Carnegie Mellon

Network Programming

15-213 / 18-213: Introduction to Computer Systems
215t Lecture, April 2, 2015

Instructors:
Franz Franchetti, Seth Goldstein and Greg Kesden

Carnegie Mellon

A Programmer’s View of the Internet

m Hosts are mapped to a set of 32-bit /P addresses
= 128.2.217.13

m The set of IP addresses is mapped to a set of identifiers
called Internet domain names

= 128.2.217.13 is mapped to www.cs.cmu.edu

m A process on one Internet host can communicate with a
process on another Internet host over a connection

Internet Connections

m Clients and servers communicate by sending streams of bytes
over connections:

= Point-to-point, full-duplex (2-way communication), and reliable

m A socket is an endpoint of a connection
= Socket address is an 1Paddress:port pair

m A portis a 16-bit integer that identifies a process:

= Ephemeral port: Assigned automatically on client when client makes a
connection request

= Well-known port: Associated with some service provided by a server
(e.g., port 80 is associated with Web servers)

m A connection is uniquely identified by the socket addresses
of its endpoints (socket pair)

= (cliaddr:cliport, servaddr:servport)

Carnegie Mellon

Anatomy of an Internet Connection

Client socket address Server socket address
128.2.194.242:51213 :80
L/ \ Server
Connection socket pair (port 80)
(128.2.194.242:51213, :80)

Client host address Server host address
128.2.194.242

51213 is an ephemeral port 80 is a well-known port
allocated by the kernel associated with Web servers

Carnegie Mellon

A Client-Server Transaction

1. Client sends request

Server

Client
Resource

process / process

4. Client 3. Server sends response 2. Server
handles handles
response request

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

m Most network applications are based on the client-server
model:
= A server process and one or more client processes
= Server manages some resource
= Server provides service by manipulating resource for clients
= Server activated by request from client (vending machine analogy)

Carnegie Mellon

Clients

m Examples of client programs
= Web browsers, Ttp, telnet, ssh

m How does a client find the server?

= The IP address in the server socket address identifies the host
(more precisely, an adapter on the host)

= The (well-known) port in the server socket address identifies the
service, and thus implicitly identifies the server process that performs
that service.

= Examples of well know ports
= Port 7: Echo server
= Port 23: Telnet server
= Port 25: Mail server
= Port 80: Web server

Carnegie Mellon

Using Ports to Identify Services

Server host 128.2.194.242

Client host Service request for
128.2.194.242:80

(i.e., the Web server)
Client

Web server
(port 80)

Kernel

) 4

Echo server
(port 7)

Service request for
128.2.194.242:7

) (i.e., the echo server)
Client >

Web server
(port 80)

Kernel

Echo server
(port 7)

Carnegie Mellon

Servers

m Servers are long-running processes (daemons)
" Created at boot-time (typically) by the init process (process 1)
= Run continuously until the machine is turned off

m Each server waits for requests to arrive on a well-known port
associated with a particular service

Port 7: echo server

Port 23: telnet server

Port 25: mail server
Port 80: HTTP server

m A machine that runs a server process is also often referred to
as a “server”

Carnegie Mellon

Server Examples
m Web server (port 80)

= Resource: files/compute cycles (CGI programs)
= Service: retrieves files and runs CGIl programs on behalf of the client

m FTP server (20, 21) See /etc/services for a
= Resource: files comprehensive list of the port
= Service: stores and retrieve files mappings on a Linux machine

m Telnet server (23)
= Resource: terminal
= Service: proxies a terminal on the server machine

m Mail server (25)
= Resource: email “spool” file
= Service: stores mail messages in spool file

Ill

Carnegie Mellon

Sockets Interface

m Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of the
Internet protocols

m Provides a user-level interface to the network
m Underlying basis for all Internet applications

m Based on client/server programming model

10

Carnegie Mellon

Sockets

m What is a socket?

