Carnegie Mellon

Floating Point

15-213: Introduction to Computer Systems
4th Lecture, Jan 22, 2015

Instructors:
Seth Copen Goldstein, Franz Franchetti, , Greg Kesden

Carnegie Mello

Today: Floating Point

m Background: Fractional binary numbers
m |IEEE floating point standard: Definition
m Example and properties

m Rounding, addition, multiplication

m Floating pointin C

= Summary

This is important

$500,000,000

28 people die

https://www.youtube.com/watch?v=kYUrqdUyEpI
https://www.youtube.com/watch?v=zZ73WxAiPWw

Fractional binary numbers

= What is 1011.101,?

Sum of

Carnegie Mello

Fractional Binary Numbers

2/

bi |bi-1|®ee| by | b1 | bo |b-1\b-2|b-3|®ee]| b,

1/8

m Representation 27
= Bits to right of “binary point” represent fractional powers of 2
= Represents rational number: Z 3
bk X 2

Fractional binary numbers

= What is 1011.101,?

Sumof8+0+2+1+1/2+0+1/8=11 5/8

Carnegie Mello

Fractional Binary Numbers: Examples

m Value Representation
5 3/4 101.11>
2718 10.111>
17/16 1.0111>

m Observations
= Divide by 2 by shifting right (unsigned)
= Multiply by 2 by shifting left
" Numbers of form 0.111111...> are just below 1.0
= 1/2+1/4+1/8+...+1/2'+... =+ 1.0
= Use notation 1.0—¢

Carnegie Mello

Representable Numbers

m Limitation #1
= Can only exactly represent numbers of the form x/2k
= Other rational numbers have repeating bit representations

= Value Representation
- 1/3 0.0101010101[01]...2
- 1/5 0.001100110011[0011]...2
- 1/10 0.0001100110011[0011]...>

m Limitation #2

= Just one setting of decimal point within the w bits
= Limited range of numbers (very small values? very large?)

Carnegie Mello

Today: Floating Point

m |IEEE floating point standard: Definition

IEEE Floating Point

m |IEEE Standard 754

= Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
= Supported by all major CPUs

m Driven by numerical concerns
"= Nice standards for rounding, overflow, underflow
" Hard to make fast in hardware

= Numerical analysts predominated over hardware designers in defining
standard

10

Floating Point Representation

m Numerical Form:
(-1)° M 2
= Sign bit s determines whether number is negative or positive
= Significand M normally a fractional value in range [1.0,2.0).
= Exponent E weights value by power of two

m Encoding
= MSB S is sign bits
= exp field encodes E (but is not equal to E)
= frac field encodes M (but is not equal to M)

S |exp frac

11

Precision options

m Single precision: 32 bits

S |exp frac

1 8-hits 23-hits

m Double precision: 64 bits

S |exp frac

1 11-bits 52-bits
m Extended precision: 80 bits (Intel only)

S |exp frac

1 15-bits 63 or 64-hits

12

3 cases based on value of exp

m Normalized

= When exp isn’t all Os or all 1s
" Most common

m Denomalized
= When exp is all Os
= Different interpretation of E than normalized
= Used for +0 and -0
= (And other numbers close to 0)
m “Special”
= When exp is all 1s
= NaN, infinities

13

“Normalized” Values

m When: exp # 000...0 and exp # 111...1

m Exponent coded as a biased value: E = Exp — Bias
= Exp: unsigned value exp
= Bias = 2%1-1, where k is number of exponent bits
= Single precision: 127 (Exp: 1...254, E: -126...127)
= Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

14

“Normalized” Values

m When: exp # 000...0 and exp # 111...1

m Exponent coded as a biased value: E = Exp — Bias
= Exp: unsigned value exp
= Bjas =2%1-1, where k is number of exponent bits
= Single precision: 127 (Exp: 1...254, E: -126...127)
= Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

15

“Normalized” Values

m When: exp # 000...0 and exp # 111...1

m Exponent coded as a biased value: E = Exp — Bias
= Exp: unsigned value exp
= Bias = 2%1-1, where k is number of exponent bits
= Single precision: 127 (Exp: 1...254, E: -126...127)
= Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

m Significand coded with implied leading 1: M = 1.XXX...X2
" XXX...X: bits of frac
= Minimum when frac=000...0 (M = 1.0)
" Maximum when frac=111...1 (M =2.0—¢)
" Get extra leading bit for “free”

