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Today 

 Procedures (x86-64) 

 Arrays 
 One-dimensional 

 Multi-dimensional (nested) 

 Multi-level 

 Structures 
 Allocation 

 Access 

 Alignment 



Carnegie Mellon 

3 

%rax 

%rbx 

%rcx 

%rdx 

%rsi 

%rdi 

%rsp 

%rbp 

x86-64 Integer Registers 

 Twice the number of registers 

 Accessible as 8, 16, 32, 64 bits 

%eax 

%ebx 

%ecx 

%edx 

%esi 

%edi 

%esp 

%ebp 

%r8 

%r9 

%r10 

%r11 

%r12 

%r13 

%r14 

%r15 

%r8d 

%r9d 

%r10d 

%r11d 

%r12d 

%r13d 

%r14d 

%r15d 
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%rax 

%rbx 

%rcx 

%rdx 

%rsi 

%rdi 

%rsp 

%rbp 

x86-64 Integer Registers:  
Usage Conventions 

%r8 

%r9 

%r10 

%r11 

%r12 

%r13 

%r14 

%r15 Callee saved Callee saved 

Callee saved 

Callee saved 

Callee saved 

Caller saved 

Callee saved 

Stack pointer 

Caller Saved 

Return value 

Argument #4 

Argument #1 

Argument #3 

Argument #2 

Argument #6 

Argument #5 
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x86-64 Registers 

 Arguments passed to functions via registers 
 If more than 6 integral parameters, then pass rest on stack 

 These registers can be used as caller-saved as well 

 

 All references to stack frame via stack pointer 
 Eliminates need to update %ebp/%rbp 

 

 Other Registers 
 6 callee saved 

 2 caller saved 

 1 return value (also usable as caller saved) 

 1 special (stack pointer) 
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x86-64 Long Swap() 

 Operands passed in registers 
 First (xp) in %rdi, second (yp) in %rsi 

 64-bit pointers 

 No stack operations required (except ret) 

 Avoiding stack 
 Swap_l() can hold all local information in caller-saved registers 

void swap_l(long *xp, long *yp)  

{ 

  long t0 = *xp; 

  long t1 = *yp; 

  *xp = t1; 

  *yp = t0; 

} 

swap: 

 movq (%rdi), %rdx 

 movq (%rsi), %rax 

 movq %rax, (%rdi) 

 movq %rdx, (%rsi) 

 ret 

 

rtn Ptr %rsp 

No stack 
frame 
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More on x86-64 vs. IA32 stack use 

 Same 
 Push/Pop to save/restore register values (e.g., callee saved) 

 Sub/Add to create/delete space for local variables of function 

 when not all fit in registers 

 May allocate extra/unused space to ensure 16-byte alignment of 
every stack frame 

 

 Different 
 x86-64 does all stack references relative to %rsp 

 eliminates need to use %ebp/%rbp as base pointer 

 x86-64 allocates entire stack frame (if any) at once, not little-by-little 

 x86-64 has concept of usable “red zone” beyond %rsp 
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x86-64 Stack Frame Example #1 

 Keeps diff in callee saved 
register 

 Uses push & pop to 
save/restore 

swap_ele_diff: 

  pushq   %rbx 

  leaq    (%rdi,%rdx,8), %rdx 

  leaq    (%rdi,%rsi,8), %rdi 

  movq    (%rdx), %rbx 

  subq    (%rdi), %rbx 

  movq    %rdx, %rsi 

  call    swap 

  movq    %rbx, %rax 

  popq    %rbx 

  ret 

/* Swap a[i] and a[j] 

   Compute difference */ 

void swap_ele_diff(long a[], 

              long i, long j) { 

  long diff = a[j] – a[i]; 

  swap(&a[i], &a[j]); 

  return diff; 

} 

rtn Ptr 

%rsp Old %rbx 
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x86-64 Locals in the Red Zone 

 Avoiding Stack Pointer Change 
 Can hold all information within small 

window beyond stack pointer 

/* Swap, using local array */ 

void swap_a(long *xp, long *yp) 

{ 

    volatile long loc[2]; 

    loc[0] = *xp; 

    loc[1] = *yp; 