= To the kernel, a socket is an endpoint of communication

= To an application, a socket is a file descriptor that lets the
application read/write from/to the network

= Remember: All Unix I/O devices, including networks, are
modeled as files

m Clients and servers communicate with each other by
reading from and writing to socket descriptors

Client l‘ ‘l Server

clientfd serverfd

m The main distinction between regular file /O and socket
1/0 is how the application “opens” the socket descriptors

11

Overview of the Sockets Interface

Client Server
N
(socket socket
bind > open_listenfd
open_clientfd < 1
listen
Connection l /
request
\ connect [------------- > accept <
v v
Client / » rio_writen »rio_readlinebi<
Server ! | . .
Session _ i : : Await connection
rio_readlineb [« rio_writen request from
next client
\4 \ 4
close f(----- EOF .. »rio_readlineb
\ 4

close

12

Socket Address Structures

m Generic socket address:
" For address arguments to connect, bind, and accept

= Necessary only because C did not have generic (void *) pointers
when the sockets interface was designed

struct sockaddr {
unsigned short sa family; /* protocol family */
char sa_dataf14]; /* address data. */
}:
sa_family
— _/
V

Family Specific

13

Carnegie Mellon

Socket Address Structures

m Internet-specific socket address:

= Must cast (sockaddr_1n *)to (sockaddr *)for connect,
bind, and accept

struct sockaddr_in {
unsigned short sin_family; /* address family (always AF_INET) */
unsigned short sin_port; /* port num in network byte order */
struct in_addr sin_addr; /* 1P addr in network byte order */
unsigned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */

¥

sin_port sin_addr

AF_INET O|0|O0O|]O0O|O0O|O]O]O

sa_ family W)

Family Specific

sin_family

14

Example: Echo Client and Server

On Client On Server

greatwhite> ./echoserver 15213

Iinux> echoclient greatwhite.ics.cs.cmu.edu 15213

server connected to BRYANT-TP4_.VLSI.CS.CMU.EDU
(128.2.213.29), port 64690

type: hello there

server received 12 bytes

echo: HELLO THERE
type: ™D

Connection closed

15

Echo Client Main Routine

#include "csapp.-h"

/* usage: ./echoclient host port */
int main(int argc, char **argv)
{ :
int clientfd, port; :?g:d Input
char *host, buf[MAXLINE];
rio t rio;
host = argv|[1l]; port = atoi(argv|2]);
clientfd = Open_clientfd(host, port);
Rio_readinitb(&rio, clientfd);
send line to printf('type:"); fFflush(stdout);
server — while (Fgets(buf, MAXLINE, stdin) = NULL) {
---__,;Rio_writen(clientfd, buf, strlen(buf));

ecelve fine » Rio_readlineb(&rio, buf, MAXLINE); .
printf('echo:'); Print server
Fputs(buf, stdout); < response
printf('type:"); FFflush(stdout);
1
Close(clientfd);
exit(0);

16

Carnegie Mellon

Overview of the Sockets Interface

Client Server

socket socket
bind > open_listenfd
open_clientfd < \

listen

Connection l

request
connect [------------- > accept

17

Echo Client: open_clientfd

}

int open_clientfd(char *hostname, int port) {

int clientfd; This function opens a connection

struct hostent *hp;
struct sockaddr _in serveraddr; hostname : port

IT ((clientfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
return -1; /* check errno for cause of error */

/* Fill 1n the server®"s IP address and port */

iIT ((hp = gethostbyname(hostname)) == NULL)
return -2; /* check h_errno for cause of error */

bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF _INET;
bcopy((char *)hp->h_addr_list[0],

(char *)&serveraddr.sin_addr.s _addr, hp->h_length);
serveraddr.sin_port = htons(port);

/* Establish a connection with the server */
iIT (connect(clientfd, (SA *) &serveraddr,
sizeof(serveraddr)) < 0)
return -1;
return clientfd;

4

.

from the client to the server at

;

Create
socket

Create
address

Establish
connection

18

Carnegie Mellon

Echo Client: open_clientfd
(socket)

m socket creates a socket descriptor on the client
= Just allocates & initializes some internal data structures
= AF _INET: indicates that the socket is associated with Internet protocols
= SOCK_ STREAM: selects a reliable byte stream connection
= provided by TCP

int clientfd; /* socket descriptor */

IT ((clientfd = socket(AF _INET, SOCK _STREAM, 0)) < 0)
return -1; /* check errno for cause of error */

