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Today: Floating Point 

 Background: Fractional binary numbers 
 IEEE floating point standard: Definition 
 Example and properties 
 Rounding, addition, multiplication 
 Floating point in C 
 Summary 
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This is important 

Ariane 5 

patriot 

$500,000,000 

28 people die 

https://www.youtube.com/watch?v=kYUrqdUyEpI
https://www.youtube.com/watch?v=zZ73WxAiPWw
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Fractional binary numbers 

 What is 1011.1012? 
 

Sum of  
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• • • 

Fractional Binary Numbers 

 Representation 
 Bits to right of “binary point” represent fractional powers of 2 
 Represents rational number: 

• • • 
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Fractional binary numbers 

 What is 1011.1012? 
 

 Sum of 8 + 0 + 2 + 1 + 1/2 + 0 + 1/8 = 11  5/8 
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Fractional Binary Numbers: Examples 
 Value Representation 
 5 3/4 101.112 
  2 7/8 010.1112 
  1 7/16 001.01112 

 Observations 
 Divide by 2 by shifting right (unsigned) 
 Multiply by 2 by shifting left 
 Numbers of form 0.111111…2 are just below 1.0 
 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0 
 Use notation 1.0 – ε 
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Representable Numbers 

 Limitation #1 
 Can only exactly represent numbers of the form x/2k 
 Other rational numbers have repeating bit representations 

 

 Value Representation 
 1/3 0.0101010101[01]…2 
 1/5 0.001100110011[0011]…2 
 1/10 0.0001100110011[0011]…2 

 
 Limitation #2 
 Just one setting of decimal point within the w bits 
 Limited range of numbers (very small values?  very large?) 
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Today: Floating Point 

 Background: Fractional binary numbers 
 IEEE floating point standard: Definition 
 Example and properties 
 Rounding, addition, multiplication 
 Floating point in C 
 Summary 
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IEEE Floating Point 

 IEEE Standard 754 
 Established in 1985 as uniform standard for floating point arithmetic 
 Before that, many idiosyncratic formats 

 Supported by all major CPUs 

 
 Driven by numerical concerns 
 Nice standards for rounding, overflow, underflow 
 Hard to make fast in hardware 
 Numerical analysts predominated over hardware designers in defining 

standard 
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 Numerical Form:  
   (–1)s M  2E 
 Sign bit s determines whether number is negative or positive 
 Significand M  normally a fractional value in range [1.0,2.0). 
 Exponent E weights value by power of two 

 
 Encoding 
 MSB s is sign bit s 
 exp field encodes E (but is not equal to E) 
 frac field encodes M (but is not equal to M) 

Floating Point Representation 

s exp frac 
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Precision options 

 Single precision: 32 bits 

 Double precision: 64 bits 

 Extended precision: 80 bits (Intel only) 

s exp frac 

1 8-bits 23-bits 

s exp frac 

1 11-bits 52-bits 

s exp frac 

1 15-bits 63 or 64-bits 
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3 cases based on value of exp 

 Normalized 
 When exp isn’t all 0s or all 1s 
 Most common 

 Denomalized 
 When exp is all 0s 
 Different interpretation of E than normalized 
 Used for +0 and -0 
 (And other numbers close to 0) 

 “Special” 
 When exp is all 1s 
 NaN, infinities 
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“Normalized” Values 

 When: exp ≠ 000…0 and exp ≠ 111…1 
 

 Exponent coded as a biased value: E  =  Exp – Bias 
 Exp: unsigned value exp  
 Bias = 2k-1 - 1, where k is number of exponent bits 
 Single precision: 127 (Exp: 1…254, E: -126…127) 
 Double precision: 1023 (Exp: 1…2046, E: -1022…1023) 
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“Normalized” Values 

 When: exp ≠ 000…0 and exp ≠ 111…1 
 

 Exponent coded as a biased value: E  =  Exp – Bias 
 Exp: unsigned value exp  
 Bias = 2k-1 - 1, where k is number of exponent bits 
 Single precision: 127 (Exp: 1…254, E: -126…127) 
 Double precision: 1023 (Exp: 1…2046, E: -1022…1023) 
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“Normalized” Values 

 When: exp ≠ 000…0 and exp ≠ 111…1 
 

 Exponent coded as a biased value: E  =  Exp – Bias 
 Exp: unsigned value exp  
 Bias = 2k-1 - 1, where k is number of exponent bits 
 Single precision: 127 (Exp: 1…254, E: -126…127) 
 Double precision: 1023 (Exp: 1…2046, E: -1022…1023) 