    *xp = loc[1]; 

    *yp = loc[0]; 

} 

swap_a: 

  movq  (%rdi), %rax 

  movq  %rax, -16(%rsp) 

  movq  (%rsi), %rax 

  movq  %rax, -8(%rsp) 

  movq  -8(%rsp), %rax 

  movq  %rax, (%rdi) 

  movq  -16(%rsp), %rax 

  movq  %rax, (%rsi) 

  ret 

rtn Ptr %rsp 

−8 loc[1] 

loc[0] −16 
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x86-64 Procedure Summary 

 Heavy use of registers 
 Parameter passing 

 More temporaries since more registers 

 

 Minimal use of stack 
 Sometimes none 

 Allocate/deallocate entire block 

 

 Many tricky optimizations 
 What kind of stack frame to use 

 Various allocation techniques 
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Today 

 Procedures (x86-64) 

 Arrays 
 One-dimensional 

 Multi-dimensional (nested) 

 Multi-level 

 Structures 
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Array Allocation 
 Basic Principle 

T  A[L]; 

 Array of data type T and length L 

 Contiguously allocated region of L * sizeof(T) bytes in memory 

char string[12]; 

x x + 12 

int val[5]; 

x x + 4 x + 8 x + 12 x + 16 x + 20 

double a[3]; 

x + 24 x x + 8 x + 16 

char *p[3]; 

x x + 8 x + 16 x + 24 

x x + 4 x + 8 x + 12 

IA32 

x86-64 
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Array Access 
 Basic Principle 

T  A[L]; 

 Array of data type T and length L 

 Identifier A can be used as a pointer to array element 0: Type T* 

 
 

 

 Reference Type Value 
val[4] int 3 

val int * x 

val+1 int * x + 4     

&val[2] int * x + 8    

val[5] int ?? 

*(val+1) int 5           

val + i int * x + 4 i 

int val[5]; 1 5 2 1 3 

x x + 4 x + 8 x + 12 x + 16 x + 20 
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Array Example 

 Declaration “zip_dig cmu” equivalent to “int cmu[5]” 

 Example arrays were allocated in successive 20 byte blocks 

 Not guaranteed to happen in general 

#define ZLEN 5 

typedef int zip_dig[ZLEN]; 

 

zip_dig cmu = { 1, 5, 2, 1, 3 }; 

zip_dig mit = { 0, 2, 1, 3, 9 }; 

zip_dig ucb = { 9, 4, 7, 2, 0 }; 

zip_dig cmu; 1 5 2 1 3 

16 20 24 28 32 36 

zip_dig mit; 0 2 1 3 9 

36 40 44 48 52 56 

zip_dig ucb; 9 4 7 2 0 

56 60 64 68 72 76 
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Array Accessing Example 

 Register %edx contains 
starting address of array 

 Register %eax contains  
array index 

 Desired digit at  
4*%eax + %edx 

 Use memory reference 
(%edx,%eax,4) 

int get_digit 

  (zip_dig z, int digit) 

{ 

  return z[digit]; 

} 

  # %edx = z 

  # %eax = digit 

 movl (%edx,%eax,4),%eax  # z[digit] 

IA32 

zip_dig cmu; 1 5 2 1 3 

16 20 24 28 32 36 
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  # edx = z 

 movl $0, %eax #   %eax = i 

.L4:  # loop: 

 addl $1, (%edx,%eax,4) #   z[i]++ 

 addl $1, %eax #   i++ 

 cmpl $5, %eax #   i:5 

 jne .L4 #   if !=, goto loop 

Array Loop Example (IA32) 

void zincr(zip_dig z) { 

  int i; 

  for (i = 0; i < ZLEN; i++) 

    z[i]++; 

} 
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Multidimensional (Nested) Arrays 
 Declaration 

T   A[R][C]; 

 2D array of data type T 

 R rows, C columns 

 Type T element requires K bytes 

 Array Size 
 R * C * K bytes 

 Arrangement 
 Row-Major Ordering 

A[0][0] A[0][C-1] 

A[R-1][0] 

