
Carnegie Mellon

Instructors:
Seth Copen Goldstein, Franz Franchetti, , Greg Kesden

Floating Point

15-213: Introduction to Computer Systems
4th Lecture, Jan 22, 2015

2

Carnegie Mellon

Today: Floating Point

 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

3

This is important

Ariane 5

patriot

$500,000,000

28 people die

https://www.youtube.com/watch?v=kYUrqdUyEpI
https://www.youtube.com/watch?v=zZ73WxAiPWw

4

Carnegie Mellon

Fractional binary numbers

 What is 1011.1012?

Sum of

5

2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

Carnegie Mellon

• • •

Fractional Binary Numbers

 Representation
 Bits to right of “binary point” represent fractional powers of 2
 Represents rational number:

• • •

6

Carnegie Mellon

Fractional binary numbers

 What is 1011.1012?

 Sum of 8 + 0 + 2 + 1 + 1/2 + 0 + 1/8 = 11 5/8

7

Carnegie Mellon

Fractional Binary Numbers: Examples
 Value Representation
 5 3/4 101.112
 2 7/8 010.1112
 1 7/16 001.01112

 Observations
 Divide by 2 by shifting right (unsigned)
 Multiply by 2 by shifting left
 Numbers of form 0.111111…2 are just below 1.0
 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0
 Use notation 1.0 – ε

8

Carnegie Mellon

Representable Numbers

 Limitation #1
 Can only exactly represent numbers of the form x/2k
 Other rational numbers have repeating bit representations

 Value Representation
 1/3 0.0101010101[01]…2
 1/5 0.001100110011[0011]…2
 1/10 0.0001100110011[0011]…2

 Limitation #2
 Just one setting of decimal point within the w bits
 Limited range of numbers (very small values? very large?)

9

Carnegie Mellon

Today: Floating Point

 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

10

Carnegie Mellon

IEEE Floating Point

 IEEE Standard 754
 Established in 1985 as uniform standard for floating point arithmetic
 Before that, many idiosyncratic formats

 Supported by all major CPUs

 Driven by numerical concerns
 Nice standards for rounding, overflow, underflow
 Hard to make fast in hardware
 Numerical analysts predominated over hardware designers in defining

standard

11

Carnegie Mellon

 Numerical Form:
 (–1)s M 2E
 Sign bit s determines whether number is negative or positive
 Significand M normally a fractional value in range [1.0,2.0).
 Exponent E weights value by power of two

 Encoding
 MSB s is sign bit s
 exp field encodes E (but is not equal to E)
 frac field encodes M (but is not equal to M)

Floating Point Representation

s exp frac

12

Carnegie Mellon

Precision options

 Single precision: 32 bits

 Double precision: 64 bits

 Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 63 or 64-bits

13

3 cases based on value of exp

 Normalized
 When exp isn’t all 0s or all 1s
 Most common

 Denomalized
 When exp is all 0s
 Different interpretation of E than normalized
 Used for +0 and -0
 (And other numbers close to 0)

 “Special”
 When exp is all 1s
 NaN, infinities

14

Carnegie Mellon

“Normalized” Values

 When: exp ≠ 000…0 and exp ≠ 111…1

 Exponent coded as a biased value: E = Exp – Bias
 Exp: unsigned value exp
 Bias = 2k-1 - 1, where k is number of exponent bits
 Single precision: 127 (Exp: 1…254, E: -126…127)
 Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

15

Carnegie Mellon

“Normalized” Values

 When: exp ≠ 000…0 and exp ≠ 111…1

 Exponent coded as a biased value: E = Exp – Bias
 Exp: unsigned value exp
 Bias = 2k-1 - 1, where k is number of exponent bits
 Single precision: 127 (Exp: 1…254, E: -126…127)
 Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

16

Carnegie Mellon

“Normalized” Values

 When: exp ≠ 000…0 and exp ≠ 111…1

 Exponent coded as a biased value: E = Exp – Bias
 Exp: unsigned value exp
 Bias = 2k-1 - 1, where k is number of exponent bits
 Single precision: 127 (Exp: 1…254, E: -126…127)
 Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

 Significand coded with implied leading 1: M = 1.xxx…x2
 xxx…x: bits of frac
 Minimum when frac=000…0 (M = 1.0)
 Maximum when frac=111…1 (M = 2.0 – ε)
 Get extra leading bit for “free”

