Carnegie Mellon

Machine-Level Programming IV:
Xx86-64 Procedures, Data

15-213 / 18-213 / 15-513: Introduction to Computer Systems
8th Lecture, February 5, 2015

Franz Franchetti, Seth Copen Goldstein, Greg Kesden

Carnegie Mellon

Today

m Procedures (x86-64)
m Arrays

= One-dimensional
= Multi-dimensional (nested)
= Multi-level

m Structures
= Allocation

® Access
= Alignment

Xx86-64 Integer Registers

Carnegie Mellon

srax %eax
$rbx %ebx
srex %ecx
Srdx $edx
rsi %esi
srdi $edi
%rsp $esp
%rbp %ebp

= Twice the number of registers
= Accessible as 8, 16, 32, 64 bits

%r8 $r8d

%r9 $r9d

%rl0 $rlod
srll $rlld
%rl2 srl2d
%rl3 $rl13d
srld $rldd
%rlb5 $rl5d

Xx86-64 Integer Registers:

Usage Conventions

srax Return value $r8 Argument #5
Srbx Callee saved %$r9 Argument #6
$rcx Argument #4 $rl0 Caller saved
$rdx Argument #3 srll Caller Saved
$rsi Argument #2 $rl2 Callee saved
srdi Argument #1 %rl3 Callee saved
3rsp Stack pointer 3rl4 Callee saved
srbp Callee saved %rl5 Callee saved

Carnegie Mellon

Xx86-64 Registers

m Arguments passed to functions via registers
= |f more than 6 integral parameters, then pass rest on stack
"= These registers can be used as caller-saved as well

m All references to stack frame via stack pointer
= Eliminates need to update $ebp/%rbp

m Other Registers
= 6 callee saved
= 2 caller saved
= 1 return value (also usable as caller saved)
=] special (stack pointer)

x86-64 Long Swap()

void swap 1l(long *xp, long *yp) Swap: _

{ - movq $rdi) , %Srdx
long t0 = *xp; movq %rsi), S%Srax
long tl = *yp; movq $rax, (%rdi)
*xp = tl; movqg %rdx, (%rsi)
*yp = t0; ret

}

m Operands passed in registers
= First (xp) in $rdi, second (yp) in $rsi rtn Ptr [—— $%rsp
. EA i

64-bit pointers No stack
m No stack operations required (except ret) frame

m Avoiding stack
= Swap_I() can hold all local information in caller-saved registers

Carnegie Mellon

More on x86-64 vs. IA32 stack use

m Same
= Push/Pop to save/restore register values (e.g., callee saved)
= Sub/Add to create/delete space for local variables of function
= when not all fit in registers

= May allocate extra/unused space to ensure 16-byte alighment of
every stack frame

m Different
= x86-64 does all stack references relative to %rsp
= eliminates need to use $ebp/%rbp as base pointer
= x86-64 allocates entire stack frame (if any) at once, not little-by-little
= x86-64 has concept of usable “red zone” beyond $rsp

Carnegie Mellon

x86-64 Stack Frame Example #1

/* Swap a[i] and a[j]
Compute difference */ swap ele diff:
void swap_ele diff(long al], pushq %rbx
"~ Tlong i, long j) { leaq $rdi, %rdx,8), %rdx
long diff = a[j] - a[il; leaq ($rdi, %rsi,8), %rdi
swap (&a[i], &al[j]):; movq $rdx) , %rbx
return diff; subq ($rdi), %rbx
} movq $rdx, %rsi
call swap
movq $rbx, %rax
m Keeps diff in callee saved pPopq srbx
register ret
m Uses push & pop to
save/restore
rtn Ptr

Old $rbx |[— %rsp

Carnegie Mellon

x86-64 Locals in the Red Zone

/* Swap, using local array */ Swap_a:

void swap a(long *xp, long *yp) movq (%rdi), S%rax
{ - movqg %rax, -16(%rsp)

movq %rsi), %rax
movqg %rax, -8 (%rsp)
movqg -8 (%rsp), %rax
movqg %rax, (%rdi)
movqg -16(%rsp), %Srax

volatile long loc[2];
loc[0] = *xp;
loc[l] = *yp;
*xp = loc[1];
*yp = loc[O0];

} movqg %rax, (%rsi)
ret
m Avoiding Stack Pointer Change rtnPtr [—— Srsp
= Can hold all information within small -g| loc[1]
window beyond stack pointer —16| 1oc[0]