- <more>

19

Carnegie Mellon

Echo Client: open_clientfd
(gethostbyname)

m The client then builds the server’s Internet address

int clientfd; /* socket descriptor */

struct hostent *hp; /* DNS host entry */
struct sockaddr_in serveraddr; /* server’s IP address */

/* Till 1n the server®"s IP address and port */
iIT ((hp = gethostbyname(hostname)) == NULL)

return -2; /* check h_errno for cause of error */
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF _INET;
serveraddr.sin_port = htons(port);
bcopy((char *)hp->h_addr_list[0],

(char *)&serveraddr.sin_addr.s _addr, hp->h_length);

20

Carnegie Mellon

A Careful Look at bcopy Arguments

/* DNS host entry structure */
struct hostent {

int h_length; /* length of an address, in bytes */
char **h_addr_list; /* null-terminated array of iIn_addr structs */

¥

struct sockaddr_in {

struct In_addr sin_addr; /* 1P addr in network byte order */

};- | /* Internet address structure */
struct i1n_addr {
unsigned iInt s _addr; /* network byte order (big-endian) */

¥

struct hostent *hp; /* DNS host entry */
struct sockaddr_in serveraddr; /* server’s IP address */

bcopy((char *)hp->h_addr_list[0], /* src, dest */
(char *)&serveraddr.sin_addr.s _addr, hp->h_length);

21

Carnegie Mellon

Bcopy Argument Data Structures

struct hostent
h_length h_addr_list

0
S_addr
struct
In_addr s_addr
struct sockaddr_iIn
sin_family sin_port sin_addr
AF_INET O|0|O0O|]O0O|O0O|O]O]O

struct i1n_addr | ¢ jqdr

22

Carnegie Mellon

Echo Client: open_clientfd
(connect)

m Finally the client creates a connection with the server
= Client process suspends (blocks) until the connection is created

= After resuming, the client is ready to begin exchanging messages with the
server via Unix I/O calls on descriptor cl 1entfd

int clientfd; /* socket descriptor */
struct sockaddr_iIn serveraddr; /* server address */
typedef struct sockaddr SA; /* generic sockaddr */

/* Establish a connection with the server */

IT (connect(clientfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)
return -1;

return clientfd;

23

Echo Server: Main Routine

int main(int argc, char **argv) {
int listenfd, connfd, port, clientlen;
struct sockaddr_in clientaddr;
struct hostent *hp;
char *haddrp;
unsigned short client _port;

port = atoi(argv[1l]); /* the server listens on a port passed
on the command line */
listenfd = open_listenfd(port);

while (1) {
clientlen = sizeof(clientaddr);
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
hp = Gethostbyaddr((const char *)&clientaddr.sin_addr.s addr,
sizeof(clientaddr.sin_addr.s addr), AF_INET);
haddrp = 1net_ntoa(clientaddr.sin_addr);
client port = ntohs(clientaddr.sin_port);
printf(’'server connected to %s (%s), port %u\n',
hp->h_name, haddrp, client port);
echo(connfd);
Close(connfd);

Carnegie Mellon

Overview of the Sockets Interface

Client Server

socket socket
bind > open_listenfd
open_clientfd < \

listen

Connection l

request
connect [------------- > accept

m Office Telephone Analogy for Server
= Socket: Buya phone
= Bind: Tell the local administrator what number you want to use
= Listen: Plug the phone in
= Accept: Answer the phone when it rings

25

Carnegie Mellon

Echo Server: open_listenftd

int open_listenfd(int port)
{
int listenfd, optval=1;
struct sockaddr_in serveraddr;

/* Create a socket descriptor */

IT ((listenfd = socket(AF_INET, SOCK STREAM, 0)) < 0)
return -1;

/* Eliminates "Address already in use"™ error from bind. */
IT (setsockopt(listenfd, SOL SOCKET, SO REUSEADDR,
(const void *)&optval , sizeof(int)) < 0)
return -1;

- <more>

26

Echo Server: open_listenfd (cont.)

