
ANITA’S SUPER AWESOME
RECITATION SLIDES
15/18-213: Introduction to Computer Systems
Memory and Caches, 18 Feb 2013

Anita Zhang, Section M

UP TO SPEED YET?
 Buflab

 Due tomorrow, midnight

 Cachelab
 Out tomorrow, midnight
 Due Thursday, February 28, 2013, midnight

 Labs will be going back to regular Thursday due date
 10 days to get your C skills back up!

THIS AND THAT AND WHAT
 Alignment

 Memory Organization

 Caching

 Buzzword: locality
 Cache organization

 Cachelab

 Part A – Implement a (hardware) cache simulator
 Part B – Efficient matrix transpose
 “Bro, do you even C?” – helpful C stuff

BEFORE WE BEGIN…
 Encouraging Female Reverse Engineers

 Contest to reverse engineer malicious software
 And document it with utmost understanding

 Prize

 Ticket to Symposium on Security for Asia Network
(SysScan)

 Details
 http://addxorrol.blogspot.de/2013/01/encouraging-female-reverse-engineers.html

 Only women can submit (sorry guys)
 One of the judges went to CMU!
 Deadline: 24th of March 2013, 23:59 GMT+1

http://addxorrol.blogspot.de/2013/01/encouraging-female-reverse-engineers.html

BAM! CIRCULAR STACK!

SPARC (scalable processor architecture) Architecture

SUPER BRIEF ON ALIGNMENT
 Structs

 Align according to the largest alignment requirement
 Must be multiple of K (largest alignment requirement)
 System dependent alignments requirements
 Compilers enforce this

 Overall structure length a multiple of K
 Optimize length by declaring largest elements first

 Unions

 Size allocated according to largest element
 Only one field used at a time

QUICK EXAMPLE FROM LECTURE

union U1 {
 char c;
 int i[2];
 double v;
} *up;

struct S1 {
 char c;
 int i[2];
 double v;
} *sp;

c 3 bytes i[0] i[1] 4 bytes v

sp+0 sp+4 sp+8 sp+16 sp+24

c

i[0] i[1]

v

up+0 up+4 up+8

MEMORY HIERARCHY (FROM LECTURE)

Registers

L1 cache
 (SRAM)

Main
memory
(DRAM)

Local secondary
storage

(local disks)

Larger,
slower,
cheaper
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from L1
cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

SRAM VS DRAM
 SRAM

 Faster (L1 Cache: 1 CPU cycle)
 Smaller (L1 in kilobytes; L2 in megabytes)
 More expensive and “energy-hungry”

 DRAM (Main memory)

 Relatively slower (hundreds of CPU cycles)
 Larger (Gigabytes)
 Cheaper

LOCALITY
 Temporal locality

 Recently referenced items are likely
to be referenced again in the near future

 After accessing address X in memory, save the bytes
in cache for future access

 Spatial locality

 Items with nearby addresses tend
to be referenced close together in time

 After accessing address X, save the block of memory
around X in cache for future access

GENERAL CACHING (FROM LECTURE)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

ADDRESS DIVISION IN CACHES
 On the Sharks, addresses are 64-bits
 Dividing a memory address

 Block offset: b bits
 Set index: s bits

CACHES
 A cache is a set of 2s cache sets

 A cache set is a set of E cache lines

 E is called associativity
 If E=1, it is called “direct-mapped”

 Each cache line stores a block

 Each block has 2b bytes

VISUAL CACHE TERMINOLOGY

E = 2e lines per set

S = 2s sets

0 1 2 B-1 tag v

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

CACHE LAB PART A
 Cache Simulator

 Implement for variable s, b, and E values
 Values read in from a trace file (at runtime)

 Least Recently Used (LRU) Policy

 Cache Simulator != Cache
 This simulator does NOT store memory contents
 We do NOT care about block offsets here
 Your goal: implement the policy and count the

number of hits, misses, and evictions

GENERAL SIMULATOR DESIGN HINTS
 A cache is just 2D array of cache lines:

 struct cache_line cache[S][E];

 S = 2s is the number of sets
 E is associativity

 Each cache_line has:

 Valid bit
 Tag
 LRU counter

ANITA’S FAVORITE DATA STRUCTURE
 Linked lists

 “The only data structure you will ever need”
 (Heavily) used in cache and malloc lab
 A lesson on linked list in the credits page

FOOD FOR THOUGHT/ OTHER DESIGNS
 How necessary is the LRU counter?

 We have the power to insert nodes wherever we want
 So why use a counter?