 
 Significand coded with implied leading 1: M  =  1.xxx…x2 
  xxx…x: bits of frac 
 Minimum when frac=000…0 (M = 1.0) 
 Maximum when frac=111…1 (M = 2.0 – ε) 
 Get extra leading bit for “free” 
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Normalized Encoding Example 
 Value: Float F = 15213.0; 
 1521310  = 111011011011012    
                     = 1.11011011011012 x 213 

 
 Significand 

M  =  1.11011011011012 
frac =    110110110110100000000002 

 
 Exponent 

E   =  13 
Bias  =  127 
Exp  =  140  = 100011002 
 

 Result: 
 
0 10001100 11011011011010000000000  

 s exp frac 
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Denormalized Values 

 Condition: exp = 000…0 
 

 Exponent value: E = 1 – Bias 
 (instead of E = 0 – Bias) 

 Significand coded with implied leading 0: M = 0.xxx…x2 
 xxx…x: bits of frac 

 Cases 
  exp = 000…0, frac = 000…0 

 Represents zero value 
 Note distinct values: +0 and –0 (why?) 

 exp = 000…0, frac ≠ 000…0 

 Numbers closest to 0.0 
 Equispaced 
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Special Values 

 Condition: exp = 111…1 
 

 Case: exp = 111…1, frac = 000…0 
 Represents value ∞ (infinity) 
 Operation that overflows 
 Both positive and negative 
 E.g., 1.0/0.0 = −1.0/−0.0 = +∞,  1.0/−0.0 = −∞ 

 
 Case: exp = 111…1, frac ≠ 000…0 
 Not-a-Number (NaN) 
 Represents case when no numeric value can be determined 
 E.g., sqrt(–1), ∞ − ∞, ∞ × 0 
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Visualization: Floating Point Encodings 

+∞ −∞ 

−0 

+Denorm +Normalized −Denorm −Normalized 

+0 
NaN NaN 
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Today: Floating Point 

 Background: Fractional binary numbers 
 IEEE floating point standard: Definition 
 Example and properties 
 Rounding, addition, multiplication 
 Floating point in C 
 Summary 
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Tiny Floating Point Example 

 8-bit Floating Point Representation 
 the sign bit is in the most significant bit 
 the next four bits are the exponent, with a bias of 7 
 the last three bits are the frac 

 
 Same general form as IEEE Format 
 normalized, denormalized 
 representation of 0, NaN, infinity 

s exp frac 

1 4-bits 3-bits 
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Dynamic Range (Positive Only) 

closest to zero 

largest denorm 
smallest norm 

closest to 1 below 

closest to 1 above 

largest norm 

Denormalized 
numbers 

Normalized 
numbers 

s exp  frac E Value  

0 0000 000 -6 0 
0 0000 001 -6 1/8*1/64 = 1/512 
0 0000 010 -6 2/8*1/64 = 2/512 
… 
0 0000 110 -6 6/8*1/64 = 6/512 
0 0000 111 -6 7/8*1/64 = 7/512 
0 0001 000 -6 8/8*1/64 = 8/512 
0 0001 001   -6 9/8*1/64 = 9/512 
… 
0 0110 110 -1 14/8*1/2 = 14/16 
0 0110 111 -1 15/8*1/2 = 15/16 
0 0111 000 0 8/8*1    = 1 
0 0111 001 0 9/8*1    = 9/8 
0 0111 010 0 10/8*1   = 10/8 
… 
0 1110 110 7 14/8*128 = 224 
0 1110 111 7 15/8*128 = 240 
0 1111 000 n/a inf 

Notice smooth 
transition 



24 
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Denormalized Normalized Infinity

Carnegie Mellon 

Distribution of Values 

 6-bit IEEE-like format 
 e = 3 exponent bits 
 f = 2 fraction bits 
 Bias is 23-1-1 = 3 

 

 Notice how the distribution gets denser toward zero.  
 8 values 

s exp frac 

1 3-bits 2-bits 
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Distribution of Values (close-up view) 

 6-bit IEEE-like format 
 e = 3 exponent bits 
 f = 2 fraction bits 
 Bias is 3 

s exp frac 

1 3-bits 2-bits 

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity
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Special Properties of the IEEE Encoding 

 FP Zero Same as Integer Zero 
 All bits = 0 

 
 Can (Almost) Use Unsigned Integer Comparison 
 Must first compare sign bits 
 Must consider −0 = 0 
 NaNs problematic 
 Will be greater than any other values 
 What should comparison yield? 