Carnegie Mellon

17

Normalized Encoding Example
 Value: Float F = 15213.0;
 1521310 = 111011011011012
 = 1.11011011011012 x 213

 Significand

M = 1.11011011011012
frac = 110110110110100000000002

 Exponent

E = 13
Bias = 127
Exp = 140 = 100011002

 Result:

0 10001100 11011011011010000000000

 s exp frac

18

Carnegie Mellon

Denormalized Values

 Condition: exp = 000…0

 Exponent value: E = 1 – Bias
 (instead of E = 0 – Bias)

 Significand coded with implied leading 0: M = 0.xxx…x2
 xxx…x: bits of frac

 Cases
 exp = 000…0, frac = 000…0

 Represents zero value
 Note distinct values: +0 and –0 (why?)

 exp = 000…0, frac ≠ 000…0

 Numbers closest to 0.0
 Equispaced

19

Carnegie Mellon

Special Values

 Condition: exp = 111…1

 Case: exp = 111…1, frac = 000…0
 Represents value ∞ (infinity)
 Operation that overflows
 Both positive and negative
 E.g., 1.0/0.0 = −1.0/−0.0 = +∞, 1.0/−0.0 = −∞

 Case: exp = 111…1, frac ≠ 000…0
 Not-a-Number (NaN)
 Represents case when no numeric value can be determined
 E.g., sqrt(–1), ∞ − ∞, ∞ × 0

20

Carnegie Mellon

Visualization: Floating Point Encodings

+∞ −∞

−0

+Denorm +Normalized −Denorm −Normalized

+0
NaN NaN

21

Carnegie Mellon

Today: Floating Point

 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

22

Carnegie Mellon

Tiny Floating Point Example

 8-bit Floating Point Representation
 the sign bit is in the most significant bit
 the next four bits are the exponent, with a bias of 7
 the last three bits are the frac

 Same general form as IEEE Format
 normalized, denormalized
 representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits

23

Carnegie Mellon

Dynamic Range (Positive Only)

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

s exp frac E Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001 -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1 = 1
0 0111 001 0 9/8*1 = 9/8
0 0111 010 0 10/8*1 = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

Notice smooth
transition

24

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Carnegie Mellon

Distribution of Values

 6-bit IEEE-like format
 e = 3 exponent bits
 f = 2 fraction bits
 Bias is 23-1-1 = 3

 Notice how the distribution gets denser toward zero.
 8 values

s exp frac

1 3-bits 2-bits

25

Carnegie Mellon

Distribution of Values (close-up view)

 6-bit IEEE-like format
 e = 3 exponent bits
 f = 2 fraction bits
 Bias is 3

s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity

26

Carnegie Mellon

Special Properties of the IEEE Encoding

 FP Zero Same as Integer Zero
 All bits = 0

 Can (Almost) Use Unsigned Integer Comparison
 Must first compare sign bits
 Must consider −0 = 0
 NaNs problematic
 Will be greater than any other values
 What should comparison yield?

 Otherwise OK
 Denorm vs. normalized
 Normalized vs. infinity

27

Carnegie Mellon

Today: Floating Point

 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

28

Carnegie Mellon

Floating Point Operations: Basic Idea

 x +f y = Round(x + y)

 x ×f y = Round(x × y)

 Basic idea
 First compute exact result
 Make it fit into desired precision
 Possibly overflow if exponent too large
 Possibly round to fit into frac

29

Carnegie Mellon

Rounding

 Rounding Modes (illustrate with $ rounding)

 $1.40 $1.60 $1.50 $2.50 –$1.50
 Towards zero $1 $1 $1 $2 –$1
 Round down (−∞) $1 $1 $1 $2 –$2
 Round up (+∞) $2 $2 $2 $3 –$1
 Nearest Even (default) $1 $2 $2 $2 –$2

30

Carnegie Mellon

Closer Look at Round-To-Even
 Default Rounding Mode
 Hard to get any other kind without dropping into assembly
 All others are statistically biased
 Sum of set of positive numbers will consistently be over- or under-

estimated

 Applying to Other Decimal Places / Bit Positions
 When exactly halfway between two possible values
 Round so that least significant digit is even

 E.g., round to nearest hundredth
 1.2349999 1.23 (Less than half way)
 1.2350001 1.24 (Greater than half way)
 1.2350000 1.24 (Half way—round up)
 1.2450000 1.24 (Half way—round down)

