(NULL); 
} 

/* thread routine */ 
void *thread(void *vargp) 
{ 
    int myid = (int) vargp; 
    static int cnt = 0; 
     
    printf("[%d]: %s (svar=%d)\n",  
         myid, ptr[myid], ++cnt); 
} 

Peer threads reference main thread’s stack 
indirectly through global ptr variable 

Note: passing i, not &i 
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Mapping Variable Instances to Memory 
 Global variables 
 Def:  Variable declared outside of a function 
 Virtual memory contains exactly one instance of any global variable 
 

 Local variables 
 Def: Variable declared inside function without  static attribute 
 Each thread stack contains one instance of each local variable 

 

 Local static variables 
 Def:  Variable declared inside  function with the static attribute 
 Virtual memory contains exactly one instance of any local static 

variable.  
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Mapping Variable Instances to Memory 

char **ptr;  /* global */ 
 
int main() 
{ 
    int i; 
    pthread_t tid; 
    char *msgs[2] = { 
        "Hello from foo", 
        "Hello from bar" 
    }; 
    ptr = msgs; 
 
    for (i = 0; i < 2; i++) 
        Pthread_create(&tid,  
            NULL,  
            thread,  
            (void *)i); 
    Pthread_exit(NULL); 
} 

/* thread routine */ 
void *thread(void *vargp) 
{ 
    int myid = (int)vargp; 
    static int cnt = 0; 
     
    printf("[%d]: %s (svar=%d)\n",  
         myid, ptr[myid], ++cnt); 
} 

Global var: 1 instance (ptr [data]) 

Local static var: 1 instance (cnt [data]) 

Local vars: 1 instance (i.m, msgs.m) 

Local var:  2 instances ( 
     myid.p0 [peer thread 0’s stack],  
  myid.p1 [peer thread 1’s stack] 
) 
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char **ptr;  /* global */ 
int main() { 
  int i; 
  pthread_t tid; 
  char *msgs[2] = {“Hello from foo", 
                   "Hello from bar"}; 
  ptr = msgs; 
  for (i = 0; i < 2; i++) 
   Pthread_create(&tid,…, (void *)i); 
   Pthread_exit(NULL); 
 

Shared Variable Analysis 
 Which variables are shared? 

 
 
 
 
 

Variable    Referenced by Referenced by  Referenced by 
instance    main thread? peer thread 0? peer thread 1? 

ptr   
cnt   
i.m   
msgs.m    
myid.p0   
myid.p1 

yes yes yes 
no yes yes 
yes no no 
yes yes yes 
no yes no 
no no yes 

/* thread routine */ 
void *thread(void *vargp) 
{ 
    int myid = (int)vargp; 
    static int cnt = 0; 
     
    printf("[%d]: %s (svar=%d)\n",  
         myid, ptr[myid], ++cnt); 
} 
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Shared Variable Analysis 
 Which variables are shared? 

 
 
 
 
 

 
 

 Answer: A variable x is shared iff multiple threads 
reference at least one instance of x. Thus: 
 ptr,  cnt, and msgs are shared 
 i and myid are not shared 

Variable    Referenced by Referenced by  Referenced by 
instance    main thread? peer thread 0? peer thread 1? 

ptr   
cnt   
i.m   
msgs.m    
myid.p0   
myid.p1 

yes yes yes 
no yes yes 
yes no no 
yes yes yes 
no yes no 
no no yes 
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Today 
 Threads review 
 Sharing 
 Mutual exclusion 
 Semaphores 
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badcnt.c: Improper Synchronization 

volatile int cnt = 0; /* global */ 
 
int main(int argc, char **argv) 
{ 
  int niters = atoi(argv[1]); 
  pthread_t tid1, tid2; 
 
  Pthread_create(&tid1, NULL,           
                 thread, &niters); 
  Pthread_create(&tid2, NULL,  
                 thread, &niters); 
  Pthread_join(tid1, NULL); 
  Pthread_join(tid2, NULL); 
 
  /* Check result */ 
  if (cnt != (2 * niters)) 
    printf("BOOM! cnt=%d\n”, cnt); 
  else 
    printf("OK cnt=%d\n", cnt); 
  exit(0); 
} 

/* Thread routine */ 
void *thread(void *vargp) 
{ 
  int i, niters = *((int *)vargp); 
 
  for (i = 0; i < niters; i++) 
    cnt++;                    
 
  return NULL; 
} 

linux> ./badcnt 10000 
OK cnt=20000 
linux> ./badcnt 10000 
BOOM! cnt=13051 
linux> 

cnt should equal 20,000. 
 

