. ANITA’S SUPER AWESOME
® RECITATION SLIDES
15/18-213: Introduction to Computer Systems
° Memory and Caches, 18 Feb 2013

Anita Zhang, Section M

UP TO SPEED YET?
Buflab

Due tomorrow, midnight

Cachelab

Out tomorrow, midnight

Due Thursday, February 28, 2013, midnight
Labs will be going back to regular Thursday due date

10 days to get your C skills back up!

THIS AND THAT AND WHAT

Alignment
Memory Organization

Caching
Buzzword: locality
Cache organization

Cachelab

Part A — Implement a (hardware) cache simulator
Part B — Efficient matrix transpose
“Bro, do you even C?” — helpful C stuff

BEFORE WE BEGIN...

Encouraging Female Reverse Engineers
Contest to reverse engineer malicious software
And document it with utmost understanding

Prize
Ticket to Symposium on Security for Asia Network

(SysScan)

Details

http://addxorrol.blogspot.de/2013/01/encouraging-female-reverse-engineers.html
Only women can submit (sorry guys)

One of the judges went to CMU!

Deadline: 24th of March 2013, 23:59 GMT+1

http://addxorrol.blogspot.de/2013/01/encouraging-female-reverse-engineers.html

BAM! CIRCULAR STACK!

CWT
{curment window)

CWP+]

|'/ wl s / w?.m,:r;hf
_f '___f [IRESTORE,

i . g RETT
! wl ocals |

w5 Joculs

wl Jocals

SPARC (scalable processor architecture) Architecture

SUPER BRIEF ON ALIGNMENT

Structs

Align according to the largest alignment requirement
Must be multiple of K (largest alighment requirement)
System dependent alignments requirements
Compilers enforce this

Overall structure length a multiple of K
Optimize length by declaring largest elements first

Unions
Size allocated according to largest element
Only one field used at a time

QUICK EXAMPLE FROM LECTURE

union Ul {
char c;
int 1[2];
double v;
} *up;

struct S1 {
char c;
int i1[2];
double v;
} *sp;

C

i[0]

i[1]

up+0

up+4

up+8

c i[0]

1[1]

sp+0 sp+4

Sp+8

sp+16

sp+24

MEMORY HIERARCHY (FROM LECTURE)

A
CPU registers hold words retrieved from L1
cache
Smaller, LO:
faster,)
costlier Registers
per byte
L1 cache holds cache lines retrieved from
L1: L1 cache L2 cache
(SRAM)
L2: L2 cache L2 cache holds cache lines retrieved
(SRAM) from main memory
Main Main memory holds disk blocks
L3: memory retrieved from local disks
Larger (DRAM)
slower,
cheaper Local disks hold files
per byte Local secondary retrieved from disks on
storage remote network servers
(local disks)
Remote secondary storage
(tapes, distributed file systems, Web servers)

SRAM vs DRAM

SRAM
Faster (.1 Cache: 1 CPU cycle)
Smaller (L1 1in kilobytes; L2 in megabytes)
More expensive and “energy-hungry”

DRAM (Main memory)
Relatively slower (hundreds of CPU cycles)
Larger (Gigabytes)
Cheaper

LOCALITY

Temporal locality Q

Recently referenced items are likely

to be referenced again in the near future

After accessing address X in memory, save the bytes
1n cache for future access

Spatial locality Y

Items with nearby addresses tend

to be referenced close together in time

After accessing address X, save the block of memory
around X in cache for future access

GENERAL CACHING (FROM LECTURE)

Cache

Memory

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

4 9 10 3
Data is copied in block-sized
10 transfer units
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

ADDRESS DIVISION IN CACHES

On the Sharks, addresses are 64-bits

Dividing a memory address

Block offset: b bits
Set index: s bits

memory address

tag set index block offset

CACHES

A cache 1s a set of 2% cache sets

A cache set 1s a set of E cache lines

E 1s called associativity
If E=1, 1t 1s called “direct-mapped”

Each cache line stores a block
Each block has 2P bytes

VISUAL CACHE TERMINOLOGY

E = 2¢ lines per set
A

Address of word:

t bits s bits | b bits

S = 25 sets < L — A

tag set block
index offset

data begins at this offset

Y] tag OJ1]2] *cc°- B-1

valid bit S~ ~— —
B = 2P bytes per cache block (the data)

CACHE LAB PART A

Cache Simulator

Implement for variable s, b, and E values
o Values read in from a trace file (at runtime)

Least Recently Used (LRU) Policy

Cache Simulator != Cache
This simulator does NOT store memory contents
We do NOT care about block offsets here

Your goal: implement the policy and count the
number of hits, misses, and evictions

GENERAL SIMULATOR DESIGN HINTS

A cache is just 2D array of cache lines:
struct cache line cache[S][E];

S = 28 1s the number of sets
E 1s associativity

Each cache li1ne has:
Valid bit
Tag
LRU counter

ANITA’S FAVORITE DATA STRUCTURE

Linked lists

“The only data structure you will ever need”

(Heavily) used in cache and malloc lab

A lesson on linked list in the credits page

newNode

37

>12] o>

99

._

_>

node

node.next

newNode

37

|

)

12| ¢

node

99

o—

_>

node.next

FOoOoD FOR THOUGHT/ OTHER DESIGNS

How necessary is the LRU counter?