16

Carnegie Mellon

Normalized Encoding Example

m Value: Float F = 15213.0;
= 15213,, = 11101101101101,
=1.1101101101101, x 213

m Significand

M = 1.1101101101101,

frac= 11011011011010000000000,
m Exponent

E = 13

Bias = 127

Exp = 140 = 10001100,
m Result:

0{]1120001100}111011011011010000000000
S exp frac

17

Denormalized Values

m Condition: exp = 000...0

m Exponent value: E =1 - Bias
" (instead of E = 0 — Bias)

m Significand coded with implied leading 0: M = 0.xxx...x2

= xxX..X: bits of frac

m Cases
= exp =000...0, frac =000...0
= Represents zero value
= Note distinct values: +0 and -0 (why?)
= exp =000...0, frac # 000...0
= Numbers closest to 0.0
= Equispaced

18

Carnegie Mello

Special Values

m Condition: exp=111...1

m Case:exp=111...1, frac =000...0

= Represents value o0 (infinity)

= QOperation that overflows

" Both positive and negative
E.g.,1.0/0.0=-1.0/-0.0 = 400, 1.0/-0.0 = -0

m Case:exp=111...1, frac # 000...0
= Not-a-Number (NaN)
= Represents case when no numeric value can be determined
= E.g., sqrt(-1), 0o — 0,0 x 0

19

Carnegie Mello

Visualization: Floating Point Encodings

—o0 _ i +00
-Normalized (~Denorm .+Denorm | +Normalized |
: |

| : |
I I Palx: I
NaN _0/ >) NaN

20

Carnegie Mello

Today: Floating Point

N
N
m Example and properties
N
N

21

Carnegie Mello

Tiny Floating Point Example

S exp frac

1 4-bits 3-bhits

m 8-bit Floating Point Representation
= the sign bit is in the most significant bit
= the next four bits are the exponent, with a bias of 7
= the last three bits are the frac

m Same general form as IEEE Format
®" normalized, denormalized

= representation of 0, NaN, infinity

22

Carnegie Mello

Dynamlc Range (Positive Only)

Denormalized
numbers

Normalized
numbers

© O O

© O O O:

O O O O O:

O O O :

S exp

0000
0000
0000

0000
0000
0001
0001

0110
0110
0111
0111
0111

1110
1110
1111

frac

000
001
010

110
111
000
001

110
111
000
001
010

110
111
000

E

~N N

n/a

Value

o)
1/8*1/64 = 1/51
2/8*1/64 =

closest to zero

6/8*1/64
7/8*1/6
8/8*1/64
9/8*1/64

14/8*1/2 =
15/8*1/2 = 15/16
8/8*1 =1
9/8*1 = 9/8
10/8*1 = 10/8

closest to 1 below

closest to 1 above

14/8*128 = 224
15/8*128 = 240 largest norm
inf

23

Distribution of Values

m 6-bit IEEE-like format
= e =3 exponent bits
= f=2 fraction bits S eXp frac

= Bjasis 231-1=3 1 3-bits 2-bits

m Notice how the distribution gets denser toward zero.

/8values
A A A

-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized Infinity

24

Carnegie Mello

Distribution of Values (close-up view)

m 6-bit IEEE-like format

= e =3 exponent bits
= f =2 fraction bits S €Xp frac

= Biasis 3 1 3-bits 2-bits

A A A A A AAAAOGOOOOOOLAAAALA A A A A
-1 -0.5 0 0.5 1
4 Denormalized A Normalized B Infinity

25

Special Properties of the IEEE Encoding

m FP Zero Same as Integer Zero
= All bits=0

m Can (Almost) Use Unsigned Integer Comparison
" Must first compare sign bits
" Must consider-0=0
= NaNs problematic
= Will be greater than any other values
= What should comparison yield?
= Otherwise OK
= Denorm vs. normalized
= Normalized vs. infinity

26

Carnegie Mello

Today: Floating Point

N
N
N
m Rounding, addition, multiplication
N

27

Floating Point Operations: Basic Idea

mX +f Y = Round(x + y)

mX Xf VY Round(X x Yy)

m Basic idea
= First compute exact result
= Make it fit into desired precision
= Possibly overflow if exponent too large
= Possibly round to fit into Frac

28

Rounding

m Rounding Modes (illustrate with $ rounding)