/* Listenfd will be an endpoint for all requests to port
on any IP address for this host */
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF _INET;
serveraddr.sin_addr.s _addr = htonl (INADDR_ANY);
serveraddr.sin_port = htons((unsigned short)port);
IT (bind(listenfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)
return -1;

/* Make 1t a listening socket ready to accept

connection requests */
iIT (listen(listenfd, LISTENQ) < 0)
return -1;

return listenfd;

27

Carnegie Mellon

Echo Server: open_listenfd
(socket)

m Socket creates a socket descriptor on the server
= AF_INET: indicates that the socket is associated with Internet protocols
= SOCK_STREAM: selects a reliable byte stream connection (TCP)

int listenfd; /* listening socket descriptor */

/* Create a socket descriptor */
IT ((listenfd = socket(AF _INET, SOCK _STREAM, 0)) < 0)
return -1;

28

Carnegie Mellon

Echo Server: open_listenftd
(setsockopt)

m The socket can be given some attributes

/* Eliminates "Address already iIn use"™ error from bind(). */
iIT (setsockopt(listenfd, SOL SOCKET, SO REUSEADDR,
(const void *)&optval , sizeof(int)) < 0)
return -1;

m Handy trick that allows us to rerun the server immediately
after we kill it
= Otherwise we would have to wait about 15 seconds
" Eliminates “Address already in use” error from bind()
m Strongly suggest you do this for all your servers to simplify
debugging

29

Carnegie Mellon

Echo Server: open_listenftd
(initialize socket address)

m Initialize socket with server port number
m Accept connection from any IP address

struct sockaddr_i1n serveraddr; /* server"s socket addr */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */

bzero((char *) &serveraddr, sizeof(serveraddr));

serveraddr.sin_family = AF_INET;

serveraddr.sin_port = htons((unsigned short)port);

serveraddr.sin_addr.s_addr = htonl (INADDR_ANY);

m [P addr and port stored in network (big-endian) byte order

sin_port sin_addr

AF_INET INADD{R_ANY O|0|O0O|]O0O|O0O|O]O0]|O

sa_family
sin_family

30

Carnegie Mellon

Echo Server: open_listenftd

(bind)

m bind associates the socket with the socket address we just
created

int listenfd; /* listening socket */

struct sockaddr_i1n serveraddr; /* server’s socket addr */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */
IT (bind(listenfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)
return -1;

31

Carnegie Mellon

Echo Server: open_listenftd
(listen)

m l1sten indicates that this socket will accept connection
(connect) requests from clients

m LISTENQ is constant indicating how many pending requests
allowed

int listenfd; /* listening socket */

/* Make 1t a listening socket ready to accept connection requests */
iIT (listen(listenfd, LISTENQ) < 0O)
return -1;
return listenfd;

}

m We're finally ready to enter the main server loop that
accepts and processes client connection requests.

32

Carnegie Mellon

Echo Server: Main Loop

m The server loops endlessly, waiting for connection
requests, then reading input from the client, and echoing
the input back to the client.

main() {

/* create and configure the listening socket */

while(1) {
/* Accept(): wait for a connection request */
/* echo(): read and echo 1nput lines from client til EOF */
/* Close(): close the connection */

}
}

33

Overview of the Sockets Interface

Client Server
N
(socket socket
bind > open_listenfd
open_clientfd < 1
listen
Connection l /
request
\ connect [------------- > accept <
v v
Client / » rio_writen »rio_readlinebi<
Server ! | . .
Session _ i : : Await connection
rio_readlineb [« rio_writen request from
next client
\4 \ 4
close f(----- EOF .. »rio_readlineb
\ 4

close

34

Carnegie Mellon

Echo Server: accept

m accept() blocks waiting for a connection request

int listenfd; /* listening descriptor */
int connfd; /* connected descriptor */
struct sockaddr_in clientaddr;

int clientlen;

clientlen = sizeof(clientaddr);
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

m accept returns a connected descriptor (connfd) with

the same properties as the listening descriptor
(listenftd)

m Returns when the connection between client and server is created
and ready for I/O transfers

m All I/0 with the client will be done via the connected socket

m accept alsofillsin client’s IP address

35

Carnegie Mellon

Echo Server: accept lllustrated

listenfd(3)
1. Server blocks in accept,
Client l T Server waiting for connection request
clientfd on listening descriptor
listenfd
Connection listenfd(3)
request . R 2. Client makes connection request by
Client i T Server calling and blocking in connect
clientfd
listenfd(3)
3. Server returns connftd from
Client L . R I Server accept. Client returns from connect.
clientfd connfd(4) Connection is now established between

clientfd and connfd

36

Carnegie Mellon

Connected vs. Listening Descriptors

m Listening descriptor
= End point for client connection requests
= Created once and exists for lifetime of the server

m Connected descriptor
= End point of the connection between client and server

= A new descriptor is created each time the server accepts a
connection request from a client

= Exists only as long as it takes to service client

m Why the distinction?