 As a C programmer, implementing a linked list
should be second nature
 5-10 minutes tops
 The same deal every time

 Pointers to each node
 Traversal helper functions
 Making the right checks

CACHELAB PART B
 Efficient matrix transpose

 Goal: Increasing locality via blocking

CACHELAB PART B
 Cache:

 1 kilobytes of cache
 Directly mapped (E=1)
 Block size is 32 bytes (b=5)
 S = 32 sets (s=5)

 Test Matrices:

 32 x 32, 64 x 64, 61 x 67
 You only need to optimize for these sizes

“BRO, DO YOU EVEN C?”
 In this section:

 Warnings are errors
 Headers
 Useful C functions

WARNINGS ARE ERRORS
 Strict compilation flags

 Avoid potential errors that are hard to debug
 Learn good habits from the beginning

 Add “-Werror” to your compilation flags

 DO NOT ignore the compiler errors

WHAT ABOUT HEADERS?
 Remember to include files that we will be using

functions from

 If function declaration is missing
 Find corresponding header files
 unix> man function-name

 Skim the man pages, they’ll tell you what you need to know

FUNCTION 1: GETOPT
 getopt automates parsing elements on the unix

command line
 Typically called in a loop to retrieve arguments
 Use a switch statement to handle options
 Returns -1 when there are no more arguments

 Must include the header file unistd.h

FUNCTION 1: GETOPT
 Switch statement used on the (local) variable

holding the return value from getopt
 Each command line input can be handled separately
 optarg – Points to the value of the option argument

 This is set by the getopt function

 Food for thought
 How do we handle invalid inputs?

FUNCTION 1: GETOPT EXAMPLE
 Suppose we had an executable called “foo”

 Example call from shell: unix> ./foo –x 1

 Next slide: Parsing the argument to the x option
 Notice: We passed in an int which is read as a char *
 We use atoi to convert the string to an int

FUNCTION 1: GETOPT EXAMPLE
int main(int argc, char** argv){
 int opt, x;

 /* looping over arguments */
 while(-1 != (opt = getopt(argc, argv, “x:"))){

 /* determine which argument it’s processing */
 switch(opt) {
 case 'x':
 x = atoi(optarg);
 break;
 default:
 printf(“wrong argument\n");
 break;
 }
 }
}

FUNCTION 2: FSCANF
 The fscanf function is just like scanf

 But it can specify a stream to read from
 scanf always reads from stdin

 Parameters:

 File pointer
 Format string with information on how to read file
 Variable number of pointers to with locations for storing

data from file

 Typically use in a loop until it hits the end of file

 fscanf will be useful in reading from the trace files

FUNCTION 2: FSCANF EXAMPLE
FILE * pFile; // pointer to FILE object

/* open file for reading */
pFile = fopen ("myfile.txt", “r");

int x, y;
char c;

/* read two ints and a char from file */
while(fscanf(pFile, “%d %d %c”, &x, &y, &c) > 0){
 // Do stuff
}

fclose(pFile); // remember to close file when done

FUNCTION 3 AND 4: MALLOC/FREE
 Use malloc to allocate memory on the heap

 Returns a pointer to location in memory

 Always free what you malloc
 Or you’ll suffer from memory leaks

 Example usage:

 int *pointer = malloc(sizeof(int));
 free(pointer);

 DO NOT free memory you didn’t allocate
 This includes double free-ing

STYLE AND TIPS FOR LIFE
 Read the style guideline

 “But I already read it!”
 Good, read it again.

 Check for failures and errors ALWAYS

 Functions don’t always succeed
 What happens when a system call fails?

 Common cases of failure:

 Not checking the return of malloc
 Not handling invalid inputs
 Generally, not checking returns of functions

I STOLE FROM THESE PLACES
 Understanding the SPARC

Architecture
 Wikipedia: Linked Lists
 C Linked List Example
 getopt from GNU
 fscanf from CPlusPlus.com

http://www.sics.se/~psm/sparcstack.html
http://www.sics.se/~psm/sparcstack.html
http://en.wikipedia.org/wiki/Linked_list
http://www.thegeekstuff.com/2012/08/c-linked-list-example/
http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://www.cplusplus.com/reference/cstdio/fscanf/

	ANITA’S SUPER AWESOME�RECITATION SLIDES
	Up to Speed Yet?
	This and That and What
	Before we Begin…
	BAM! Circular Stack!
	Super Brief on Alignment
	Quick Example From Lecture
	Memory Hierarchy (From Lecture)
	SRAM vs DRAM
	Locality
	General Caching (from lecture)
	Address Division in Caches
	Caches
	Visual Cache Terminology
	Cache Lab Part A
	General Simulator Design Hints
	Anita’s Favorite Data Structure
	Food for Thought/ Other Designs
	Cachelab Part B
	Cachelab Part B
	“Bro, Do You Even C?”
	Warnings are Errors
	What About Headers?
	Function 1: getopt
	Function 1: getopt
	Function 1: getopt Example
	Function 1: getopt Example
	Function 2: fscanf
	Function 2: fscanf Example
	Function 3 and 4: malloc/free
	Style and Tips for Life
	I Stole From These Places

