
Carnegie Mellon

1

Machine-Level Programming IV:
x86-64 Procedures, Data

15-213 / 18-213 / 15-513: Introduction to Computer Systems
8th Lecture, February 5, 2015

Franz Franchetti, Seth Copen Goldstein, Greg Kesden

Carnegie Mellon

2

Today

 Procedures (x86-64)

 Arrays
 One-dimensional

 Multi-dimensional (nested)

 Multi-level

 Structures
 Allocation

 Access

 Alignment

Carnegie Mellon

3

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

x86-64 Integer Registers

 Twice the number of registers

 Accessible as 8, 16, 32, 64 bits

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

Carnegie Mellon

4

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp

x86-64 Integer Registers:
Usage Conventions

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15 Callee saved Callee saved

Callee saved

Callee saved

Callee saved

Caller saved

Callee saved

Stack pointer

Caller Saved

Return value

Argument #4

Argument #1

Argument #3

Argument #2

Argument #6

Argument #5

Carnegie Mellon

5

x86-64 Registers

 Arguments passed to functions via registers
 If more than 6 integral parameters, then pass rest on stack

 These registers can be used as caller-saved as well

 All references to stack frame via stack pointer
 Eliminates need to update %ebp/%rbp

 Other Registers
 6 callee saved

 2 caller saved

 1 return value (also usable as caller saved)

 1 special (stack pointer)

Carnegie Mellon

6

x86-64 Long Swap()

 Operands passed in registers
 First (xp) in %rdi, second (yp) in %rsi

 64-bit pointers

 No stack operations required (except ret)

 Avoiding stack
 Swap_l() can hold all local information in caller-saved registers

void swap_l(long *xp, long *yp)

{

 long t0 = *xp;

 long t1 = *yp;

 *xp = t1;

 *yp = t0;

}

swap:

 movq (%rdi), %rdx

 movq (%rsi), %rax

 movq %rax, (%rdi)

 movq %rdx, (%rsi)

 ret

rtn Ptr %rsp

No stack
frame

Carnegie Mellon

7

More on x86-64 vs. IA32 stack use

 Same
 Push/Pop to save/restore register values (e.g., callee saved)

 Sub/Add to create/delete space for local variables of function

 when not all fit in registers

 May allocate extra/unused space to ensure 16-byte alignment of
every stack frame

 Different
 x86-64 does all stack references relative to %rsp

 eliminates need to use %ebp/%rbp as base pointer

 x86-64 allocates entire stack frame (if any) at once, not little-by-little

 x86-64 has concept of usable “red zone” beyond %rsp

Carnegie Mellon

8

x86-64 Stack Frame Example #1

 Keeps diff in callee saved
register

 Uses push & pop to
save/restore

swap_ele_diff:

 pushq %rbx

 leaq (%rdi,%rdx,8), %rdx

 leaq (%rdi,%rsi,8), %rdi

 movq (%rdx), %rbx

 subq (%rdi), %rbx

 movq %rdx, %rsi

 call swap

 movq %rbx, %rax

 popq %rbx

 ret

/* Swap a[i] and a[j]

 Compute difference */

void swap_ele_diff(long a[],

 long i, long j) {

 long diff = a[j] – a[i];

 swap(&a[i], &a[j]);

 return diff;

}

rtn Ptr

%rsp Old %rbx

Carnegie Mellon

9

x86-64 Locals in the Red Zone

 Avoiding Stack Pointer Change
 Can hold all information within small

window beyond stack pointer

/* Swap, using local array */

void swap_a(long *xp, long *yp)

{

 volatile long loc[2];

 loc[0] = *xp;

 loc[1] = *yp;

 *xp = loc[1];

 *yp = loc[0];

}

swap_a:

 movq (%rdi), %rax

 movq %rax, -16(%rsp)

 movq (%rsi), %rax

 movq %rax, -8(%rsp)

 movq -8(%rsp), %rax

 movq %rax, (%rdi)

 movq -16(%rsp), %rax

 movq %rax, (%rsi)

 ret

rtn Ptr %rsp

−8 loc[1]

loc[0] −16

Carnegie Mellon

10

x86-64 Procedure Summary

 Heavy use of registers
 Parameter passing

 More temporaries since more registers

 Minimal use of stack
 Sometimes none

 Allocate/deallocate entire block

 Many tricky optimizations
 What kind of stack frame to use

 Various allocation techniques

Carnegie Mellon

11

Today

 Procedures (x86-64)