  Otherwise OK 
 Denorm vs. normalized 
 Normalized vs. infinity 
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Today: Floating Point 

 Background: Fractional binary numbers 
 IEEE floating point standard: Definition 
 Example and properties 
 Rounding, addition, multiplication 
 Floating point in C 
 Summary 
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Floating Point Operations: Basic Idea 

 x +f y = Round(x + y) 
 

 x ×f y = Round(x × y) 
 

 Basic idea 
 First compute exact result 
 Make it fit into desired precision 
 Possibly overflow if exponent too large 
 Possibly round to fit into frac 
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Rounding 

 Rounding Modes (illustrate with $ rounding) 
 

  $1.40 $1.60 $1.50 $2.50 –$1.50 
 Towards zero $1 $1 $1 $2 –$1 
 Round down (−∞) $1 $1 $1 $2 –$2 
 Round up (+∞)  $2 $2 $2 $3 –$1 
 Nearest Even (default) $1 $2 $2 $2 –$2 
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Closer Look at Round-To-Even 
 Default Rounding Mode 
 Hard to get any other kind without dropping into assembly 
 All others are statistically biased 
 Sum of set of positive numbers will consistently be over- or under- 

estimated 

 
 Applying to Other Decimal Places / Bit Positions 
 When exactly halfway between two possible values 
 Round so that least significant digit is even 

 E.g., round to nearest hundredth 
 1.2349999 1.23 (Less than half way) 
 1.2350001 1.24 (Greater than half way) 
 1.2350000 1.24 (Half way—round up) 
 1.2450000 1.24 (Half way—round down) 
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Rounding Binary Numbers 

 Binary Fractional Numbers 
 “Even” when least significant bit is 0 

 “Half way” when bits to right of rounding position = 100…2 

 
 Examples 
 Round to nearest 1/4 (2 bits right of binary point) 
Value Binary Rounded Action Rounded Value 
2 3/32 10.000112 10.002 (<1/2—down) 2 
2 3/16 10.001102 10.012 (>1/2—up) 2 1/4 
2 7/8 10.111002 11.002 (  1/2—up) 3 
2 5/8 10.101002 10.102 (  1/2—down) 2 1/2 

int->fp 
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FP Multiplication 

 (–1)s1 M1  2E1   x   (–1)s2 M2  2E2 
 Exact Result: (–1)s M  2E 
 Sign s:   s1 ^ s2 
 Significand M:  M1 x  M2 
 Exponent E:  E1 + E2 

 
 Fixing 
 If M ≥ 2, shift M right, increment E 
 If E out of range, overflow  
 Round M to fit frac precision 

 
 Implementation 
 Biggest chore is multiplying significands 
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Floating Point Addition 

 (–1)s1 M1  2E1   +   (-1)s2 M2  2E2 
Assume E1 > E2 

 
 Exact Result: (–1)s M  2E 
Sign s, significand M:  
 Result of signed align & add 

Exponent E:  E1 

 
 Fixing 
If M ≥ 2, shift M right, increment E  
if M < 1, shift M left k positions, decrement E by k 
Overflow if E out of range 
Round M to fit frac precision 

(–1)s1 M1  

(–1)s2 M2  

E1–E2 

+ 
(–1)s M 
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Today: Floating Point 

 Background: Fractional binary numbers 
 IEEE floating point standard: Definition 
 Example and properties 
 Rounding, addition, multiplication 
 Floating point in C 
 Summary 
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Floating Point in C 

 C Guarantees Two Levels 
float single precision 
double double precision 

 Conversions/Casting 
Casting between int, float, and double changes bit representation 
 double/float → int 
 Truncates fractional part 
 Like rounding toward zero 
 Not defined when out of range or NaN: Generally sets to TMin 

 int → double 
 Exact conversion, as long as int has ≤ 53 bit word size 

 int → float 
 Will round according to rounding mode 
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Some implications 

 Order of operations is important 
 3.14+(1e20-1e20) versus (3.14+1e20)-1e20 
 1e20*(1e20-1e20) versus (1e20*1e20)-(1e20*1e20) 

 Compiler optimizations impeded 
 E.g., Common sub-expression elimination 

double x=a+b+c; 

double y=b+c+d; 

 
May not equal 
 
double temp=b+c; 

double x=a+temp; 

double y=temp+d; 
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Floating Point Puzzles 
 For each of the following C expressions, either: 
 Argue that it is true for all argument values 
 Explain why not true • x == (int)(float) x 