• • • 

• • • A[R-1][C-1] 

• 

• 

• 

• 

• 

• 

int A[R][C]; 

• • • 

A 

[0] 

[0] 

A 

[0] 

[C-1] 

• • • 

A 

[1] 

[0] 

A 

[1] 

[C-1] 

• • • 

A 

[R-1] 

[0] 

A 

[R-1] 

[C-1] 

•  •  • 

4*R*C  Bytes 
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Nested Array Example 

 “zip_dig pgh[4]” equivalent to “int pgh[4][5]” 
 Variable pgh: array of 4 elements, allocated contiguously 

 Each element is an array of 5 int’s, allocated contiguously 

 “Row-Major” ordering of all elements in memory 

#define PCOUNT 4 

zip_dig pgh[PCOUNT] =  

  {{1, 5, 2, 0, 6}, 

   {1, 5, 2, 1, 3 }, 

   {1, 5, 2, 1, 7 }, 

   {1, 5, 2, 2, 1 }}; 

zip_dig 

pgh[4]; 

76 96 116 136 156 

1 5 2 0 6 1 5 2 1 3 1 5 2 1 7 1 5 2 2 1 
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•  •  • 

Nested Array Row Access 

 Row Vectors 
  A[i] is array of C elements 

 Each element of type T requires K bytes 

 Starting address A +  i * (C * K) 

• • • 

A 

[i] 

[0] 

A 

[i] 

[C-1] 

A[i] 

• • • 

A 

[R-1] 

[0] 

A 

[R-1] 

[C-1] 

A[R-1] 

•  •  • 

A 

• • • 

A 

[0] 

[0] 

A 

[0] 

[C-1] 

A[0] 

A+(i*C*4) A+((R-1)*C*4) 

int A[R][C]; 
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•  •  • 

Nested Array Element Access 

 Array Elements  
  A[i][j] is element of type T, which requires K bytes 

 Address  A + i * (C * K) +  j * K = A + (i * C +  j)* K 

 • • •                      • • • 

A 

[i] 

[j] 

A[i] 

• • • 

A 

[R-1] 

[0] 

A 

[R-1] 

[C-1] 

A[R-1] 

•  •  • 

A 

• • • 

A 

[0] 

[0] 

A 

[0] 

[C-1] 

A[0] 

A+(i*C*4) A+((R-1)*C*4) 

int A[R][C]; 

A+(i*C*4)+(j*4) 
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Multi-Level Array Example 
 Variable univ denotes 

array of 3 elements 

 Each element is a pointer 

 4 bytes 

 Each pointer points to array 
of int’s  

zip_dig cmu = { 1, 5, 2, 1, 3 }; 

zip_dig mit = { 0, 2, 1, 3, 9 }; 

zip_dig ucb = { 9, 4, 7, 2, 0 }; 

#define UCOUNT 3 

int *univ[UCOUNT] = {mit, cmu, ucb}; 

36 160 

16 

56 

164 

168 

univ 

cmu 

mit 

ucb 

1 5 2 1 3 

16 20 24 28 32 36 

0 2 1 3 9 

36 40 44 48 52 56 

9 4 7 2 0 

56 60 64 68 72 76 
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Element Access in Multi-Level Array 

 Computation (IA32) 
 Element access Mem[Mem[univ+4*index]+4*digit] 

 Must do two memory reads 

 First get pointer to row array 

 Then access element within array 

 movl 8(%ebp), %eax  # index 

 movl univ(,%eax,4), %edx # p = univ[index] 

 movl 12(%ebp), %eax  # digit 

 movl (%edx,%eax,4), %eax # p[digit] 

int get_univ_digit 

  (int index, int digit) 

{ 

  return univ[index][digit]; 

} 
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Array Element Accesses 

int get_pgh_digit 

  (int index, int digit) 

{ 

  return pgh[index][digit]; 

} 

int get_univ_digit 

  (int index, int digit) 

{ 

  return univ[index][digit]; 

} 

Nested array Multi-level array 

Accesses looks similar in C, but addresses very different:  