Carnegie Mellon

x86-64 Procedure Summary

m Heavy use of registers
= Parameter passing
" More temporaries since more registers

m Minimal use of stack
" Sometimes none
= Allocate/deallocate entire block

m Many tricky optimizations
= What kind of stack frame to use
= Various allocation techniques

10

Carnegie Mellon

Today

m Arrays
" One-dimensional
= Multi-dimensional (nested)
= Multi-level

1

Array Allocation

m Basic Principle
IA[L];
= Array of data type T and length L
® Contiguously allocated region of L * sizeof (T) bytes in memory

char string[12];
X x+12
int val[5];
X x+4 X+8 xX+12 x+16 x+20
double a[3];
X XIS XJHG xj24
char *p[3]; | | | m
X x+4 x+8 x+12

| | |

X X+ 8 X+ 16 X+ 24

12

Array Access

m Basic Principle
T A[L];
= Array of data type T and length L
= |dentifier A can be used as a pointer to array element 0: Type T*

int val[5]; 1 | S5 | 2 | 1]| 3
X xX+4 X+8 x+12 x+16 x+20
m Reference Type Value
val[4] int 3
val int * X
val+l int * X+4
&val[2] int * X+8
val[5] int ?7?
* (val+l) int 5

val + i int * X+4i

13

Array Example

#define ZLEN 5
typedef int zip dig[ZLEN] ;

zip digemu = { 1, 5, 2, 1, 3 };
zip digmit = { 0, 2, 1, 3, 9 };
zip digucb = { 9, 4, 7, 2, 0 };
zip dig cmu; } 1 | 5 [2 | 1 [3

16 20 24 28 32 36
zip dig mit; o | 2 | 1 | 3 | 9

36 40 44 48 52 56
zip dig ucb; } 9 | 4 | 7 [2 | o0

56 60 64 68 72 76

m Declaration “zip dig cmu” equivalentto “int cmu[5]”
m Example arrays were allocated in successive 20 byte blocks

" Not guaranteed to happen in general
14

Array Accessing Example

zip dig cmu; i | 5 | 2]| 1 | 3

16 20 24 28 32 36

int get digit
(zip dig z, int digit)
{

return z[digit];]
} m Register $edx contains

starting address of array

IA32 m Register $eax contains
Sedx = z array index

%eax = digit m Desired digit at

movl (%edx,%eax,4) ,%eax # z[digit] 4*%eax + Sedx

m Use memory reference
(%edx, $Seax,4)

15

Array Loop Example (IA32)

void zincr(zip dig z) {
int i;
for (i = 0; i < ZLEN; i++)
z[i]++;
}
edx = z
movl S0, %eax # %eax = i
.L4: # loop:
addl $1, (%edx,%eax,4) # z[i]++
addl $1, %eax # i++
cmpl $5, %eax # i:5
jne .L4 # if '=, goto loop

16

Carnegie Mellon

Multidimensional (Nested) Arrays

m Declaration
I A[R] [C];
= 2D array of datatype T

A[0][0] s « o A[O][C-1]

= Rrows, Ccolumns ’ .
= Type T element requires K bytes A[R-1][0] ¢ ¢ ¢ A[R-1][C-1]
m Array Size - i
= R*C*Kbytes
m Arrangement
= Row-Major Ordering

int A[R] [C];

A A A A A A
[0 | « = « | [01[(11|« « « | [1] « o+« |ir-11) ¢ - ¢ |[R-1]
[0] [c-1]| [0] [C-1] [0] [C-1]

4*R*C Bytes
17

Nested Array Example

#define PCOUNT 4

zip dig pgh[PCOUNT] =
{{1, 5, 2, 0, 6},
{1, 5, 2, 1, 3 1},
{1, 5, 2, 1, 7},
{1, 5, 2, 2, 1 }};

zip dig
pgh[4];

76 96 116 136 156

m “zip dig pgh[4]” equivalentto “int pgh[4] [5]”
= Variable pgh: array of 4 elements, allocated contiguously

= Each elementis an array of 5 int’s, allocated contiguously

m “Row-Major” ordering of all elements in memory

18

Carnegie Mellon

Nested Array Row Access

m Row Vectors
= A[i] isarray of C elements

= Each element of type T requires K bytes
= Starting addressA + i * (C * K)

int A[R][C];

l——— A[0] —) A[i] .) A[R-1]