What went wrong? 
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Assembly Code for Counter Loop 

 movl (%rdi),%ecx 
 movl $0,%edx 
 cmpl %ecx,%edx 
 jge .L13 
.L11: 
 movl cnt(%rip),%eax 
 incl %eax 
 movl %eax,cnt(%rip) 
 incl %edx 
 cmpl %ecx,%edx 
 jl .L11 
.L13: 

Corresponding assembly code  

for (i=0; i < niters; i++) 
    cnt++; 

C code for counter loop in thread i 

Head (Hi) 

Tail (Ti) 

Load cnt (Li) 
Update cnt (Ui) 
Store cnt (Si) 
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Concurrent Execution 
 Key idea: In general, any sequentially consistent interleaving 

is possible, but some give an unexpected result! 
 Ii denotes that thread i executes instruction I 
 %eaxi is the content of %eax in thread i’s context 

H1 
L1 
U1 
S1 
H2 
L2 
U2 
S2 
T2 
T1 

1 
1 
1 
1 
2 
2 
2 
2 
2 
1 

- 
0 
1 
1 
- 
- 
- 
- 
- 
1 

0 
0 
0 
1 
1 
1 
1 
2 
2 
2 

i (thread) instri cnt %eax1 

OK 

- 
- 
- 
- 
- 
1 
2 
2 
2 
- 

%eax2 

Thread 1 
critical section 

Thread 2 
critical section 
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Concurrent Execution (cont) 
 Incorrect ordering: two threads increment the counter, 

but the result is 1 instead of 2 

H1 
L1 
U1 
H2 
L2 
S1 
T1 
U2 
S2 
T2 

1 
1 
1 
2 
2 
1 
1 
2 
2 
2 

- 
0 
1 
- 
- 
1 
1 
- 
- 
- 

0 
0 
0 
0 
0 
1 
1 
1 
1 
1 

i (thread) instri cnt %eax1 
- 
- 
- 
- 
0 
- 
- 
1 
1 
1 

%eax2 

Oops! 
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Concurrent Execution (cont) 
 How about this ordering? 

 
 
 
 
 
 

 
 

 We can analyze the behavior using a progress graph 

H1 
L1 
H2 
L2 
U2 
S2 
U1 
S1 
T1 
T2 

1 
1 
2 
2 
2 
2 
1 
1 
1 
2 

i (thread) instri cnt %eax1 %eax2 

0 
0 

0 
1 
1 1 

1 
1 1 

1 Oops! 
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Progress Graphs 
A progress graph depicts 
the discrete execution  
state space of concurrent 
 threads. 
 
Each axis corresponds to 
the sequential order of 
instructions in a thread. 
 
Each point corresponds to 
a possible execution state 
(Inst1, Inst2). 
 
E.g., (L1, S2)  denotes state 
where  thread 1 has 
completed L1 and thread 
2 has completed S2. H1 L1 U1 S1 T1 

H2 

L2 

U2 

S2 

T2 

Thread 1 

Thread 2 

(L1, S2)  
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Trajectories in Progress Graphs 

A trajectory is a sequence of legal 
state transitions that describes one 
possible concurrent execution of the 
threads. 
 