We have the power to insert nodes wherever we want
o So why use a counter?

As a C programmer, implementing a linked list
should be second nature

5-10 minutes tops

The same deal every time
o Pointers to each node

o Traversal helper functions
o Making the right checks

CACHELAB PART B

o Efficient matrix transpose
» Goal: Increasing locality via blocking

CACHELAB PART B

Cache:
1 kilobytes of cache
Directly mapped (E=1)
Block size 1s 32 bytes (b=5)
S = 32 sets (s=5H)

Test Matrices:
32x 32, 64x64, 61x67
You only need to optimize for these sizes

“BRO, DO YOU EVEN C?”

o In this section:
» Warnings are errors
» Headers
o Useful C functions

WARNINGS ARE ERRORS

Strict compilation flags
Avoid potential errors that are hard to debug
Learn good habits from the beginning

Add “-Werror” to your compilation flags

DO NOT ignore the compiler errors

WHAT ABOUT HEADERS?

Remember to include files that we will be using
functions from

If function declaration is missing

Find corresponding header files
unix> man function-name
Skim the man pages, they’ll tell you what you need to know

FUNCTION 1: GETOPT

getopt automates parsing elements on the unix
command line

Typically called in a loop to retrieve arguments

Use a switch statement to handle options

Returns -1 when there are no more arguments

Must include the header file unistd.h

FUNCTION 1: GETOPT

Switch statement used on the (local) variable
holding the return value from getopt

Each command line input can be handled separately

optarg — Points to the value of the option argument
This 1s set by the getopt function

Food for thought

How do we handle invalid inputs?

FUNCTION 1: GETOPT EXAMPLE

Suppose we had an executable called “foo”
Example call from shell: unix> ./foo —x 1

Next slide: Parsing the argument to the x option

Notice: We passed in an int which 1s read as a char *
We use atol to convert the string to an int

FUNCTION 1: GETOPT EXAMPLE

int main(int argc, char** argv){
int opt, X;

/* looping over arguments */
while(-1 = (opt = getopt(argc, argv, “x:"))){

/* determine which argument 1t’s processing */
switch(opt) {
case "X":
X = atoi(optarg);
break;
default:
printf(*“wrong argument\n'');
break;

FUNCTION 2: FSCANF

The fscanft function is just like scanf

But i1t can specify a stream to read from
scanf always reads from stdin

Parameters:
File pointer
Format string with information on how to read file

Variable number of pointers to with locations for storing
data from file

Typically use in a loop until it hits the end of file

fscant will be useful in reading from the trace files

FUNCTION 2: FSCANF EXAMPLE
FILE * pFile; // pointer to FILE object

/* open file for reading */
pFile = fopen ("myfile.txt", “r');

int x, y;
char c;

/* read two 1nts and a char from file */
while(fscanf(pFile, “%d %d %c”, &x, &y, &c) > 0){
// Do stuff

}

fclose(pFile); // remember to close file when done

FUNCTION 3 AND 4: MALLOC/FREE

Use malloc to allocate memory on the heap
Returns a pointer to location in memory

Always free what you mal loc
Or you’ll suffer from memory leaks

Example usage:
Int *pointer = malloc(sizeof(int));
free(pointer);

DO NOT free memory you didn’t allocate
This includes double free-ing

STYLE AND TIPS FOR LIFE

Read the style guideline
“But I already read 1t!”
Good, read 1t again.

Check for failures and errors ALWAYS

Functions don’t always succeed
What happens when a system call fails?

Common cases of failure:
Not checking the return of malloc

Not handling invalid inputs
Generally, not checking returns of functions

I STOLE FROM THESE PLACES

o Understanding the SPARC
Architecture

o Wikipedia: Linked Lists
o C Linked List Example
o getopt from GNU

o fscanf from CPlusPlus.com

http://www.sics.se/~psm/sparcstack.html
http://www.sics.se/~psm/sparcstack.html
http://en.wikipedia.org/wiki/Linked_list
http://www.thegeekstuff.com/2012/08/c-linked-list-example/
http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://www.cplusplus.com/reference/cstdio/fscanf/

	ANITA’S SUPER AWESOME�RECITATION SLIDES
	Up to Speed Yet?
	This and That and What
	Before we Begin…
	BAM! Circular Stack!
	Super Brief on Alignment
	Quick Example From Lecture
	Memory Hierarchy (From Lecture)
	SRAM vs DRAM
	Locality
	General Caching (from lecture)
	Address Division in Caches
	Caches
	Visual Cache Terminology
	Cache Lab Part A
	General Simulator Design Hints
	Anita’s Favorite Data Structure
	Food for Thought/ Other Designs
	Cachelab Part B
	Cachelab Part B
	“Bro, Do You Even C?”
	Warnings are Errors
	What About Headers?
	Function 1: getopt
	Function 1: getopt
	Function 1: getopt Example
	Function 1: getopt Example
	Function 2: fscanf
	Function 2: fscanf Example
	Function 3 and 4: malloc/free
	Style and Tips for Life
	I Stole From These Places