= Allows for concurrent servers that can communicate over many
client connections simultaneously

= E.g., Each time we receive a new request, we fork a child to
handle the request

37

Carnegie Mellon

Echo Server: Identifying the Client

m The server can determine the domain name, IP address,
and port of the client

struct hostent *hp; /* pointer to DNS host entry */
char *haddrp; /* pointer to dotted decimal string */
unsigned short client port;
hp = Gethostbyaddr((const char *)&clientaddr.sin_addr.s addr,
sizeof(clientaddr.sin_addr.s addr), AF _INET);
haddrp = 1net_ntoa(clientaddr.sin_addr);
client _port = ntohs(clientaddr.sin_port);
printf(''server connected to %s (%s), port %u\n",
hp->h_name, haddrp, client port);

38

Echo Server: echo

m The server uses RIO to read and echo text lines until EOF
(end-of-file) is encountered.
= EOF notification caused by client calling close(clientfd)

void echo(int connfd)
{ -
size_t n;
char buf[MAXLINE];
rio_t rio;

Rio_readinitb(&rio, connfd);

while((n = Rio_readlineb(&rio, buf, MAXLINE)) !'= 0) {
upper_case(buf);
Rio_writen(connfd, buf, n);
printf("'server received %d bytes\n", n);

39

Carnegie Mellon

Testing Servers Using telnet

m The telnet program is invaluable for testing servers
that transmit ASCII strings over Internet connections
® Qursimple echo server
= Web servers
= Mail servers

m Usage:
= unix> telnet <host> <portnumber>

= Creates a connection with a server running on <host> and
listening on port <portnumber>

40

Carnegie Mellon

Testing the Echo Server With telnet

greatwhite> echoserver 15213

linux> telnet greatwhite.ics.cs.cmu.edu 15213
Trying 128.2.220.10...

Connected to greatwhite.ics.cs.cmu.edu.
Escape character i1s "] ".

hi there

HI THERE

41

Carnegie Mellon

For More Information

m W. Richard Stevens, “Unix Network Programming:
Networking APIs: Sockets and XTI”, Volume 1, Second
Edition, Prentice Hall, 1998

= THE network programming bible
m Unix Man Pages
" Good for detailed information about specific functions

m Complete versions of the echo client and server are
developed in the text
= Updated versions linked to course website
= Feel free to use this code in your assignments

42

Carnegie Mellon

Watching Echo Client / Server

r_ﬁ Capturing from Microsoft - Wireshark

File Edit View Go Capture Analyze Statistics Telephnni Toaols Help

B e e e XEe qesaTL2I[EE QA &% x| 8

Filter: |tep.port eq 15213 * Expression.. Clear Apply

Ma. Time Source Destination Protocol Info -
1255 15. 881495 128.257.252.163 128.2.220.10 TP 55306 > 15213 [5¥M] Seq=0 win=65535 Len=0 mMss=1
1256 15. 883817 128.2.220.10 128.237.252.163 TP 15213 = 55306 [5vM, ACK] Seq=0 Ack=1l Wwin=5540 L
1257 15.883807 128.237.252.163 128.2.220.10 TP 55306 > 15215 [ACK] sSeq=l aAck=1 win=5655332 Len=0

