ANITA’S SUPER AWESOME

® RECITATION SLIDES

15/18-213: Introduction to Computer Systems
Py Stacks and Buflab, 11 Feb 2013

Anita Zhang, Section M

WHAT’S NEW (OR NOT)

Style scores for Datalab released
We tried to be harsh >:D

Bomblab is due tomorrow night
Your late days are wasted here
“If you wait until the last minute, then it only takes a minute!”

Buflab comes out tomorrow night
Hacking the stack

Stacks will be on the exams
They’re tough at first, but I believe in you ©

GIFT FROM ANITA

For those of you who asked:

http://www.contrib.andrew.cmu.edu/~anitazha/15213 tips.html

http://www.contrib.andrew.cmu.edu/~anitazha/15213_tips.html

SOMETHING, SOMETHING MOTIVATION

YOUR PARTY ENTERS THE TAVERN.

T GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES
START WHITTLING DICE. AND
GET QUT SOME PARCHMENT
FOR CHARACTER SHEETS.

\ HEY, NO RECURSING.

/

Im

“In order to support general recursion, a language needs a way to
allocate different activation records for different invocations of the
same function. That way, local variables allocated in one recursive call
can coexist with local variables allocated in a different call.” (credits to

stack overflow)

JOURNEY THROUGH TIME

Stacks
TA32 Stack Discipline
More Stack Stuff
Stack Walkthrough
Differences between x86 (IA32) and x86_64

Buflab Quick Start

Essential Items of Business

IA32 REGISTERS

6 general purpose registers

Caller save
%eax, %ecx, %edx
Saved by the caller of a function
Before a function call, the caller must save any caller save
register values it wants preserved
Callee save
%ebx, %ed1, %es1
Saved by the callee of a function

The callee 1s required to save and restore the values in
these registers if it 1s using them in the function

MORE TA32 REGISTERS

Base Pointer
%ebp
Points to the “bottom” of the stack frame

Stack Pointer
%esp
Points to the “top” of the stack

Instruction Pointer (Program Counter)
%elp
Points to the next instruction to be executed

TA32 TERMINOLOGY

Higher addresses
(ie. OxFFFFFFFF)

Direction of
stack
growth

%esp—>

Lower addresses
(1e. 0x00000000)

WHAT HAPPENS IN TA32

o Pushing on the stack

pushl %eax

 —
%esp =2

%esp 2

o In general, pushl translates to (in AT&T syntax):
» subl $0x4, %esp

movl src, (%esp) ‘

WHAT HAPPENS IN TA32

o Popping off the stack

popl %Seax

 —
%esp 2

%esp =2

o In general, popl translates to (in AT&T syntax):

» movl (%esp), dest
addl $0x4, %esp ‘

STACK FRAMES WHATCHAMACALLITS?

Every function call gets a “stack frame”

All the useful stuff can go on the stack!

Local variables (scalars, arrays, structs)
What the compiler couldn’t fit into registers

Callee/caller save registers
Temporary variables
Arguments

Stacks make recursion work

Key 1dea: “Storage for each instance of procedure
call” (stolen out of 15-410 slides)

SO THAT'S WHAT IT LOOKS LIKE...

Earlier Frames

Increasing
Addresses Argument n

Caller’s frame

Argument 1

Return Address

Frame Pointer Saved (old) %ebp

%ebp >
Saved registers, local
variables, and
temporaries
Current frame
Argument build area
Stack Pointer

%esp 2>

STACK FRAMES IN ACTION

C Code

int main() {

return addition (5, 6);

int addition(int x, int y)

{

return x+y;

08048394

8048394:
8048395:
8048397:
804839a:
804839d:
80483a4:
80483a5:
80483ac:
80483bl:
80483b2:

080483b3

80483b3:
80483b4:
80483b6:
80483b9:
80483bc:
80483bf:
80483c0:

<main>:
55
89
83
83
c7
00
c7
e8
c9
c3

e5
e4
ec
44

04
02

<addition>:

55
89
8b
8b
8d
c9
c3

e5
45
55
04

£0
10
24

24
00

Oc
08
02

Disassembly

04 06 00 00

05 00 00 00
00 00

push
mov
and
sub
movl

movl
call
leave
ret

push
mov
mov
mov
lea
leave
ret

%ebp

%esp, $ebp
SOxXfffffFff0,%esp
$0x10, %esp
$0x6,0x4 (%esp)

$0x5, (%esp)
80483b3 <addition>

%ebp

%esp, $ebp

Oxc (%ebp) , $eax

0x8 (%ebp) , $edx
(%edx, %eax,l) ,%eax

BREAKDOWN OF THE EXAMPLE

(@) Build the arguments (special note: 2 instructions are executed in this example)

0x108
In main():

movl $0x6,0x4 ($esp)
movl $0x5, (%esp)