M $1.40 S1.60 S1.50 S2.50 -51.50
= Towards zero S1 S1 S1 S2 -S1
= Round down (—) S1 S1 S1 S2 -S2
= Round up (+0) S2 S2 S2 S3 —-S1

= Nearest Even (default) S1 S2 S2 S2 -S2

29

Carnegie Mello

Closer Look at Round-To-Even

m Default Rounding Mode
" Hard to get any other kind without dropping into assembly
= All others are statistically biased

= Sum of set of positive numbers will consistently be over- or under-
estimated

m Applying to Other Decimal Places / Bit Positions
= When exactly halfway between two possible values
= Round so that least significant digit is even
= E.g., round to nearest hundredth

1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)

1.2450000 1.24 (Half way—round down)

30

Carnegie Mello

Rounding Binary Numbers

m Binary Fractional Numbers
= “Even” when least significant bit is O
= “Half way” when bits to right of rounding position = 100...>2

m Examples
® Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
23/32 10.00011> 10.002 (<1/2—down) 2
23/16 10.00110; 10.01> (>1/2—up) 21/4
27/8 10.11100; 11.002 (1/2—up) 3
25/8 10.10100; 10.10; (1/2—down) 21/2

_31

FP Multiplication

m (-1)51 M1 281 x (-1)2 M2 2£2
m Exact Result: (-1)° M 2f

= Sign s: s1Ns2
= Significand M: M1x M2
" Exponent E: E1+E2

m Fixing

= |f M2 2, shift M right, increment E
" |If E out of range, overflow
= Round M to fit Frac precision

m Implementation

= Biggest chore is multiplying significands
32

Floating Point Addition

m (1)1 M1 2E1 4+ (-1)2 M2 2F2
"Assume E1 > E2

|<_E1—E2 —]
-1)s1 M1
m Exact Result: (1) M 2 1)
=Sign s, significand M: 4 (-1)2 M2
= Result of signed align & add
"Exponent E: E1 (-1 ™M
m Fixing

= |f M 2 2, shift M right, increment E

"if M < 1, shift M left k positions, decrement E by k
=Qverflow if E out of range

"Round M to fit Frac precision

33

Carnegie Mello

Today: Floating Point

Floating point in C

34

Floating Point in C

m C Guarantees Two Levels
=float single precision
=double double precision

m Conversions/Casting
=Casting between Int, Tloat, and double changes bit representation
= double/float - Int
= Truncates fractional part
= Like rounding toward zero
= Not defined when out of range or NaN: Generally sets to TMin
= int - double
= Exact conversion, as long as 1Nt has < 53 bit word size
= int - float

= Will round according to rounding mode

35

Some implications

m Order of operations is important
= 3.14+(1e20-1e20) versus (3.14+1e20)-1e20
= 1e20*(1e20-1e20) versus (1e20*1e20)-(1e20*1e20)

m Compiler optimizations impeded
= E.g., Common sub-expression elimination
double x=a+tb+c;
double y=b+c+d;

May not equal
double temp=b+c;

double x=attemp;
double y=temp+d;

36

Floating Point Puzzles

m For each of the following C expressions, either:

= Argue that it is true for all argument values

= Explain why not true o X == (int)(float) X
o X == (int)(double) x
o f == (float)(double) f

intx=...; o d == (float) d

floatf=...; o f== _(_f);

doubled= « 213 ==2/3.0

Assume neither e 2.0/3==2/3.0

d nor Fis NaN e d<0.0 = ((d*Z) < 0.0)
e d>f = -f>-d
e d*d>=0.0

(d+f)-d ==

37

Carnegie Mello

Summary

m IEEE Floating Point has clear mathematical properties
m Represents numbers of form M x 2F

m One can reason about operations independent of
implementation
= As if computed with perfect precision and then rounded
m Not the same as real arithmetic

= Violates associativity/distributivity

= Makes life difficult for compilers & serious numerical applications
programmers

38

Carnegie Mello

More Slides

39

Carnegie Mello

Today: Floating Point

Summary

40

Carnegie Mello

Interesting Numbers {single,double}
Description exp frac Numeric Value

m Zero 00..00 00...00 0.0

m Smallest Pos. Denorm. 00...00 00...01 2~ 123,52} i 9—{126,1022}

" Single = 1.4 x 107
" Double = 4.9 x 107324
m Largest Denormalized 00..00 11..11 (1.0 — €) x 2~{126,1022}
= Single =1.18x 1073®
" Double = 2.2 x 107308
m Smallest Pos. Normalized 00..01 00...00 1.0 x 2~{126,1022}

= Just larger than largest denormalized
m One 01..11 00...00 1.0

m Largest Normalized 11..10 11..11 (2.0 — €) x 2{127,1023}
" Single = 3.4 x 1038
" Double = 1.8 x 10308

41

Carnegie Mello

Mathematical Properties of FP Add

m Compare to those of Abelian Group
" Closed under addition?