Mem[pgh+20*index+4*digit] Mem[Mem[univ+4*index]+4*digit] 
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N X N Matrix Code 

 Fixed dimensions 
 Know value of N at 

compile time 

 

 Variable dimensions, 
explicit indexing 
 Traditional way to 

implement dynamic 
arrays 

 

 Variable dimensions, 
implicit indexing 
 Now supported by gcc 

#define N 16 

typedef int fix_matrix[N][N]; 

/* Get element a[i][j] */ 

int fix_ele 

  (fix_matrix a, int i, int j) 

{ 

  return a[i][j]; 

} 

#define IDX(n, i, j) ((i)*(n)+(j)) 

/* Get element a[i][j] */ 

int vec_ele 

 (int n, int *a, int i, int j) 

{ 

  return a[IDX(n,i,j)]; 

} 

/* Get element a[i][j] */ 

int var_ele 

 (int n, int a[n][n], int i, int j) 

{ 

  return a[i][j]; 

} 
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16 X 16 Matrix Access 

/* Get element a[i][j] */ 

int fix_ele(fix_matrix a, int i, int j) { 

  return a[i][j]; 

} 

 movl 12(%ebp), %edx # i 

 sall $6, %edx # i*64 

 movl 16(%ebp), %eax # j 

 sall $2, %eax # j*4 

 addl 8(%ebp), %eax # a + j*4 

 movl (%eax,%edx), %eax # *(a + j*4 + i*64) 

 Array Elements  
 Address  A + i * (C * K) +  j * K 

 C = 16, K = 4 
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n X n Matrix Access 

/* Get element a[i][j] */ 

int var_ele(int n, int a[n][n], int i, int j) { 

  return a[i][j]; 

} 

 movl 8(%ebp), %eax # n 

 sall $2, %eax # n*4 

 movl %eax, %edx # n*4 

 imull 16(%ebp), %edx # i*n*4 

 movl 20(%ebp), %eax # j 

 sall $2, %eax # j*4 

 addl 12(%ebp), %eax # a + j*4 

 movl (%eax,%edx), %eax # *(a + j*4 + i*n*4) 

 Array Elements  
 Address  A + i * (C * K) +  j * K 

 C = n, K = 4 

 Must perform integer multiplication 
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Today 

 Procedures (x86-64) 

 Arrays 
 One-dimensional 

 Multi-dimensional (nested) 

 Multi-level 

 Structures 
 Allocation 

 Access 

 Alignment 
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struct rec { 

  int a[3]; 

  int i; 

  struct rec *n; 

}; 

Structure Allocation 

 Concept of structures in C 
 Contiguously-allocated region of memory 

 Refer to members within structure by names 

 Members may be of different types 

 

Memory Layout 

i a n 

0 12 16 20 
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struct rec { 

  int a[3]; 

  int i; 

  struct rec *n; 

}; 

IA32 Assembly 
 # %edx = val 

 # %eax = r 

 movl %edx, 12(%eax)  # Mem[r+12] = val 

void  

set_i(struct rec *r, 

      int val) 

{ 

  r->i = val; 

} 

Structure Access 

 Accessing Structure Member 
 Pointer to structure is memory address of first byte of structure 

 Access elements with offsets 

 

i a n 

0 12 16 20 

r+12 r 
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 movl 12(%ebp), %eax # Get idx 

 sall $2, %eax # idx*4 

 addl 8(%ebp), %eax # r+idx*4 

int *get_ap 

 (struct rec *r, int idx) 

{ 

  return &r->a[idx]; 

} 

Generating Pointer to Structure Member 

 Generating Pointer to 
Array Element 
 Offset of each structure 

member determined at 
compile time 

 Arguments 

 Mem[%ebp+8]: r 

 Mem[%ebp+12]: idx 

 

r+idx*4 r 

i a n 

0 12 16 20 

struct rec { 

  int a[3]; 

  int i; 

  struct rec *n; 

}; 
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 .L17:  # loop:  

   movl 12(%edx), %eax # r->i 

   movl %ecx, (%edx,%eax,4) # r->a[i] = val 

   movl 16(%edx), %edx # r = r->n 

   testl %edx, %edx # Test r 

   jne .L17 # If != 0 goto loop 

void set_val 

  (struct rec *r, int val) 