 Arrays
 One-dimensional

 Multi-dimensional (nested)

 Multi-level

 Structures

Carnegie Mellon

12

Array Allocation
 Basic Principle

T A[L];

 Array of data type T and length L

 Contiguously allocated region of L * sizeof(T) bytes in memory

char string[12];

x x + 12

int val[5];

x x + 4 x + 8 x + 12 x + 16 x + 20

double a[3];

x + 24 x x + 8 x + 16

char *p[3];

x x + 8 x + 16 x + 24

x x + 4 x + 8 x + 12

IA32

x86-64

Carnegie Mellon

13

Array Access
 Basic Principle

T A[L];

 Array of data type T and length L

 Identifier A can be used as a pointer to array element 0: Type T*

 Reference Type Value
val[4] int 3

val int * x

val+1 int * x + 4

&val[2] int * x + 8

val[5] int ??

*(val+1) int 5

val + i int * x + 4 i

int val[5]; 1 5 2 1 3

x x + 4 x + 8 x + 12 x + 16 x + 20

Carnegie Mellon

14

Array Example

 Declaration “zip_dig cmu” equivalent to “int cmu[5]”

 Example arrays were allocated in successive 20 byte blocks

 Not guaranteed to happen in general

#define ZLEN 5

typedef int zip_dig[ZLEN];

zip_dig cmu = { 1, 5, 2, 1, 3 };

zip_dig mit = { 0, 2, 1, 3, 9 };

zip_dig ucb = { 9, 4, 7, 2, 0 };

zip_dig cmu; 1 5 2 1 3

16 20 24 28 32 36

zip_dig mit; 0 2 1 3 9

36 40 44 48 52 56

zip_dig ucb; 9 4 7 2 0

56 60 64 68 72 76

Carnegie Mellon

15

Array Accessing Example

 Register %edx contains
starting address of array

 Register %eax contains
array index

 Desired digit at
4*%eax + %edx

 Use memory reference
(%edx,%eax,4)

int get_digit

 (zip_dig z, int digit)

{

 return z[digit];

}

 # %edx = z

 # %eax = digit

 movl (%edx,%eax,4),%eax # z[digit]

IA32

zip_dig cmu; 1 5 2 1 3

16 20 24 28 32 36

Carnegie Mellon

16

 # edx = z

 movl $0, %eax # %eax = i

.L4: # loop:

 addl $1, (%edx,%eax,4) # z[i]++

 addl $1, %eax # i++

 cmpl $5, %eax # i:5

 jne .L4 # if !=, goto loop

Array Loop Example (IA32)

void zincr(zip_dig z) {

 int i;

 for (i = 0; i < ZLEN; i++)

 z[i]++;

}

Carnegie Mellon

17

Multidimensional (Nested) Arrays
 Declaration

T A[R][C];

 2D array of data type T

 R rows, C columns

 Type T element requires K bytes

 Array Size
 R * C * K bytes

 Arrangement
 Row-Major Ordering

A[0][0] A[0][C-1]

A[R-1][0]

• • •

• • • A[R-1][C-1]

•

•

•

•

•

•

int A[R][C];

• • •

A

[0]

[0]

A

[0]

[C-1]

• • •

A

[1]

[0]

A

[1]

[C-1]

• • •

A

[R-1]

[0]

A

[R-1]

[C-1]

• • •

4*R*C Bytes

Carnegie Mellon

18

Nested Array Example

 “zip_dig pgh[4]” equivalent to “int pgh[4][5]”
 Variable pgh: array of 4 elements, allocated contiguously

 Each element is an array of 5 int’s, allocated contiguously

 “Row-Major” ordering of all elements in memory

#define PCOUNT 4

zip_dig pgh[PCOUNT] =

 {{1, 5, 2, 0, 6},

 {1, 5, 2, 1, 3 },

 {1, 5, 2, 1, 7 },

 {1, 5, 2, 2, 1 }};

zip_dig

pgh[4];

76 96 116 136 156

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1

Carnegie Mellon

19

• • •

Nested Array Row Access

 Row Vectors
 A[i] is array of C elements

 Each element of type T requires K bytes

 Starting address A + i * (C * K)

• • •

A

[i]

[0]

A

[i]

[C-1]

A[i]

• • •

A

[R-1]

[0]

A

[R-1]