= But may generate infinity or NaN

Commutative?

Associative?

= Overflow and inexactness of rounding
0 is additive identity?

Every element has additive inverse

= Except for infinities & NaNs

m Monotonicity
" a>b=at+c2b+c?

= Except for infinities & NaNs

42

Carnegie Mello

Mathematical Properties of FP Mult

m Compare to Commutative Ring
" Closed under multiplication?
= But may generate infinity or NaN
" Multiplication Commutative?
" Multiplication is Associative?
= Possibility of overflow, inexactness of rounding

1 is multiplicative identity?

Multiplication distributes over addition?
= Possibility of overflow, inexactness of rounding

m Monotonicity
"ag>b &c20 =>a*c2b*c?

= Except for infinities & NaNs

43

Carnegie Mello

Creating Floating Point Number

m Steps s exp frac
= Normalize to have leading 1

1 4-bhits 3-bits
" Round to fit within fraction

" Postnormalize to deal with effects of rounding

m Case Study
= Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128 10000000
14 00001101
33 00010001
35 00010011

138 10001010

63 00111111

44

Carnegie Mello

Normalize

m Requirement

= Set binary point so that numbers of form 1.xxxxx

S

exp

frac

1 4-bits

= Adjust all to have leading one

= Decrement exponent as shift left

Value
128
14
17
19
138
63

Binary

10000000
00001101
00010001
00010011
10001010
00111111

Fraction

1.0000000
1.1010000
1.0001000
1.0011000
1.0001010
1.1111100

Exponent

O N & b W N

3-bits

45

Carnegie Mello

Rounding 1.BBGRXXX

Guard bit: LSB of result _/ '

Sticky bit: OR of remaining bits
Round bit: 15t bit removed

m Round up conditions
®" Round =1, Sticky=1 =+ >0.5
" Guard =1, Round =1, Sticky =0 = Round to even

Value Fraction GRS Incr? Rounded
128 1.0000000 000 N 1.000
14 1.1010000 100 N 1.101
17 1.0001000 010 N 1.000
19 1.0011000 110 Y 1.010
138 1.0001010 011 Y 1.001
63 1.1111100 111 Y 10.000

46

Postnormalize
m Issue

® Rounding may have caused overflow
®= Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result
128 1.000 7 128
14 1.101 3 14
17 1.000 4 16
19 1.010 4 20
138 1.001 7 134
63 10.000) 1.000/6 64

	Floating Point��15-213: Introduction to Computer Systems�4th Lecture, Jan 22, 2015
	Today: Floating Point
	This is important
	Fractional binary numbers
	Fractional Binary Numbers
	Fractional binary numbers
	Fractional Binary Numbers: Examples
	Representable Numbers
	Today: Floating Point
	IEEE Floating Point
	Floating Point Representation
	Precision options
	3 cases based on value of exp
	“Normalized” Values
	“Normalized” Values
	“Normalized” Values
	Normalized Encoding Example
	Denormalized Values
	Special Values
	Visualization: Floating Point Encodings
	Today: Floating Point
	Tiny Floating Point Example
	Dynamic Range (Positive Only)
	Distribution of Values
	Distribution of Values (close-up view)
	Special Properties of the IEEE Encoding
	Today: Floating Point
	Floating Point Operations: Basic Idea
	Rounding
	Closer Look at Round-To-Even
	Rounding Binary Numbers
	FP Multiplication
	Floating Point Addition
	Today: Floating Point
	Floating Point in C
	Some implications
	Floating Point Puzzles
	Summary
	More Slides
	Today: Floating Point
	Interesting Numbers
	Mathematical Properties of FP Add
	Mathematical Properties of FP Mult
	Creating Floating Point Number
	Normalize
	Rounding
	Postnormalize