A A A A A A
[0] | eee | [0]|® @ @ [[i]| eee | [i] |@® @ e[[R-1]| eee |[[R-1]
[0] [C-1] [0] [C-1] [0] [C-1]

A A+ (1*C*4) A+ ((R-1) *C*4)

19

Carnegie Mellon

Nested Array Element Access

m Array Elements

= A[i][3] is element of type T, which requires K bytes
" Address A + i*(C*K)+ j*K=A+(i*C+ j)*K

int A[R][C];

je——— A[0] ——y < A[i] > < A[R-1]
A A A A A
[0] ceooe [0] |@ @ @ ceo o [i]) e o o |[R-1] ceoe [R-1]
[0] [C-1] []] [0] [C-1]
A A+ (1*C*4) ‘ A+ ((R-1) *C*4)

A+ (i*C*4) + (j*4)

20

Carnegie Mellon

Multi-Level Array Example

zip dig cmu = { 1, 5, 2, 1, 3 }; m Variable univ denotes
zip dig mit = { 0, 2, 1, 3, 9 }; array of 3 elements
zip_dig ucb = { 9, 4, 7, 2, 0 }; m Each element is a pointer
#define UCOUNT 3 " 4bytes
int *univ[UCOUNT] = {mit, cmu, ucb}; m Each pointer points to array
of int’s
cmu
} 1 | 5 | 2 | 1 | 3
univ
16 20 24 28 32 36
160 —| 36 mit
0 2 1 3 9
164 —{ 16

168 56 ucb 36 40 44 48 52 56
—
AK/,} o | a4 [7 T 2 T o0]
56 60 64 68 72 76

21

Carnegie Mellon

Element Access in Multi-Level Array

int get univ digit
(int index, int digit)
{
return univ[index] [digit];

}

movl 8 (%ebp), %eax # index

movl univ(,%eax,4), %edx # p = univ[index]
movl 12 (%ebp), %eax # digit

movl %edx, %eax,4), %eax # pldigit]

m Computation (IA32)
= Element access Mem[Mem[univ+4*index]+4*digit]
" Must do two memory reads
= First get pointer to row array
= Then access element within array

22

Carnegie Mellon

Array Element Accesses

Nested array Multi-level array
int get pgh digit int get univ digit
(int index, int digit) (int index, int digit)
{ {
return pgh[index] [digit]; return univ[index] [digit];
} }
o | 1 | 5 | 2 | 1 | 3 |
univ 1 ij 1 1 1 1
.16 20 24 28 32 36
160 —| 36 mit
1|5/2|0|6]1|5(2|1|3]|1|5|2(1|7]1|5(2|2|1 | o [2 | 1 | 3 | 9 |
164 —{ 16 T T T 1 1 1
168 —56 @ uch 36 40 44 48 52 56
76 96 116 136 156 _/v} 9 } 4 } 7 } 2 } 0 }
56 60 64 68 72 76

Accesses looks similar in C, but addresses very different:

Mem[pgh+20*index+4*digit] Mem[Mem[univ+4*index]+4*digit]

23

N X N Matrix Code [#detine n 16

typedef int fix matrix[N] [N];
/* Get element a[i] [j] */
int fix ele

(fix matrix a, int i, int j)

m Fixed dimensions

= Know value of N at {

compile time return a[i] []]’
}

: : . #define IDX(n, i, j) ((i)*(n)+(]))
m Variable dimensions, /* Get element a[i] [§] */

explicit indexing int vec ele
(int n, int *a, int i, int j)

{
return a[IDX(n,i,j)];

" Traditional way to
implement dynamic

arrays }
]]] /* Get element a[i] [j] */
m Variable dimensions, int var ele
implicit indexing (int n, int a[n][n], int i, int j)

{

return af[i] [J];

}

= Now supported by gcc

Carnegie Mellon

16 X 16 Matrix Access

m Array Elements
= Address A + i*(C*K)+ j*K
= C=16,K=4

/* Get element a[i][j] */
int fix ele(fix matrix a, int i, int j) {
return a[i] []]-

}
movl 12 (%ebp), %edx # i
sall $6, %edx # i*64
movl 16 (%ebp), %eax # 3
sall $2, %eax # j*4
addl 8(%ebp), %eax # a + j*4
movl (%eax, %edx), %eax # *(a + j*4 + i*64)