[C-1]

A[R-1]

• • •

A

• • •

A

[0]

[0]

A

[0]

[C-1]

A[0]

A+(i*C*4) A+((R-1)*C*4)

int A[R][C];

Carnegie Mellon

20

• • •

Nested Array Element Access

 Array Elements
 A[i][j] is element of type T, which requires K bytes

 Address A + i * (C * K) + j * K = A + (i * C + j)* K

 • • • • • •

A

[i]

[j]

A[i]

• • •

A

[R-1]

[0]

A

[R-1]

[C-1]

A[R-1]

• • •

A

• • •

A

[0]

[0]

A

[0]

[C-1]

A[0]

A+(i*C*4) A+((R-1)*C*4)

int A[R][C];

A+(i*C*4)+(j*4)

Carnegie Mellon

21

Multi-Level Array Example
 Variable univ denotes

array of 3 elements

 Each element is a pointer

 4 bytes

 Each pointer points to array
of int’s

zip_dig cmu = { 1, 5, 2, 1, 3 };

zip_dig mit = { 0, 2, 1, 3, 9 };

zip_dig ucb = { 9, 4, 7, 2, 0 };

#define UCOUNT 3

int *univ[UCOUNT] = {mit, cmu, ucb};

36 160

16

56

164

168

univ

cmu

mit

ucb

1 5 2 1 3

16 20 24 28 32 36

0 2 1 3 9

36 40 44 48 52 56

9 4 7 2 0

56 60 64 68 72 76

Carnegie Mellon

22

Element Access in Multi-Level Array

 Computation (IA32)
 Element access Mem[Mem[univ+4*index]+4*digit]

 Must do two memory reads

 First get pointer to row array

 Then access element within array

 movl 8(%ebp), %eax # index

 movl univ(,%eax,4), %edx # p = univ[index]

 movl 12(%ebp), %eax # digit

 movl (%edx,%eax,4), %eax # p[digit]

int get_univ_digit

 (int index, int digit)

{

 return univ[index][digit];

}

Carnegie Mellon

23

Array Element Accesses

int get_pgh_digit

 (int index, int digit)

{

 return pgh[index][digit];

}

int get_univ_digit

 (int index, int digit)

{

 return univ[index][digit];

}

Nested array Multi-level array

Accesses looks similar in C, but addresses very different:

Mem[pgh+20*index+4*digit] Mem[Mem[univ+4*index]+4*digit]

Carnegie Mellon

24

N X N Matrix Code

 Fixed dimensions
 Know value of N at

compile time

 Variable dimensions,
explicit indexing
 Traditional way to

implement dynamic
arrays

 Variable dimensions,
implicit indexing
 Now supported by gcc

#define N 16

typedef int fix_matrix[N][N];

/* Get element a[i][j] */

int fix_ele

 (fix_matrix a, int i, int j)

{

 return a[i][j];

}

#define IDX(n, i, j) ((i)*(n)+(j))

/* Get element a[i][j] */

int vec_ele

 (int n, int *a, int i, int j)

{

 return a[IDX(n,i,j)];

}

/* Get element a[i][j] */

int var_ele

 (int n, int a[n][n], int i, int j)

{

 return a[i][j];

}

Carnegie Mellon

25

16 X 16 Matrix Access

/* Get element a[i][j] */

int fix_ele(fix_matrix a, int i, int j) {

 return a[i][j];

}

 movl 12(%ebp), %edx # i

 sall $6, %edx # i*64

 movl 16(%ebp), %eax # j

 sall $2, %eax # j*4

 addl 8(%ebp), %eax # a + j*4

 movl (%eax,%edx), %eax # *(a + j*4 + i*64)

 Array Elements
 Address A + i * (C * K) + j * K

 C = 16, K = 4

Carnegie Mellon

26

n X n Matrix Access

/* Get element a[i][j] */

int var_ele(int n, int a[n][n], int i, int j) {

 return a[i][j];

}

 movl 8(%ebp), %eax # n

 sall $2, %eax # n*4

 movl %eax, %edx # n*4

 imull 16(%ebp), %edx # i*n*4

 movl 20(%ebp), %eax # j

 sall $2, %eax # j*4

 addl 12(%ebp), %eax # a + j*4

 movl (%eax,%edx), %eax # *(a + j*4 + i*n*4)