31

Carnegie Mellon

Rounding Binary Numbers

 Binary Fractional Numbers
 “Even” when least significant bit is 0

 “Half way” when bits to right of rounding position = 100…2

 Examples
 Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
2 3/32 10.000112 10.002 (<1/2—down) 2
2 3/16 10.001102 10.012 (>1/2—up) 2 1/4
2 7/8 10.111002 11.002 (1/2—up) 3
2 5/8 10.101002 10.102 (1/2—down) 2 1/2

int->fp

32

Carnegie Mellon

FP Multiplication

 (–1)s1 M1 2E1 x (–1)s2 M2 2E2
 Exact Result: (–1)s M 2E
 Sign s: s1 ^ s2
 Significand M: M1 x M2
 Exponent E: E1 + E2

 Fixing
 If M ≥ 2, shift M right, increment E
 If E out of range, overflow
 Round M to fit frac precision

 Implementation
 Biggest chore is multiplying significands

33

Carnegie Mellon

Floating Point Addition

 (–1)s1 M1 2E1 + (-1)s2 M2 2E2
Assume E1 > E2

 Exact Result: (–1)s M 2E
Sign s, significand M:
 Result of signed align & add

Exponent E: E1

 Fixing
If M ≥ 2, shift M right, increment E
if M < 1, shift M left k positions, decrement E by k
Overflow if E out of range
Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+
(–1)s M

34

Carnegie Mellon

Today: Floating Point

 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

35

Carnegie Mellon

Floating Point in C

 C Guarantees Two Levels
float single precision
double double precision

 Conversions/Casting
Casting between int, float, and double changes bit representation
 double/float → int
 Truncates fractional part
 Like rounding toward zero
 Not defined when out of range or NaN: Generally sets to TMin

 int → double
 Exact conversion, as long as int has ≤ 53 bit word size

 int → float
 Will round according to rounding mode

36

Some implications

 Order of operations is important
 3.14+(1e20-1e20) versus (3.14+1e20)-1e20
 1e20*(1e20-1e20) versus (1e20*1e20)-(1e20*1e20)

 Compiler optimizations impeded
 E.g., Common sub-expression elimination

double x=a+b+c;

double y=b+c+d;

May not equal

double temp=b+c;

double x=a+temp;

double y=temp+d;

37

Carnegie Mellon

Floating Point Puzzles
 For each of the following C expressions, either:
 Argue that it is true for all argument values
 Explain why not true • x == (int)(float) x

• x == (int)(double) x
• f == (float)(double) f
• d == (float) d
• f == -(-f);
• 2/3 == 2/3.0
• 2.0/3==2/3.0
• d < 0.0 ⇒ ((d*2) < 0.0)
• d > f ⇒ -f > -d
• d * d >= 0.0
• (d+f)-d == f

int x = …;
float f = …;
double d = …;

Assume neither
d nor f is NaN

38

Carnegie Mellon

Summary

 IEEE Floating Point has clear mathematical properties
 Represents numbers of form M x 2E
 One can reason about operations independent of

implementation
 As if computed with perfect precision and then rounded

 Not the same as real arithmetic
 Violates associativity/distributivity
 Makes life difficult for compilers & serious numerical applications

programmers

39

Carnegie Mellon

More Slides

40

Carnegie Mellon

Today: Floating Point

 Background: Fractional binary numbers
 IEEE floating point standard: Definition
 Example and properties
 Rounding, addition, multiplication
 Floating point in C
 Summary

41

Carnegie Mellon

Interesting Numbers
Description exp frac Numeric Value
 Zero 00…00 00…00 0.0
 Smallest Pos. Denorm. 00…00 00…01 2– {23,52} x 2– {126,1022}
 Single ≈ 1.4 x 10–45
 Double ≈ 4.9 x 10–324

 Largest Denormalized 00…00 11…11 (1.0 – ε) x 2– {126,1022}
 Single ≈ 1.18 x 10–38
 Double ≈ 2.2 x 10–308

 Smallest Pos. Normalized 00…01 00…00 1.0 x 2– {126,1022}
 Just larger than largest denormalized

 One 01…11 00…00 1.0
 Largest Normalized 11…10 11…11 (2.0 – ε) x 2{127,1023}
 Single ≈ 3.4 x 1038
 Double ≈ 1.8 x 10308