25

Carnegie Mellon

n X n Matrix Access

m Array Elements
= Address A + i*(C*K)+ j*K
= C=n,K=4
" Must perform integer multiplication

/* Get element a[i][j] */
int var ele(int n, int a[n][n], int i, int j) {
return al[i] [j];

}

movl 8 (%ebp), %eax # n

sall $2, %eax # n*4

movl %eax, %edx # n*4

imull 16 (%ebp), %edx # i*n*4

movl 20 (%ebp), %eax # 3

sall $2, %eax # 3*4

addl 12 (%ebp), %eax # a + j*4

movl (%eax,%edx), %eax # *(a + j*4 + i*n*4)

26

Carnegie Mellon

Today

m Structures
= Allocation
= Access
= Alignment

27

Structure Allocation

struct rec
int a[3] ! Memory Layout
int i,’ a i n
struct rec *n;

}; 0 12 16 20

m Concept of structures in C
= Contiguously-allocated region of memory
= Refer to members within structure by names
= Members may be of different types

28

Carnegie Mellon

Structure Access

r r+l2
struct rec { l
int a[3];]
int i; a iln
struct rec *n;
}; 0 12 16 20

m Accessing Structure Member

= Pointer to structure is memory address of first byte of structure
= Access elements with offsets

void IA32 Assembly
set_i(étruct rec *r, ¥ Sedx — val
int val) .
{ # %eax = r
r->i = val: movl %edx, 12 (%eax) # Mem[r+12] = val
}

29

Carnegie Mellon

Generating Pointer to Structure Member

r r+idx*4

struct rec { ! l
int a[3]; . |
. . a iln
int 1;
struct rec *n; 0 12 16 20
&
m Generating Pointer to int *get ap
(struct rec *r, int idx)
Array Element (
= Offset of each structure return &r->a[idx];
member determined at }
compile time
[Arguments movl 12(%ebp) y Seax # Get idx
. Mem[%ebp+8]: r sall $2, %eax # idx*4
' addl 8(%ebp), %eax # r+idx*4
= Mem[%ebp+12]: idx

30

Carnegie Mellon
struct rec {
int a[3];
int 1i;
struct rec *n;

Following Linked List

m CCode }
void set val : !
(struct rec *r, int wval) a 1| n
{ o | 12 16 20
while (r) { _
int i = r->i; Element i
r->a[i] = val;
} } Yedx r
secx val
.L17: # loop:
movl 12 (%edx), %eax # r->i
movl %ecx, (%edx,%eax,4) # r->a[i] = val
movl 16 (%edx), %edx # r = r->n
testl %edx, %edx # Test r
jne .L17 # If '= 0 goto loop

31

Carnegie Mellon

Structures & Alignment

m Unaligned Data struct S1 {
)] char c;
c| i[O0] i[1] v int i[2];
p p+l p+5 p+9 p+17 double v;
} *p;

m Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K

c i[0] i[1] R
p+0 pt4 p+8 p+16 pt+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

32

Carnegie Mellon

Alignment Principles

m Aligned Data
= Primitive data type requires K bytes
= Address must be multiple of K
= Required on some machines; advised on 1A32
= treated differently by IA32 Linux, x86-64 Linux, and Windows!

m Motivation for Aligning Data

= Memory accessed by (aligned) chunks of 4 or 8 bytes (system
dependent)

= |nefficient to load or store datum that spans quad word
boundaries

= Virtual memory trickier when datum spans 2 pages

m Compiler

" |nserts gaps in structure to ensure correct alignment of fields

33

Specific Cases of Alignment (I1A32)

m 1byte: char, ..
" no restrictions on address
m 2 bytes: short, ...
= Jowest 1 bit of address must be 02
m 4 bytes: int, float, char *,..
= Jowest 2 bits of address must be 002
m 8 bytes: double, ...
= Windows (and most other OS’s & instruction sets):
= |owest 3 bits of address must be 000
" Linux:
= |lowest 2 bits of address must be 002
= j.e., treated the same as a 4-byte primitive data type
m 12 bytes: long double
= Windows (GCC), Linux:
= |owest 2 bits of address must be 002
= j.e., treated the same as a 4-byte primitive data type