 Array Elements
 Address A + i * (C * K) + j * K

 C = n, K = 4

 Must perform integer multiplication

Carnegie Mellon

27

Today

 Procedures (x86-64)

 Arrays
 One-dimensional

 Multi-dimensional (nested)

 Multi-level

 Structures
 Allocation

 Access

 Alignment

Carnegie Mellon

28

struct rec {

 int a[3];

 int i;

 struct rec *n;

};

Structure Allocation

 Concept of structures in C
 Contiguously-allocated region of memory

 Refer to members within structure by names

 Members may be of different types

Memory Layout

i a n

0 12 16 20

Carnegie Mellon

29

struct rec {

 int a[3];

 int i;

 struct rec *n;

};

IA32 Assembly
 # %edx = val

 # %eax = r

 movl %edx, 12(%eax) # Mem[r+12] = val

void

set_i(struct rec *r,

 int val)

{

 r->i = val;

}

Structure Access

 Accessing Structure Member
 Pointer to structure is memory address of first byte of structure

 Access elements with offsets

i a n

0 12 16 20

r+12 r

Carnegie Mellon

30

 movl 12(%ebp), %eax # Get idx

 sall $2, %eax # idx*4

 addl 8(%ebp), %eax # r+idx*4

int *get_ap

 (struct rec *r, int idx)

{

 return &r->a[idx];

}

Generating Pointer to Structure Member

 Generating Pointer to
Array Element
 Offset of each structure

member determined at
compile time

 Arguments

 Mem[%ebp+8]: r

 Mem[%ebp+12]: idx

r+idx*4 r

i a n

0 12 16 20

struct rec {

 int a[3];

 int i;

 struct rec *n;

};

Carnegie Mellon

31

 .L17: # loop:

 movl 12(%edx), %eax # r->i

 movl %ecx, (%edx,%eax,4) # r->a[i] = val

 movl 16(%edx), %edx # r = r->n

 testl %edx, %edx # Test r

 jne .L17 # If != 0 goto loop

void set_val

 (struct rec *r, int val)

{

 while (r) {

 int i = r->i;

 r->a[i] = val;

 r = r->n;

 }

}

Following Linked List
 C Code

struct rec {

 int a[3];

 int i;

 struct rec *n;

};

i a n

0 12 16 20

Element i

Register Value

%edx r

%ecx val

Carnegie Mellon

32

Structures & Alignment
 Unaligned Data

 Aligned Data
 Primitive data type requires K bytes

 Address must be multiple of K

c i[0] i[1] v 3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

c i[0] i[1] v

p p+1 p+5 p+9 p+17

struct S1 {

 char c;

 int i[2];

 double v;

} *p;

Carnegie Mellon

33

Alignment Principles

 Aligned Data
 Primitive data type requires K bytes

 Address must be multiple of K

 Required on some machines; advised on IA32

 treated differently by IA32 Linux, x86-64 Linux, and Windows!

 Motivation for Aligning Data
 Memory accessed by (aligned) chunks of 4 or 8 bytes (system

dependent)

 Inefficient to load or store datum that spans quad word
boundaries

 Virtual memory trickier when datum spans 2 pages

 Compiler
 Inserts gaps in structure to ensure correct alignment of fields

Carnegie Mellon

34

Specific Cases of Alignment (IA32)
 1 byte: char, …

 no restrictions on address

 2 bytes: short, …

 lowest 1 bit of address must be 02

 4 bytes: int, float, char *, …

 lowest 2 bits of address must be 002

 8 bytes: double, …

 Windows (and most other OS’s & instruction sets):

 lowest 3 bits of address must be 0002

 Linux:

 lowest 2 bits of address must be 002

 i.e., treated the same as a 4-byte primitive data type

 12 bytes: long double

 Windows (GCC), Linux:

 lowest 2 bits of address must be 002

 i.e., treated the same as a 4-byte primitive data type

Carnegie Mellon

35

Specific Cases of Alignment (x86-64)
 1 byte: char, …

 no restrictions on address

 2 bytes: short, …

 lowest 1 bit of address must be 02

 4 bytes: int, float, …

 lowest 2 bits of address must be 002

 8 bytes: double, long, char *, …

 lowest 3 bits of address must be 0002

 16 bytes: long double (GCC on Linux or Windows)

 lowest 4 bits of address must be 00002

Carnegie Mellon

36

struct S1 {

 char c;

 int i[2];

 double v;

} *p;