{ 

  while (r) { 

    int i = r->i; 

    r->a[i] = val; 

    r = r->n; 

  } 

} 

Following Linked List 
 C Code 

struct rec { 

  int a[3]; 

  int i; 

  struct rec *n; 

}; 

i a n 

0 12 16 20 

Element i 

Register Value 

%edx r 

%ecx val 
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Structures & Alignment 
 Unaligned Data 

 

 

 

 Aligned Data 
 Primitive data type requires K bytes 

 Address must be multiple of K 

c i[0] i[1] v 3 bytes 4 bytes 

p+0 p+4 p+8 p+16 p+24 

Multiple of 4 Multiple of 8 

Multiple of 8 Multiple of 8 

c i[0] i[1] v 

p p+1 p+5 p+9 p+17 

struct S1 { 

  char c; 

  int i[2]; 

  double v; 

} *p; 
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Alignment Principles 

 Aligned Data 
 Primitive data type requires K bytes 

 Address must be multiple of K 

 Required on some machines; advised on IA32 

 treated differently by IA32 Linux, x86-64 Linux, and Windows! 

 Motivation for Aligning Data 
 Memory accessed by (aligned) chunks of 4 or 8 bytes (system 

dependent) 

 Inefficient to load or store datum that spans quad word 
boundaries 

 Virtual memory trickier when datum spans 2 pages 

 Compiler 
 Inserts gaps in structure to ensure correct alignment of fields 
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Specific Cases of Alignment (IA32) 
 1 byte: char, … 

 no restrictions on address 

 2 bytes: short, … 

 lowest 1 bit of address must be 02 

 4 bytes: int, float, char *, … 

 lowest 2 bits of address must be 002 

 8 bytes: double, … 

 Windows (and most other OS’s & instruction sets): 

 lowest 3 bits of address must be 0002 

 Linux: 

 lowest 2 bits of address must be 002 

 i.e., treated the same as a 4-byte primitive data type 

 12 bytes: long double 

 Windows (GCC), Linux: 

 lowest 2 bits of address must be 002 

 i.e., treated the same as a 4-byte primitive data type 
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Specific Cases of Alignment (x86-64) 
 1 byte: char, … 

 no restrictions on address 

 2 bytes: short, … 

 lowest 1 bit of address must be 02 

 4 bytes: int, float, … 

 lowest 2 bits of address must be 002 

 8 bytes: double, long, char *, … 

 lowest 3 bits of address must be 0002 

 16 bytes: long double (GCC on Linux or Windows) 

 lowest 4 bits of address must be 00002 
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struct S1 { 

  char c; 

  int i[2]; 

  double v; 

} *p; 

Satisfying Alignment with Structures 
 Within structure: 
 Must satisfy each element’s alignment requirement 

 Overall structure placement 
 Each structure has alignment requirement K 

 K = Largest alignment of any element 

 Initial address & structure length must be multiples of K 

 Example (under Windows or x86-64): 
 K = 8, due to double element 

c i[0] i[1] v 3 bytes 4 bytes 

p+0 p+4 p+8 p+16 p+24 

Multiple of 4 Multiple of 8 

Multiple of 8 Multiple of 8 
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Different Alignment Conventions 

 Windows, x86-64 
 K = 8, due to double element 

 

 

 

 

 IA32 Linux 
 K = 4; double treated like a 4-byte data type 

struct S1 { 

  char c; 

  int i[2]; 

  double v; 

} *p; 

c 3 bytes i[0] i[1] 4 bytes v 

p+0 p+4 p+8 p+16 p+24 

c 3 bytes i[0] i[1] v 

p+0 p+4 p+8 p+12 p+20 
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Meeting Overall Alignment Requirement 
(Windows, x86-64) 

 

 For largest alignment requirement K 

 Overall structure must be multiple of K 

struct S2 { 

  double v; 

  int i[2]; 

  char c; 