. D14380 137,252,163 1258.2.220. 55306 > 15 i Win=65532

1800 21. 916474 128.2.220.10 128.237.252.163 TP 15213 » [ack] seqg=l Ack=1% win=5888 Len=0 EI
1801 21.916534 128.2.220.10 128.237.252.163 TP 15213 » [FSH, ACK] sSeqg=l aAck=1% win=5888
1816 22.112225 128.257.252.163 128.2.220.10 TP 55306 » [ack] seq=1% ack=1% win=65516 Len
2301 29.0535184 128.257.252.163 128.2.220.10 TP 55306 » [FSH, ACK] Seq=1% Ack=1% win=6551
2302 29.055004 128.2.220.10 128.237.252.163 TP 15213 » [PSH, ACK] Seq=19% aAck=43 win=5888-—r
2316 29.2556260 128.257.252.163 128.2.220.10 TP 55306 » [ACK] sSeq=43 Ack=43 win=63492 Len
2382 30.22%193 128.257.252.163 128.2.220.10 TP 55306 = [FIN, ACK] Seq=43 aAck=43 win=6545 -

P 1 b

F Frame 1798: 72 bytes on wire (576 bits), 72 bytes captured (576 bits)
F Ethernet II, sSrc: Intel_e3:54:86 (00:16:ea:e3:54:860, Dst: Carnegie_20:00:684 (08:00:7F:20:00:640
£

13

[,m

Internet Protocol, Src: 128.237.252.165 (128.237.252.163), Dst: 128.2.220.10 (128.2.220.100

Transmission Control Protocol, src PoOrt: 55306 (553060, Dst Port: 15213 (152130, seqg: 1, Ack: 1, Len: 18 5

Qo000 OB 00 Ff 20 00 64 00 16 ea e3 54 e§ 08 00 45 00 Y - S N =

0010 00 3a 2¢ Fa 40 00 B0 06 f4 aS 80 ed fc a3 80 02 -

0020 dc 0a dB8 0a 3b 6d 4 a4 9% 6C 75 de 71 6a 50 18 ceeaymes Jlulgip.

0030 3f f£f 96 8b 00 00 68 B85 F2 65 20 6% F3 20 61 20 EP he re is a

0040 6d 85 F3 T3 6l 67 &5 0a message.

I

@ Microsoft: <live capture in progress> File: C:... | Packets: 6950 Displayed: 13 Marked: 0 Profile: Default

43

Carnegie Mellon

Ethical Issues

m Packet Sniffer
" Program that records network traffic visible at node

" Promiscuous mode: Record traffic that does not have this host as
source or destination

m University Policy

Network Traffic: Network traffic should be considered private. Because of this,
any "packet sniffing"”, or other deliberate attempts to read network information
which is not intended for your use will be grounds for loss of network
privileges for a period of not less than one full semester. In some cases, the
loss of privileges may be permanent. Note that it is permissable to run a packet
sniffer explicitely configured in non-promiscuous mode (you may sniff packets
going to or from your machine). This allows users to explore aspects of
networking while protecting the privacy of others.

44

	Network Programming��15-213 / 18-213: Introduction to Computer Systems�21st Lecture, April 2, 2015
	A Programmer’s View of the Internet
	Internet Connections
	Anatomy of an Internet Connection
	A Client-Server Transaction
	Clients
	Using Ports to Identify Services
	Servers
	Server Examples
	Sockets Interface
	Sockets
	Overview of the Sockets Interface
	Socket Address Structures
	Socket Address Structures
	Example: Echo Client and Server
	Echo Client Main Routine
	Overview of the Sockets Interface
	Echo Client: open_clientfd
	Echo Client: open_clientfd �(socket)
	Echo Client: open_clientfd �(gethostbyname)
	A Careful Look at bcopy Arguments
	Bcopy Argument Data Structures
	Echo Client: open_clientfd �(connect)
	Echo Server: Main Routine
	Overview of the Sockets Interface
	Echo Server: open_listenfd
	Echo Server: open_listenfd (cont.)
	Echo Server: open_listenfd�(socket)
	Echo Server: open_listenfd�(setsockopt)
	Echo Server: open_listenfd �(initialize socket address)
	Echo Server: open_listenfd �(bind)
	Echo Server: open_listenfd �(listen)
	Echo Server: Main Loop
	Overview of the Sockets Interface
	Echo Server: accept
	Echo Server: accept Illustrated
	Connected vs. Listening Descriptors
	Echo Server: Identifying the Client
	Echo Server: echo
	Testing Servers Using telnet
	Testing the Echo Server With telnet
	For More Information
	Watching Echo Client / Server
	Ethical Issues