Satisfying Alignment with Structures
 Within structure:
 Must satisfy each element’s alignment requirement

 Overall structure placement
 Each structure has alignment requirement K

 K = Largest alignment of any element

 Initial address & structure length must be multiples of K

 Example (under Windows or x86-64):
 K = 8, due to double element

c i[0] i[1] v 3 bytes 4 bytes

p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

Carnegie Mellon

37

Different Alignment Conventions

 Windows, x86-64
 K = 8, due to double element

 IA32 Linux
 K = 4; double treated like a 4-byte data type

struct S1 {

 char c;

 int i[2];

 double v;

} *p;

c 3 bytes i[0] i[1] 4 bytes v

p+0 p+4 p+8 p+16 p+24

c 3 bytes i[0] i[1] v

p+0 p+4 p+8 p+12 p+20

Carnegie Mellon

38

Meeting Overall Alignment Requirement
(Windows, x86-64)

 For largest alignment requirement K

 Overall structure must be multiple of K

struct S2 {

 double v;

 int i[2];

 char c;

} *p;

v i[0] i[1] c 7 bytes

p+0 p+8 p+16 p+24

Multiple of K=8

Carnegie Mellon

39

Arrays of Structures (Windows, x86-
64)
 Overall structure length

multiple of K

 Satisfy alignment requirement
for every element

struct S2 {

 double v;

 int i[2];

 char c;

} a[10];

v i[0] i[1] c 7 bytes

a+24 a+32 a+40 a+48

a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72

Carnegie Mellon

40

Meeting Overall Alignment Requirement
(IA32 Linux)

 For largest alignment requirement K

 Overall structure must be multiple of K
 Up to maximum of K=4

struct S2 {

 double v;

 int i[2];

 char c;

} *p;

v i[0] i[1] c 3 bytes

p+0 p+8 p+16 p+20

Multiple of K=4

Carnegie Mellon

41

Arrays of Structures (IA32 Linux)

 Overall structure length
multiple of K

 Satisfy alignment requirement
for every element

struct S2 {

 double v;

 int i[2];

 char c;

} a[10];

a[0] a[1] a[2] • • •

a+0 a+20 a+40 a+60

v i[0] i[1] c 3 bytes

a+0 a+8 a+16 a+20

Carnegie Mellon

42

Accessing Array Elements

 Compute array offset 12*idx
 sizeof(S3), including alignment spacers

 Element j is at offset 8 within structure

 Assembler gives offset a+8

 Resolved during linking

struct S3 {

 short i;

 float v;

 short j;

} a[10];

short get_j(int idx)

{

 return a[idx].j;

}

 # %eax = idx

 leal (%eax,%eax,2),%eax # 3*idx

 movswl a+8(,%eax,4),%eax

 a[0] • • • a[idx] • • •

a+0 a+12 a+12*idx

i 2 bytes v j 2 bytes

a+12*idx a+12*idx+8

Carnegie Mellon

43

Saving Space

 Put large data types first

 Effect (K=4)

struct S4 {

 char c;

 int i;

 char d;

} *p;

struct S5 {

 int i;

 char c;

 char d;

} *p;

c i 3 bytes d 3 bytes

c i d 2 bytes

Carnegie Mellon

44

Summary

 Procedures in x86-64
 Stack frame is relative to stack pointer

 Parameters passed in registers

 Arrays
 One-dimensional

 Multi-dimensional (nested)

 Multi-level

 Structures
 Allocation

 Access

 Alignment

Carnegie Mellon

45

x86-64 NonLeaf with Unused Stack Frame

 No values held while swap being
invoked

 No callee saved registers needed

 8 bytes allocated, but not used

/* Swap a[i] and a[j] */

void swap_ele(long a[],

 long i, long j) {

 swap(&a[i], &a[j]);

}

swap_ele:

 subq $8, %rsp # Allocate 8 bytes

 movq %rsi, %rax # Copy i

 leaq (%rdi,%rdx,8), %rsi # &a[i]

 leaq (%rdi,%rax,8), %rdi # &a[j]

 call swap

 addq $8, %rsp # Deallocate

 ret
rtn Ptr

%rsp unused

Carnegie Mellon

46

x86-64 Stack Frame Example #2

 Must allocate space on stack
for array loc

 Uses subq to allocate,
addq to deallocate

/* Swap a[i] and a[j] */

void swap_ele_l(long a[],

 long i, long j) {

 long *loc[2];

 long b = i & 0x1;

 loc[b] = &a[i];

 loc[1-b] = &a[j];

 swap(loc[0], loc[1]);