} *p; 

v i[0] i[1] c 7 bytes 

p+0 p+8 p+16 p+24 

Multiple of K=8 
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Arrays of Structures (Windows, x86-
64) 
 Overall structure length 

multiple of K 

 Satisfy alignment requirement  
for every element 

struct S2 { 

  double v; 

  int i[2]; 

  char c; 

} a[10]; 

v i[0] i[1] c 7 bytes 

a+24 a+32 a+40 a+48 

a[0] a[1] a[2] • • • 

a+0 a+24 a+48 a+72 
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Meeting Overall Alignment Requirement 
(IA32 Linux) 

 

 For largest alignment requirement K 

 Overall structure must be multiple of K 
 Up to maximum of K=4 

struct S2 { 

  double v; 

  int i[2]; 

  char c; 

} *p; 

v i[0] i[1] c 3 bytes 

p+0 p+8 p+16 p+20 

Multiple of K=4 
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Arrays of Structures (IA32 Linux) 

 Overall structure length 
multiple of K 

 Satisfy alignment requirement  
for every element 

struct S2 { 

  double v; 

  int i[2]; 

  char c; 

} a[10]; 

a[0] a[1] a[2] • • • 

a+0 a+20 a+40 a+60 

v i[0] i[1] c 3 bytes 

a+0 a+8 a+16 a+20 
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Accessing Array Elements 

 Compute array offset 12*idx 
 sizeof(S3), including alignment spacers 

 Element j is at offset 8 within structure 

 Assembler gives offset a+8 

 Resolved during linking 

struct S3 { 

  short i; 

  float v; 

  short j; 

} a[10]; 

short get_j(int idx) 

{ 

  return a[idx].j; 

} 

 # %eax = idx 

 leal (%eax,%eax,2),%eax # 3*idx 

 movswl a+8(,%eax,4),%eax 

 a[0] • • •  a[idx]  • •  • 

a+0 a+12 a+12*idx 

i 2 bytes v j 2 bytes 

a+12*idx a+12*idx+8 
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Saving Space 

 Put large data types first 

 

 

 

 

 Effect (K=4) 

struct S4 { 

  char c; 

  int i; 

  char d; 

} *p; 

struct S5 { 

  int i; 

  char c; 

  char d; 

} *p; 

c i 3 bytes d 3 bytes 

c i d 2 bytes 
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Summary 

 Procedures in x86-64 
 Stack frame is relative to stack pointer 

 Parameters passed in registers 

 Arrays 
 One-dimensional 

 Multi-dimensional (nested) 

 Multi-level 

 Structures 
 Allocation 

 Access 

 Alignment 
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x86-64 NonLeaf with Unused Stack Frame 

 No values held while swap being 
invoked 

 No callee saved registers needed 

 8 bytes allocated, but not used 

/* Swap a[i] and a[j] */ 

void swap_ele(long a[], 

              long i, long j) { 

  swap(&a[i], &a[j]); 

} 

swap_ele: 

  subq    $8, %rsp             # Allocate 8 bytes 

  movq    %rsi, %rax           # Copy i 

  leaq    (%rdi,%rdx,8), %rsi  # &a[i] 

  leaq    (%rdi,%rax,8), %rdi  # &a[j] 

  call    swap 

  addq    $8, %rsp             # Deallocate 

  ret 
rtn Ptr 

%rsp unused 
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x86-64 Stack Frame Example #2 

 Must allocate space on stack 
for array loc 

 Uses subq to allocate, 
addq to deallocate 

/* Swap a[i] and a[j] */ 

void swap_ele_l(long a[], 

               long i, long j) { 

    long *loc[2]; 

    long b = i & 0x1; 

    loc[b] = &a[i]; 

    loc[1-b] = &a[j]; 

    swap(loc[0], loc[1]); 

} 

swap_ele_l: 

  subq    $24, %rsp 

  movq    %rsi, %rax 

  andl    $1, %eax 

  leaq    (%rdi,%rsi,8), %rcx 

  movq    %rcx, (%rsp,%rax,8) 

  movl    $1, %ecx 

  subq    %rax, %rcx 

  leaq    (%rdi,%rdx,8), %rdx 

  movq    %rdx, (%rsp,%rcx,8) 

  movq    8(%rsp), %rsi 

  movq    (%rsp), %rdi 

  call    swap 

  addq    $24, %rsp 

  ret 

unused 

%rsp 

8 loc[1] 

loc[0] 0 

rtn Ptr 
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x86-64 Stack Frame Example #3 