Example: 

H1, L1, U1, H2, L2,  S1, T1, U2, S2, T2 

H1 L1 U1 S1 T1 

H2 

L2 

U2 

S2 

T2 

Thread 1 

Thread 2 
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Critical Sections and Unsafe Regions 

L, U, and S form a critical 
section with respect to the 
shared variable cnt 
 
Instructions in critical 
sections (wrt to some shared 
variable) should not be 
interleaved 
 
Sets of states where such 
interleaving occurs form 
unsafe regions 
 

H1 L1 U1 S1 T1 

H2 

L2 

U2 

S2 

T2 

Thread 1 

Thread 2 

critical section wrt cnt 

critical 
section 

wrt 
cnt 

Unsafe region 
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Critical Sections and Unsafe Regions 

H1 L1 U1 S1 T1 

H2 

L2 

U2 

S2 

T2 

Thread 1 

Thread 2 

critical section wrt cnt 

critical 
section 

wrt 
cnt 

Unsafe region 

Def: A trajectory is safe  iff it does 
not enter any unsafe region 
 
Claim: A trajectory is  correct (wrt 
cnt)  iff it is safe 
 

unsafe 

safe 
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Enforcing Mutual Exclusion 
 Question: How can we guarantee a safe trajectory? 

 
 Answer: We must synchronize the execution of the threads so 

that they never have an unsafe trajectory.  
 i.e., need to guarantee mutually exclusive access to critical regions 

 
 Classic solution:  
 Semaphores (Edsger Dijkstra) 
 

 Other approaches (out of our scope) 
 Mutex and condition variables (Pthreads) 
 Monitors (Java) 
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Today 
 Threads review 
 Sharing 
 Mutual exclusion 
 Semaphores 
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Semaphores 
 Semaphore:  non-negative global integer synchronization 

variable 
 

 Manipulated by P and V operations: 
 P(s):  [  while (s == 0) wait(); s--; ] 

 Dutch for "Proberen" (test) 
 V(s):  [  s++; ] 

 Dutch for "Verhogen" (increment) 
 

 OS kernel guarantees that operations between brackets [ ] are 
executed indivisibly 

 Only one P or V operation at a time can modify s. 
 When while loop in P terminates, only that  P can decrement s 

 
 Semaphore invariant: (s >= 0) 



Carnegie Mellon 

29 

C Semaphore Operations 

Pthreads functions: 
#include <semaphore.h> 
 
int sem_init(sem_t *sem, 0, unsigned int val);} /* s = val */ 
 
int sem_wait(sem_t *s);  /* P(s) */ 
int sem_post(sem_t *s);  /* V(s) */ 

CS:APP wrapper functions: 
 #include "csapp.h” 
 
void P(sem_t *s); /* Wrapper function for sem_wait */ 
void V(sem_t *s); /* Wrapper function for sem_post */ 
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badcnt.c: Improper Synchronization 

volatile int cnt = 0; /* global */ 
 
int main(int argc, char **argv) 
{ 
  int niters = atoi(argv[1]); 
  pthread_t tid1, tid2; 
 
  Pthread_create(&tid1, NULL,           
                 thread, &niters); 
  Pthread_create(&tid2, NULL,  
                 thread, &niters); 
  Pthread_join(tid1, NULL); 
  Pthread_join(tid2, NULL); 
 
  /* Check result */ 
  if (cnt != (2 * niters)) 
    printf("BOOM! cnt=%d\n”, cnt); 
  else 
    printf("OK cnt=%d\n", cnt); 
  exit(0); 
} 

/* Thread routine */ 
void *thread(void *vargp) 
{ 
  int i, niters = *((int *)vargp); 
 
  for (i = 0; i < niters; i++) 
    cnt++;                    
 
  return NULL; 
} 

How can we fix this using 
semaphores? 



Carnegie Mellon 

31 

Using Semaphores for Mutual Exclusion 
 Basic idea: 
 Associate a unique semaphore mutex, initially 1, with each shared 

variable (or related set of shared variables). 
 Surround corresponding critical sections with P(mutex) and  
 V(mutex) operations. 

 
 Terminology: 
 Binary semaphore: semaphore whose value is always 0 or 1 
 Mutex: binary semaphore used for mutual exclusion 

 P operation: “locking” the mutex 
 V operation: “unlocking” or “releasing” the mutex 
 “Holding” a mutex: locked and not yet unlocked.  

 Counting semaphore: used as a counter for set of available 
resources. 
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goodcnt.c: Proper Synchronization 
 Define and initialize a mutex for the shared variable cnt: 

 

 
 volatile int cnt = 0;    /* Counter */ 
 sem_t mutex;             /* Semaphore that protects cnt */ 
 
 Sem_init(&mutex, 0, 1);  /* mutex = 1 */ 
 

 Surround critical section with P and V: 
 

 
 for (i = 0; i < niters; i++) { 
     P(&mutex); 
     cnt++; 
     V(&mutex); 
 } 

linux> ./goodcnt 10000 
OK cnt=20000 
linux> ./goodcnt 10000 
OK cnt=20000 
linux> 

Warning: It’s much slower 
than badcnt.c.  