}

swap_ele_l:

 subq $24, %rsp

 movq %rsi, %rax

 andl $1, %eax

 leaq (%rdi,%rsi,8), %rcx

 movq %rcx, (%rsp,%rax,8)

 movl $1, %ecx

 subq %rax, %rcx

 leaq (%rdi,%rdx,8), %rdx

 movq %rdx, (%rsp,%rcx,8)

 movq 8(%rsp), %rsi

 movq (%rsp), %rdi

 call swap

 addq $24, %rsp

 ret

unused

%rsp

8 loc[1]

loc[0] 0

rtn Ptr

Carnegie Mellon

47

x86-64 Stack Frame Example #3

 Have both callee saved register &
local variable allocation

 Use both push/pop and sub/add

/* Swap a[i] and a[j] */

long swap_ele_l_diff(long a[],

 long i, long j) {

 long *loc[2];

 long b = i & 0x1;

 long diff = a[j] – a[i];

 loc[b] = &a[i];

 loc[1-b] = &a[j];

 swap(loc[0], loc[1]);

 return diff

}

swap_ele_l_diff:

 pushq %rbx

 subq $16, %rsp

 . . .

 call swap

 . . .

 addq $16, %rsp

 popq %rbx

 ret

rtn Ptr

%rsp

8 loc[1]

loc[0]
0

Old %rbx

Carnegie Mellon

48

Interesting Features of Stack Frame

 Allocate entire frame at once
 All stack accesses can be relative to %rsp

 Do by:

 pushing callee saved registers (if needed)

 decrementing stack pointer (if needed)

 Simple deallocation
 Do by:

 Incrementing stack pointer (possibly)

 Popping callee saved registers (possibly)

 No base/frame pointer needed

Carnegie Mellon

49

Basic Data Types
 Integral

 Stored & operated on in general (integer) registers

 Signed vs. unsigned depends on instructions used

Intel ASM Bytes C

byte b 1 [unsigned] char

word w 2 [unsigned] short

double word l 4 [unsigned] int

quad word q 8 [unsigned] long int (x86-64)

 Floating Point
 Stored & operated on in floating point registers

Intel ASM Bytes C

Single s 4 float

Double l 8 double

Extended t 10/12/16 long double

 Note: Windows Visual C/C++ compiler treats long double as regular, 8-
byte double. GCC on Windows uses extended precision

Carnegie Mellon

50

Pointer Loop Example (IA32)

void zincr_p(zip_dig z) {

 int *zend = z+ZLEN;

 do {

 (*z)++;

 z++;

 } while (z != zend);

}

 movl 8(%ebp), %eax # z

 leal 20(%eax), %edx # zend

.L9: # loop:

 addl $1, (%eax) # *z += 1

 addl $4, %eax # z++

 cmpl %eax, %edx # zend:z

 jne .L9 # if !=, goto loop

Carnegie Mellon

51

Nested Array Row Access Code

 Row Vector
 pgh[index] is array of 5 int’s

 Starting address pgh+(20*index)

 IA32 Code
 Computes and returns address

 Compute as pgh + 4*(index+4*index)

int *get_pgh_zip(int index)

{

 return pgh[index];

}

 # %eax = index

 leal (%eax,%eax,4),%eax # 5 * index

 leal pgh(,%eax,4),%eax # pgh + (20 * index)

#define PCOUNT 4

zip_dig pgh[PCOUNT] =

 {{1, 5, 2, 0, 6},

 {1, 5, 2, 1, 3 },

 {1, 5, 2, 1, 7 },

 {1, 5, 2, 2, 1 }};

Carnegie Mellon

52

Nested Array Element Access Code

 Array Elements
 pgh[index][dig] is int

 Address: pgh + 20*index + 4*dig

 = pgh + 4*(5*index + dig)

 IA32 Code
 Computes address pgh + 4*((index+4*index)+dig)

int get_pgh_digit

 (int index, int dig)

{

 return pgh[index][dig];

}

 movl 8(%ebp), %eax # index

 leal (%eax,%eax,4), %eax # 5*index

 addl 12(%ebp), %eax # 5*index+dig

 movl pgh(,%eax,4), %eax # offset 4*(5*index+dig)