{single,double}

42

Carnegie Mellon

Mathematical Properties of FP Add

 Compare to those of Abelian Group
 Closed under addition?
 But may generate infinity or NaN

 Commutative?
 Associative?
 Overflow and inexactness of rounding

 0 is additive identity?
 Every element has additive inverse
 Except for infinities & NaNs

 Monotonicity
 a ≥ b ⇒ a+c ≥ b+c?
 Except for infinities & NaNs

Yes

Yes

Yes

No

Almost

Almost

43

Carnegie Mellon

Mathematical Properties of FP Mult

 Compare to Commutative Ring
 Closed under multiplication?
 But may generate infinity or NaN

 Multiplication Commutative?
 Multiplication is Associative?
 Possibility of overflow, inexactness of rounding

 1 is multiplicative identity?
 Multiplication distributes over addition?
 Possibility of overflow, inexactness of rounding

 Monotonicity
 a ≥ b & c ≥ 0 ⇒ a * c ≥ b *c?
 Except for infinities & NaNs

Yes

Yes
No

Yes
No

Almost

44

Carnegie Mellon

Creating Floating Point Number

 Steps
 Normalize to have leading 1
 Round to fit within fraction
 Postnormalize to deal with effects of rounding

 Case Study
 Convert 8-bit unsigned numbers to tiny floating point format
Example Numbers
128 10000000
 14 00001101
 33 00010001
 35 00010011
138 10001010
 63 00111111

s exp frac

1 4-bits 3-bits

45

Carnegie Mellon

Normalize

 Requirement
 Set binary point so that numbers of form 1.xxxxx
 Adjust all to have leading one
 Decrement exponent as shift left

Value Binary Fraction Exponent
 128 10000000 1.0000000 7
 14 00001101 1.1010000 3
 17 00010001 1.0001000 4
 19 00010011 1.0011000 4
 138 10001010 1.0001010 7
 63 00111111 1.1111100 5

s exp frac

1 4-bits 3-bits

46

Carnegie Mellon

Rounding

 Round up conditions
 Round = 1, Sticky = 1 ➙ > 0.5
 Guard = 1, Round = 1, Sticky = 0 ➙ Round to even
Value Fraction GRS Incr? Rounded
 128 1.0000000 000 N 1.000
 14 1.1010000 100 N 1.101
 17 1.0001000 010 N 1.000
 19 1.0011000 110 Y 1.010
 138 1.0001010 011 Y 1.001
 63 1.1111100 111 Y 10.000

1.BBGRXXX
Guard bit: LSB of result

Round bit: 1st bit removed
Sticky bit: OR of remaining bits

47

Carnegie Mellon

Postnormalize

 Issue
 Rounding may have caused overflow
 Handle by shifting right once & incrementing exponent
Value Rounded Exp Adjusted Result
 128 1.000 7 128
 14 1.101 3 14
 17 1.000 4 16
 19 1.010 4 20
 138 1.001 7 134
 63 10.000 5 1.000/6 64

back

	Floating Point��15-213: Introduction to Computer Systems�4th Lecture, Jan 22, 2015
	Today: Floating Point
	This is important
	Fractional binary numbers
	Fractional Binary Numbers
	Fractional binary numbers
	Fractional Binary Numbers: Examples
	Representable Numbers
	Today: Floating Point
	IEEE Floating Point
	Floating Point Representation
	Precision options
	3 cases based on value of exp
	“Normalized” Values
	“Normalized” Values
	“Normalized” Values
	Normalized Encoding Example
	Denormalized Values
	Special Values
	Visualization: Floating Point Encodings
	Today: Floating Point
	Tiny Floating Point Example
	Dynamic Range (Positive Only)
	Distribution of Values
	Distribution of Values (close-up view)
	Special Properties of the IEEE Encoding
	Today: Floating Point
	Floating Point Operations: Basic Idea
	Rounding
	Closer Look at Round-To-Even
	Rounding Binary Numbers
	FP Multiplication
	Floating Point Addition
	Today: Floating Point
	Floating Point in C
	Some implications
	Floating Point Puzzles
	Summary
	More Slides
	Today: Floating Point
	Interesting Numbers
	Mathematical Properties of FP Add
	Mathematical Properties of FP Mult
	Creating Floating Point Number
	Normalize
	Rounding
	Postnormalize