Carnegie Mellon 

33 

goodcnt.c: Proper Synchronization 
 Define and initialize a mutex for the shared variable cnt: 

 

 
 volatile int cnt = 0;    /* Counter */ 
 sem_t mutex;             /* Semaphore that protects cnt */ 
 
 Sem_init(&mutex, 0, 1);  /* mutex = 1 */ 
 

 Surround critical section with P and V: 
 

 
 for (i = 0; i < niters; i++) { 
     P(&mutex); 
     cnt++; 
     V(&mutex); 
 } 

linux> ./goodcnt 10000 
OK cnt=20000 
linux> ./goodcnt 10000 
OK cnt=20000 
linux> 

Warning: It’s much slower 
than badcnt.c.  

 OK cnt=2000000 BOOM! cnt=1036525 Slowdown 
  
real 0m0.138s 0m0.007s 20X 
user 0m0.120s 0m0.008s 15X 
sys 0m0.108s 0m0.000s NaN 
 
And slower means much slower! 
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Unsafe region 

Why Mutexes Work 
Provide mutually exclusive 
access to shared variable by 
surrounding critical section 
with  P and V operations on 
semaphore s (initially set to 1) 
 
Semaphore invariant  
creates a forbidden region 
that encloses unsafe region 
that cannot be entered by any 
trajectory. 
 

H1 P(s) V(s) T1 
Thread 1 

Thread 2 

L1 U1 S1 

H2 

P(s) 

V(s) 

T2 

L2 

U2 

S2 

1 1 0 0 0 0 1 1 

1 1 0 0 0 0 1 1 

0 0 -1 -1 -1 -1 0 0 

0 0 
-1 -1 -1 -1 

0 0 

0 0 -1 -1 -1 -1 0 0 

0 0 
-1 -1 -1 -1 

0 0 

1 1 0 0 0 0 1 1 

1 1 0 0 0 0 1 1 

Initially 
s = 1 

Forbidden region 
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Summary 
 Programmers need a clear model of how variables are 

shared by threads.  
 

 Variables shared by multiple threads must be protected 
to ensure mutually exclusive access. 
 

 Semaphores are a fundamental mechanism for enforcing 
mutual exclusion.  
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Threads vs. Processes (cont.) 
 Processes form a tree hierarchy 
 Threads form a pool of peers 
 Each thread can kill any other 
 Each thread can wait for any other thread to terminate 
 Main thread: first thread to run in a process 

P0 

P1 

sh sh sh 

foo 

T1 

Process hierarchy Thread pool 

T2 
T4 

T5 T3 

shared code, data 
and kernel context 
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Posix Threads (Pthreads) Interface 
 Pthreads: Standard interface for ~60 functions that manipulate 

threads from C programs 
 Threads run thread routines: 

 void *threadroutine(void *vargp) 

 Creating and reaping threads 
 pthread_create(pthread_t *tid, …, func *f, void *arg) 
 pthread_join(pthread_t tid, void **thread_return) 

 Determining your thread ID 
 pthread_self() 

 Terminating threads 
 pthread_cancel(pthread_t tid) 
 pthread_exit(void *tread_return) 
 return (in primary thread routine terminates the thread) 
 exit (terminates all threads)  
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The Pthreads “Hello, world" Program 
/*  
 * hello.c - Pthreads "hello, world" program  
 */ 
#include "csapp.h" 
 
void *thread(void *vargp); 
 
int main() { 
  pthread_t tid; 
 
  Pthread_create(&tid, NULL, thread, NULL); 
  Pthread_join(tid, NULL); 
  exit(0); 
} 
 
/* thread routine */ 
void *thread(void *vargp) { 
  printf("Hello, world!\n");  
  return NULL; 
} 

Thread attributes  
(usually NULL) 

Thread arguments 
(void *p)  

assigns return value 
(void **p) 
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