
ANITA’S SUPER AWESOME

RECITATION SLIDES

15/18-213: Introduction to Computer Systems

Stacks and Buflab, 11 Feb 2013

Anita Zhang, Section M

WHAT’S NEW (OR NOT)

 Style scores for Datalab released

 We tried to be harsh >:D

 Bomblab is due tomorrow night

 Your late days are wasted here

 “If you wait until the last minute, then it only takes a minute!”

 Buflab comes out tomorrow night

 Hacking the stack

 Stacks will be on the exams

 They’re tough at first, but I believe in you 

GIFT FROM ANITA

For those of you who asked:

http://www.contrib.andrew.cmu.edu/~anitazha/15213_tips.html

http://www.contrib.andrew.cmu.edu/~anitazha/15213_tips.html

SOMETHING, SOMETHING MOTIVATION

“In order to support general recursion, a language needs a way to

allocate different activation records for different invocations of the

same function. That way, local variables allocated in one recursive call

can coexist with local variables allocated in a different call.” (credits to

stack overflow)

JOURNEY THROUGH TIME

 Stacks

 IA32 Stack Discipline

 More Stack Stuff

 Stack Walkthrough

 Differences between x86 (IA32) and x86_64

 Buflab Quick Start

 Essential Items of Business

IA32 REGISTERS

 6 general purpose registers

 Caller save

 %eax, %ecx, %edx

 Saved by the caller of a function

 Before a function call, the caller must save any caller save

register values it wants preserved

 Callee save

 %ebx, %edi, %esi

 Saved by the callee of a function

 The callee is required to save and restore the values in

these registers if it is using them in the function

MORE IA32 REGISTERS

 Base Pointer

 %ebp

 Points to the “bottom” of the stack frame

 Stack Pointer

 %esp

 Points to the “top” of the stack

 Instruction Pointer (Program Counter)

 %eip

 Points to the next instruction to be executed

IA32 TERMINOLOGY

Higher addresses

(ie. 0xFFFFFFFF)

“bottom”

%esp “top”

Lower addresses

(ie. 0x00000000)

Direction of

stack

growth

WHAT HAPPENS IN IA32

 Pushing on the stack

 In general, pushl translates to (in AT&T syntax):

 subl $0x4, %esp

movl src, (%esp)

pushl %eax

%esp

%esp

0x15 0x15

0x213

“bottom” “bottom”

WHAT HAPPENS IN IA32

 Popping off the stack

 In general, popl translates to (in AT&T syntax):

 movl (%esp), dest

addl $0x4, %esp

popl %eax

%esp

%esp 0x1000x100

0x213

“bottom”“bottom”

STACK FRAMES WHATCHAMACALLITS?

 Every function call gets a “stack frame”

 All the useful stuff can go on the stack!

 Local variables (scalars, arrays, structs)
 What the compiler couldn’t fit into registers

 Callee/caller save registers

 Temporary variables

 Arguments

 Stacks make recursion work

 Key idea: “Storage for each instance of procedure
call” (stolen out of 15-410 slides)

SO THAT’S WHAT IT LOOKS LIKE…

… Earlier Frames

…

Caller’s frame

Argument n

…

Argument 1

Return Address

Frame Pointer

%ebp
Saved (old) %ebp

Current frame

Saved registers, local

variables, and

temporaries

Stack Pointer

%esp

Argument build area

Increasing

Addresses

STACK FRAMES IN ACTION

C Code Disassembly

int main() {

return addition(5, 6);

}

int addition(int x, int y)

{

return x+y;

}

08048394 <main>:

8048394: 55 push %ebp

8048395: 89 e5 mov %esp,%ebp

8048397: 83 e4 f0 and $0xfffffff0,%esp

804839a: 83 ec 10 sub $0x10,%esp

804839d: c7 44 24 04 06 00 00 movl $0x6,0x4(%esp)

80483a4: 00

80483a5: c7 04 24 05 00 00 00 movl $0x5,(%esp)

80483ac: e8 02 00 00 00 call 80483b3 <addition>

80483b1: c9 leave

80483b2: c3 ret

080483b3 <addition>:

80483b3: 55 push %ebp

80483b4: 89 e5 mov %esp,%ebp

80483b6: 8b 45 0c mov 0xc(%ebp),%eax

80483b9: 8b 55 08 mov 0x8(%ebp),%edx

80483bc: 8d 04 02 lea (%edx,%eax,1),%eax

80483bf: c9 leave

80483c0: c3 ret

BREAKDOWN OF THE EXAMPLE

 Build the arguments (special note: 2 instructions are executed in this example)

In main():

movl $0x6,0x4(%esp)

movl $0x5,(%esp)

0x108

0x104

Before After

%esp = 0x104

%ebp = 0xffffd418

%eip = 804839d

%esp = 0x104

%ebp = 0xffffd418

%eip = 80483ac

0x6
(argument 2)

0x5
(argument 1)

BREAKDOWN OF THE EXAMPLE

 Call the function

call 80483b3 <addition>

0x108

0x104

Before After

%esp = 0x104

%ebp = 0xffffd418

%eip = 80483ac

%esp = 0x100

%ebp = 0xffffd418

%eip = 80483b3

0x100 80483b1
(return address)

0x6
(argument 2)

0x5
(argument 1)

0x6
(argument 2)