34

Carnegie Mellon

Specific Cases of Alighment (x86-64)

m 1 byte: char, ...
" no restrictions on address
m 2 bytes: short, ...
= |owest 1 bit of address must be 02
m 4 bytes: int, float, ...
= |owest 2 bits of address must be 002
m 8 bytes: double, long, char *,..
= |owest 3 bits of address must be 0002

m 16 bytes: long double (GCC on Linux or Windows)
= |owest 4 bits of address must be 00002

35

Carnegie Mellon

Satisfying Alignment with Structures

m Within structure:

struct S1 {
= Must satisfy each element’s alignment requirement char c:
m Overall structure placement ;zzbiiz‘]r
= Each structure has alignment requirement K } *p;

= K = Largest alignment of any element
" |nitial address & structure length must be multiples of K

m Example (under Windows or x86-64):
" K=28,due todouble element

c i[0] i[1] R
p+0 pt4 p+8 p+16 pt+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

36

Carnegie Mellon

Different Alignment Conventions

struct S1 {

m Windows, x86-64 char c;
= K=8, duetodouble element Zzibiizii
} *p;
c i[0] i[1] v
p+0 pt4 p+8 p+16 pt+24

m |A32 Linux
= K=4;double treated like a 4-byte data type

o] i[0] i[1] v
p+0 pt4 p+8 ptl2 pt+20

37

Meeting Overall Alighment Requirement

(Windows, x86-64)

m For largest alignment requirement K struct S2 {
double v;
int i[2];
char c;

} *p;

m Overall structure must be multiple of K

\ i[0] i[1l] C
pt0 p+8 ptl6 pt24

/

Multiple of K=8

38

Arrays of Structures (Windows, x86-

64)

struct S2 {
m Overall structure length double v;
. int i[2];
multiple of K char
m Satisfy alighment requirement } a[10];

for every element

alo] a[l] al[2] e o o
a+0 a+24 a+48 a+72

v i[0] i[l] c
a+24 a+32 a+40 a+48

39

Meeting Overall Alighment Requirement

(IA32 Linux)

m For largest alignment requirement K struct S2 {
. doubl ;
m Overall structure must be multiple of K Soubre v
int i[2];
= Up to maximum of K=4 char c;
} *ps
v i[o1] if1] |e
p+0 p+8 pt+1l6 p+20

/

Multiple of K=4

40

Arrays of Structures (IA32 Linux)

struct S2 {
m Overall structure length double v;
. int i[2];
multiple of K char
m Satisfy alighment requirement } a[10];

for every element

al[o] a[l] al2] e o o
a+0 a+20 a+40 a+60

v i[0] i[1] o
a+0 a+8 a+lo a+20

41

Carnegie Mellon

Accessing Array Elements struct 33 {
short 1i;
float v;
m Compute array offset 12*idx short j;
" sizeof (S3), including alignment spacers b all0l;
m Element j is at offset 8 within structure
m Assembler gives offset a+8
= Resolved during linking
a[0] e o o a[idx] e o o
a+0 a+l2 a+l2*idx
i v J
a+l2*idx a+l2*idx+8

short get j(int idx) # %eax = idx

¢ t L dsc] 5 leal (%eax,%eax,2),%eax # 3*idx
) return alidx].J; movswl a+8(,%eax,4) ,%eax

42

Saving Space

m Put large data types first

struct S4 {
char c;
int 1i;
char d4d;

} *p;

m Effect (K=4)

=

struct S5 {
int 1i;
char c;
char d;

} *p;

Carnegie Mellon

43

Carnegie Mellon

Summary

m Procedures in x86-64
= Stack frame is relative to stack pointer
= Parameters passed in registers
m Arrays
" One-dimensional
= Multi-dimensional (nested)
= Multi-level
m Structures
= Allocation

" Access
= Alignment

44

Carnegie Mellon

x86-64 NonlLeaf with Unused Stack Frame

/* Swap a[i] and a[j] */ m No values held while swap being
void swap ele(long al], invoked

long i, long j) {

swap (§a[i], &a[j]); m No callee saved registers needed

} m 8 bytes allocated, but not used
swap_ele:
subg $8, %rsp # Allocate 8 bytes
movq $rsi, %$rax # Copy i
leaq $rdi,%rdx,8), %rsi # &a[i]
leaq $rdi,%rax,8), %rdi # &a[j]
call swap
addg $8, %$rsp # Deallocate
ret
rtn Ptr

unused |«— $rsp

45

Carnegie Mellon

x86-64 Stack Frame Example #2

swap_ele 1:

/* Swap a[i] and a[j] */ subqg f24f %fsp
void swap ele 1l(long al], movq 6ISl; Frax
long i, long j) { andl $1, teax
long *loc[2]; leaq $rdi,%rsi,8), %rcx
long b = i & 0x1; movq $rcx, (%rsp,%rax,8)
loc[b] = &a[i]; movl fl, 6esx
loc[l-b] = &al[j]; subq 6::'axf frcx o
swap (loc[0], loc[1]); leagq srdi, %rdx,8), %$rdx
} movq %$rdx, (%rsp,%rcx,8)
movq 8 ($rsp), %rsi
m Must allocate space on stack movq srsp), %rdi
for array loc 03;1 :;:P
adaq , JIrSp
m Uses subg to allocate, ret
addqg to deallocate
rtn Ptr
unused
loc[1]
1 o
0| 1oclO0] — srsp .

Carnegie Mellon

x86-64 Stack Frame Example #3

/* Swap a[i] and a[j] */
long swap ele 1 diff(long al],
long i, long j) {

long *loc[2];
long b = 1 & 0x1; éail.
long diff = a[]j] - al[i];
loc[b] = &al[i];
loc[1l-b] = &al[jl;
swap (loc[0], locI[l1l]);
return diff

swap_ele 1 diff:
pushq Srbx
subqg $16, %rsp

swap
addgq $16, %rsp

popq $rbx
ret

rtn Ptr
Old $rbx

m Have both callee saved register &
local variable allocation

m Use both push/pop and sub/add g| loclll
0 loc[0] |e——— $rsp

47

Carnegie Mellon

Interesting Features of Stack Frame

m Allocate entire frame at once
= All stack accesses can be relative to $rsp
= Do by:
= pushing callee saved registers (if needed)
= decrementing stack pointer (if needed)

m Simple deallocation
= Do by:
= |Incrementing stack pointer (possibly)
= Popping callee saved registers (possibly)
= No base/frame pointer needed

48

Carnegie Mellon

Basic Data Types

m Integral
= Stored & operated on in general (integer) registers
= Signed vs. unsigned depends on instructions used

Intel ASM Bytes C

byte b 1 [unsigned] char

word w 2 [unsigned] short

double word 1 4 [unsigned] int

quad word q 8 [unsigned] long int (x86-64)

m Floating Point
= Stored & operated on in floating point registers

Intel ASM Bytes C

Single s 4 float

Double 1 8 double
Extended t 10/12/16 long double

= Note: Windows Visual C/C++ compiler treats long double as regular, 8-

byte double. GCC on Windows uses extended precision
49

Pointer Loop Example (IA32)

void zincr p(zip dig z) {
int *zend = z+ZLEN;
do {
(*z) ++;
z++;
} while (z '= zend);
}
movl 8 (%ebp) , %eax ¥ z
leal 20 (%eax), %edx # zend
.L9: # loop:
addl $1, (%eax) # *z += 1
addl $4, %eax ¥ z++
cmpl %eax, %edx # zend:z
jne .L9 # if '=, goto loop

50

Carnegie Mellon

Nested Array Row Access Code

int *get pgh zip(int index) #define PCOUNT 4

{ zip dig pgh[PCOUNT] =
return pgh[index]; {{1, 5, 2, 0, 6},

} {1, 5, 2, 1, 3},

{11 5/ 2/ 1/ 7 }I
{11 5/ 2/ 2/ 1 }};

%eax = index
leal (%eax,%eax,4) ,%eax # 5 * index
leal pgh(,%eax,4) ,%eax # pgh + (20 * index)

m Row Vector
= pgh[index] isarray of 5int’s
= Starting address pgh+ (20*index)

m IA32 Code

" Computes and returns address
" Computeaspgh + 4* (index+4*index)

51

Carnegie Mellon

Nested Array Element Access Code

int get pgh digit

(int index, int dig)
{

return pgh[index] [dig] ;
}

movl 8 (%ebp), %eax # index

leal (%eax,%eax,4), %eax # 5*index

addl 12 (%ebp), %eax # 5*index+dig

movl pgh(,%eax,4), %eax # offset 4* (5*index+dig)

m Array Elements
" pgh[index] [dig] isint
= Address:pgh + 20*index + 4*dig
= = pgh + 4*%(5*index + dig)
m IA32 Code
= Computes addresspgh + 4* ((index+4*index)+digqg)

52