 Have both callee saved register & 
local variable allocation 

 Use both push/pop and sub/add 

/* Swap a[i] and a[j] */ 

long swap_ele_l_diff(long a[], 

               long i, long j) { 

    long *loc[2]; 

    long b = i & 0x1; 

    long diff = a[j] – a[i]; 

    loc[b] = &a[i]; 

    loc[1-b] = &a[j]; 

    swap(loc[0], loc[1]); 

    return diff 

} 

swap_ele_l_diff: 

  pushq   %rbx 

  subq    $16, %rsp 

  . . . 

  call    swap 

  . . . 

  addq    $16, %rsp 

  popq    %rbx 

  ret 

rtn Ptr 

%rsp 

8 loc[1] 

loc[0] 
0 

Old %rbx 



Carnegie Mellon 

48 

Interesting Features of Stack Frame 

 Allocate entire frame at once 
 All stack accesses can be relative to %rsp 

 Do by: 

 pushing callee saved registers (if needed) 

 decrementing stack pointer (if needed) 

 

 Simple deallocation 
 Do by: 

 Incrementing stack pointer (possibly) 

 Popping callee saved registers (possibly) 

 No base/frame pointer needed 
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Basic Data Types 
 Integral 

 Stored & operated on in general (integer) registers 

 Signed vs. unsigned depends on instructions used 

Intel ASM Bytes C 

byte b 1 [unsigned] char 

word w 2 [unsigned] short 

double word l 4 [unsigned] int 

quad word q 8 [unsigned] long int (x86-64) 

 Floating Point 
 Stored & operated on in floating point registers 

Intel ASM Bytes C 

Single s 4 float 

Double l 8 double 

Extended t 10/12/16 long double 

 Note: Windows Visual C/C++ compiler treats long double as regular, 8-
byte double.  GCC on Windows uses extended precision 
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Pointer Loop Example (IA32) 

void zincr_p(zip_dig z) { 

  int *zend = z+ZLEN; 

  do { 

    (*z)++; 

    z++; 

  } while (z != zend);   

} 

  movl    8(%ebp), %eax   # z 

  leal    20(%eax), %edx  # zend 

.L9:                      # loop: 

  addl    $1, (%eax)      # *z += 1 

  addl    $4, %eax        # z++ 

  cmpl    %eax, %edx      # zend:z 

  jne     .L9             # if !=, goto loop 
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Nested Array Row Access Code 

 Row Vector 
  pgh[index] is array of 5 int’s 

 Starting address pgh+(20*index) 

 IA32 Code 
 Computes and returns address 

 Compute as pgh + 4*(index+4*index) 

 

 

int *get_pgh_zip(int index) 

{ 

  return pgh[index]; 

} 

 

 

  # %eax = index 

 leal (%eax,%eax,4),%eax # 5 * index 

 leal pgh(,%eax,4),%eax # pgh + (20 * index) 

#define PCOUNT 4 

zip_dig pgh[PCOUNT] =  

  {{1, 5, 2, 0, 6}, 

   {1, 5, 2, 1, 3 }, 

   {1, 5, 2, 1, 7 }, 

   {1, 5, 2, 2, 1 }}; 
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Nested Array Element Access Code 

 Array Elements  
  pgh[index][dig] is int 

 Address: pgh + 20*index + 4*dig 

 =   pgh + 4*(5*index + dig) 

 IA32 Code 
 Computes address pgh + 4*((index+4*index)+dig) 

int get_pgh_digit 

  (int index, int dig) 

{ 

  return pgh[index][dig]; 

} 

 movl 8(%ebp), %eax # index 

 leal (%eax,%eax,4), %eax # 5*index 

 addl 12(%ebp), %eax # 5*index+dig 

 movl pgh(,%eax,4), %eax # offset 4*(5*index+dig) 