• x == (int)(double) x 
• f == (float)(double) f 
• d == (float) d 
• f == -(-f); 
• 2/3 == 2/3.0 
• 2.0/3==2/3.0 
• d < 0.0  ⇒  ((d*2) < 0.0) 
• d > f  ⇒  -f > -d 
• d * d >= 0.0 
• (d+f)-d == f 

int x = …; 
float f = …; 
double d = …; 

Assume neither 
d nor f is NaN 
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Summary 

 IEEE Floating Point has clear mathematical  properties 
 Represents numbers of form M x 2E 
 One can reason about operations independent of 

implementation 
 As if computed with perfect precision and then rounded 

 Not the same as real arithmetic 
 Violates associativity/distributivity 
 Makes life difficult for compilers & serious numerical applications 

programmers 
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More Slides 
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Interesting Numbers 
Description exp frac Numeric Value 
 Zero 00…00 00…00 0.0 
 Smallest Pos. Denorm. 00…00 00…01 2– {23,52} x 2– {126,1022} 
 Single ≈ 1.4 x 10–45 
 Double ≈ 4.9 x 10–324 

 Largest Denormalized 00…00 11…11 (1.0 – ε) x 2– {126,1022} 
 Single ≈ 1.18 x 10–38 
 Double ≈ 2.2 x 10–308 

 Smallest Pos. Normalized 00…01 00…00 1.0 x 2– {126,1022} 
 Just larger than largest denormalized 

 One 01…11 00…00 1.0 
  Largest Normalized 11…10 11…11 (2.0 – ε) x 2{127,1023} 
 Single ≈ 3.4 x 1038 
 Double ≈ 1.8 x 10308 

{single,double} 
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Mathematical Properties of FP Add 

 Compare to those of Abelian Group 
 Closed under addition?    
 But may generate infinity or NaN 

 Commutative? 
 Associative? 
 Overflow and inexactness of rounding 

 0 is additive identity? 
 Every element has additive inverse 
 Except for infinities & NaNs 

 Monotonicity 
 a ≥ b ⇒ a+c ≥ b+c? 
 Except for infinities & NaNs 

Yes 

Yes 

Yes 

No 

Almost 

Almost 
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Mathematical Properties of FP Mult 

 Compare to Commutative Ring 
 Closed under multiplication? 
 But may generate infinity or NaN 

 Multiplication Commutative? 
 Multiplication is Associative? 
 Possibility of overflow, inexactness of rounding 

 1 is multiplicative identity? 
 Multiplication distributes over addition? 
 Possibility of overflow, inexactness of rounding 

 
 Monotonicity 
 a ≥ b  & c ≥ 0  ⇒ a * c ≥ b *c? 
 Except for infinities & NaNs 

Yes 

Yes 
No 

Yes 
No 

Almost 
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Creating Floating Point Number 

 Steps 
 Normalize to have leading 1 
 Round to fit within fraction 
 Postnormalize to deal with effects of rounding 

 
 Case Study 
 Convert 8-bit unsigned numbers to tiny floating point format 
Example Numbers 
128 10000000 
 14 00001101 
 33 00010001 
 35 00010011 
138 10001010 
 63 00111111 

s exp frac 

1 4-bits 3-bits 
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Normalize 

 Requirement 
 Set binary point so that numbers of form 1.xxxxx 
 Adjust all to have leading one 
 Decrement exponent as shift left 

Value Binary Fraction Exponent 
 128 10000000 1.0000000 7 
  14 00001101 1.1010000 3 
  17 00010001 1.0001000 4 
  19 00010011 1.0011000 4 
 138 10001010 1.0001010 7 
  63 00111111 1.1111100 5 

s exp frac 

1 4-bits 3-bits 
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Rounding 

 Round up conditions 
 Round = 1, Sticky = 1 ➙ > 0.5 
 Guard = 1, Round = 1, Sticky = 0 ➙ Round to even 
Value Fraction GRS Incr? Rounded 
 128 1.0000000 000 N   1.000 
 14 1.1010000 100 N   1.101 
 17 1.0001000 010 N   1.000 
 19 1.0011000 110 Y   1.010 
 138 1.0001010 011 Y   1.001 
 63 1.1111100 111 Y 10.000 

1.BBGRXXX 
Guard bit: LSB of result 

Round bit: 1st bit removed 
Sticky bit: OR of remaining bits 
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Postnormalize 

 Issue 
 Rounding may have caused overflow 
 Handle by shifting right once & incrementing exponent 
Value Rounded Exp Adjusted Result 
 128  1.000 7  128 
  14  1.101 3   14 
  17  1.000 4   16 
  19  1.010 4   20 
 138  1.001 7  134  
  63 10.000 5 1.000/6  64 

back 
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