 —

0x104

%esp = 0x104 %esp = 0x104
%ebp = 0xffffd418 %ebp = 0xffffd418
%elp = 804839d %elp = 80483ac

BREAKDOWN OF THE EXAMPLE

o Call the function

0x108

0x104

call 80483b3 <addition>

 —
0x100

%esp = 0x104 %esp = 0x100
%ebp = 0xffffd418 %ebp = 0xffffd418
%elp = 80483ac %eip = 80483b3

BREAKDOWN OF THE EXAMPLE

o Stack frame set up for the callee

(special note: 2 instructions are executed in this example)

0x108

In addition():
push %ebp

mov %esp,%ebs

0x104

0x100

0xFC

%esp = 0x100 %esp = 0xFC
%ebp = Oxffffd418 %ebp = 0xFC
%eip = 80483b3 %eip = 80483b6

BREAKDOWN OF THE EXAMPLE

o0 Accessing an argument

0x104

Argument 2 0xC(%ebp)
0x100
0xFC Argument 1 0x8(%ebp)

o In the current frame, arguments are accessed via
references to %ebp

» Upon entry, we could also use %esp to get the arguments
» Notice how argument 1 is at 0x8(%ebp), not 0x4(%ebp) ‘

BREAKDOWN OF THE EXAMPLE

..... Stuff happens

(side track about how registers are not on the stack when
they’re pushed, but their values are)

BREAKDOWN OF THE EXAMPLE

o Preparing to return from a function

In addition():
leave

0x108

(equivalent to:
movl %ebp, %esp
pop 3ebp)

 —

0x104

0x100

0xFC

%esp = OxFC %esp = 0x100
%ebp = 0xFC %ebp = Oxffffd418

%eip = 80483bf %eip = 80483c0

BREAKDOWN OF THE EXAMPLE

o Return from a function

0x108
0x104

0x100

%esp = 0xFC %esp = 0x104
%ebp = Oxffffd418 %ebp = Oxffffd418
%elp = 80483c0 %elp = 80483b1l

STACKS AND STUFF ON X86 64

Arguments (<= 6) are passed via registers
%rdi, %rsi1, %rex, %r8, %r9

Extra arguments passed via stack!
IA32 stack knowledge still matters!

Don’t need %ebp as the base pointer
Compilers are smarter now

Overall less stack use
== Potentially better performance

64-bit stack discipline 1s required knowledge

Even if it’s not tested on labs

AND FLOATING POINT?

Floating point arguments are complicated
Out of the scope of this course
Some chips have a separate floating point stack

Example of complication: x86_64 stack on
function entry needs to be 16 byte aligned for
floating point

Many trickies going on

AN ASIDE

This class 1s (strictly) x86(_64)

Other architectures may not always have the same
convention

May use a combination of registers and stack to call
functions

May not use stacks at all (?7?)

Stacks grow down/ up depending on what is
1mplemented

Infinitely confusing to the newly initiated

BUFLAB

A series of exercises asking you to overflow the stack
and change execution

A paper on stack corruption
Smashing the Stack for Fun and Profit

Incorrect inputs will not hurt your score

Basic approach
Examine the C code/disassembly
objdump -d bufbomb > bufbomb.d
Write a few lines of (corruption) assembly
Compile with gcc -m32 -c example.S
Get the byte codes with objdump -d example.o > example.d
Feed byte codes into hex2raw, then into bufbomb

http://insecure.org/stf/smashstack.html

BUFLAB

The writeup contains (pretty much) everything you need to
know about the tools and how to write corruption code

If you ask a question that is answered in the writeup, I will

be sad

The other TAs will be sad too, they're just too manly to
voice 1t

The writeup 1s on Autolab (separate from the tar?)

BUFLAB TOOLS

/makecookie andrewlID
Makes a unique “cookie” based on your Andrew ID

Jhex2raw
Use the hex generated from assembly to pass raw strings into

bufbomb

Jbufbomb -t andrewlID
The actual program to attack
Always pass in with your Andrew ID so your score 1s logged

A LESSON ON ENDIANNESS

o We're working with little endian
» Least significant byte is at the lower address

Higher addresses
Caller stack frame
Return Address
Saved %ebp < %ebp
Saved %ebx
< Potential way to detect
Canary .
stack corruption

Lower addresses

STOLEN CREDITS & QUESTIONS SLIDE

o http://xked.com/244/

o http://stackoverflow.com/questions/14658612/what-
properties-must-a-language-have-to-support-recursion

o http://www.cs.cmu.edu/~410/lecture.html
o CS:APP p. 220 — Stack Frame Structure
o CS:APP p.263 — Stack Frame with a canary

http://xkcd.com/244/
http://xkcd.com/244/
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://www.cs.cmu.edu/~410/lecture.html
http://www.cs.cmu.edu/~410/lecture.html