0x5
(argument 1)

BREAKDOWN OF THE EXAMPLE

 Stack frame set up for the callee
(special note: 2 instructions are executed in this example)

In addition():

push %ebp

mov %esp,%ebp

0x108

0x104

Before After

%esp = 0x100

%ebp = 0xffffd418

%eip = 80483b3

%esp = 0xFC

%ebp = 0xFC

%eip = 80483b6

0x100 80483b1
(return address)

0x6
(argument 2)

0x5
(argument 1)

0x6
(argument 2)

0x5
(argument 1)

80483b1
(return address)

ffffd418
(ebp for prev. stack frame)

0xFC

BREAKDOWN OF THE EXAMPLE

 Accessing an argument

 In the current frame, arguments are accessed via
references to %ebp
 Upon entry, we could also use %esp to get the arguments

 Notice how argument 1 is at 0x8(%ebp), not 0x4(%ebp)

0x108

0x104

Argument Location

Argument 2 0xC(%ebp)

Argument 1 0x8(%ebp)

0x100

0x6
(argument 2)

0x5
(argument 1)

80483b1
(return address)

ffffd418
(ebp for prev. stack frame)

0xFC

BREAKDOWN OF THE EXAMPLE

…..Stuff happens

(side track about how registers are not on the stack when

they’re pushed, but their values are)

BREAKDOWN OF THE EXAMPLE

 Preparing to return from a function

In addition():

leave

(equivalent to:

movl %ebp, %esp

pop %ebp)

0x108

0x104

Before After

%esp = 0xFC

%ebp = 0xFC

%eip = 80483bf

%esp = 0x100

%ebp = 0xffffd418

%eip = 80483c0

0x100 80483b1
(return address)

0x6
(argument 2)

0x5
(argument 1)

0x6
(argument 2)

0x5
(argument 1)

80483b1
(return address)

ffffd418
(ebp for prev. stack frame)

0xFC

BREAKDOWN OF THE EXAMPLE

 Return from a function

ret

0x108

0x104

Before After

%esp = 0xFC

%ebp = 0xffffd418

%eip = 80483c0

%esp = 0x104

%ebp = 0xffffd418

%eip = 80483b1

0x100

0x6
(argument 2)

0x5
(argument 1)

0x6
(argument 2)

0x5
(argument 1)

80483b1
(return address)

STACKS AND STUFF ON X86_64

 Arguments (<= 6) are passed via registers

 %rdi, %rsi, %rcx, %r8, %r9

 Extra arguments passed via stack!
 IA32 stack knowledge still matters!

 Don’t need %ebp as the base pointer

 Compilers are smarter now

 Overall less stack use

 == Potentially better performance

 64-bit stack discipline is required knowledge

 Even if it’s not tested on labs

AND FLOATING POINT?

 Floating point arguments are complicated

 Out of the scope of this course

 Some chips have a separate floating point stack

 Example of complication: x86_64 stack on

function entry needs to be 16 byte aligned for

floating point

 Many trickies going on

AN ASIDE

 This class is (strictly) x86(_64)

 Other architectures may not always have the same

convention

 May use a combination of registers and stack to call

functions

 May not use stacks at all (???)

 Stacks grow down/ up depending on what is

implemented

 Infinitely confusing to the newly initiated

BUFLAB

 A series of exercises asking you to overflow the stack
and change execution

 A paper on stack corruption
 Smashing the Stack for Fun and Profit

 Incorrect inputs will not hurt your score

 Basic approach
 Examine the C code/disassembly

 objdump -d bufbomb > bufbomb.d

 Write a few lines of (corruption) assembly
 Compile with gcc -m32 -c example.S

 Get the byte codes with objdump -d example.o > example.d

 Feed byte codes into hex2raw, then into bufbomb

http://insecure.org/stf/smashstack.html

BUFLAB

 The writeup contains (pretty much) everything you need to

know about the tools and how to write corruption code

 If you ask a question that is answered in the writeup, I will

be sad

 The other TAs will be sad too, they’re just too manly to

voice it

 The writeup is on Autolab (separate from the tar?)

BUFLAB TOOLS

 ./makecookie andrewID

 Makes a unique “cookie” based on your Andrew ID

 ./hex2raw

 Use the hex generated from assembly to pass raw strings into

bufbomb

 ./bufbomb -t andrewID

 The actual program to attack

 Always pass in with your Andrew ID so your score is logged

A LESSON ON ENDIANNESS

 We’re working with little endian

 Least significant byte is at the lower address

Higher addresses

… Caller stack frame

Return Address

Saved %ebp  %ebp

Saved %ebx

Canary
 Potential way to detect

stack corruption

MSB [7] [6] [5] [4] buf string

(each char is a byte)[3] [2] [1] [0] LSB

…

Lower addresses

STOLEN CREDITS & QUESTIONS SLIDE

 http://xkcd.com/244/

 http://stackoverflow.com/questions/14658612/what-

properties-must-a-language-have-to-support-recursion

 http://www.cs.cmu.edu/~410/lecture.html

 CS:APP p. 220 – Stack Frame Structure

 CS:APP p.263 – Stack Frame with a canary

http://xkcd.com/244/
http://xkcd.com/244/
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://www.cs.cmu.edu/~410/lecture.html
http://www.cs.cmu.edu/~410/lecture.html

