GIFT FROM ANITA

For those of you who asked:
http://www.contrib.andrew.cmu.edu/~anitazha/15213 tips.html

ANITA’S SUPER AWESOME
® RECITATION SLIDES

15/18-213: Introduction to Computer Systems
° Assembly and GDB, 4 Feb 2013

Anita Zhang, Section M

MANAGEMENT AND WHATNOT

o FAQ: http://www.cs.cmu.edu/~213/fag.html

» Read this before anything else
o It may be updated

» Answers to “Permission denied” errors, etc

o Style: http://www.cs.cmu.edu/~213/codeStyle.html
» Read it, follow it
» Style 1s worth 5-10 points every lab. Don’t lose it.

» .vimrc and .emacs configurations help your style

o TA Feedback: https://www.ugrad.cs.cmu.edu/ta/feedback

» Because we want to make your experience that much better

WHAT’S ON THE AGENDA TODAY?

Books (again)
Motivation

Registers

Assembly Instructions
Bomblab Overview
Bomblab Hints

GDB

Walkthrough

WHAT HAVE YOU READ?

Randal E. Bryant and David R. O'Hallaron,
Computer Systems: A Programmer’s Perspective,
Second Edition, Prentice Hall, 2011

Brian W. Kernighan and Dennis M. Ritchie,
The C Programming Language, Second Edition,
Prentice Hall, 1988

Koenig, Andrew. C Traps and Pitfalls. Reading, MA:
Addison-Wesley, 1988

Kernighan, Brian W., and Rob Pike. The Practice of
Programming. Reading, MA: Addison-Wesley, 1999

WHY ARE WE DOING THIS AGAIN?

BETTER MOTIVATION (..OR NOT)

CHECK 1T oUT! | IrerLuke
AN ELECTRIC 301§ [WERE MissiNG
LONGBOARD! vl "“"'| — | SOMETHING...

*y

i
% SWEET!
y J

-f'_/sgms UPHILL LIKE THIs IS

AMAZING. YERRS OF GLIDING
DOWNHILL AND PUSHING

URHILL, ANDNOW SUDDENLY
IT5 GLIDING BOTH WAYS,

“..".i —
BurT CooING € OR w
PSSEMBLY MAKES YOU

LIFE. SEE, MY
PHILDSCPHY 15—

404! MUCH TIME You WERE
SPENDING ON THE BoRING
PagRTs UNTIL YoU DOn'T HAVE

REGISTERS AND Al

UL, THEM BITS

o Quad = 64 bits

o Doubleword = 32 bits

o Word = 16 bits
o Byte = 8 bits

These are all parts of the same register

WHAT WE'RE WORKING WITH

General Purpose (x86)
Caller Save: %eax, %ecx, %edx

Callee Save: %ebx, %es1, %ed1, %ebp, %esp
x86_ 64 conventions on the next slide

Specials
%elp — 1nstruction pointer
%ebp — frame pointer
%esp — stack pointer

Conditional Flags

Sit in a special register of its own

Carry (CF), Parity (PF), Zero (ZF), Sign (SF), Overflow
(OF) are the ones you need to worry about

X86_64, LOTS OF REGISTERS!

%rax %eax %ax %ah %al Return Value
%rbx %ebx %bx %bh %bl Callee Save
%rex %ecx %cx %ch %cl 4th Argument
%rdx %edx %dx %dh %d1 3'd Argument
%rsi %esi %s1 %sil 2nd Aygument
%rdi %edi %di %dil 1st Argument
%rbp %ebp %bp %bpl Callee Save
%rsp %esp %sp %spl Stack Pointer
%r8 %r8d %r8w %1r8b 5th Argument
%19 %r9d %rIw %1r9b 6th Argument
%r10 %r10d %r10w %r10b Caller Save
%r1l %rlld %rllw %rllb Caller Save
%r12 %r12d %r12w %r12b Callee Save
%r13 %r13d %r13w %r12b Callee Save
%r14 %rl4d %rw %14b Callee Save

%rlb %r15d %rlbw %15b Callee Save

REASONS WHY INTEL IS RIDICULOUS AND AWESOME

Common Addressing Form
Offset(Base, Index, Scale)
D(RDb, R1, S) > Mem[Rb + R1*S + D]
D can be any signed integer

Scaleis 1, 2, 4, 8 (assume 1 if omitted)
Assume O for base if omitted

Examples of parenthesis usage:
(%eax) 2 Contents of memory at address stored 1n %eax

(%ebx, %ecx) 2 Contents of memory stored at the
address in %ebx + %ecx

(%ebx, %ecx, 8) 2 Contents of memory stored at the
address in %ebx + 8*%ecx

REASONS WHY INTEL IS RIDICULOUS AND AWESOME

Operations can take several forms:
Register-to-Register
Register-to-Memory / Memory-to-Register
Immediate-to-Register / Immediate-to-Memory
One address operations (push, pop)
Did I miss any?

PREP FOR ALL THE CHEAT SHEETS

Warning: The following slides contain lots of
assembly instructions.

All from CS:APP (our textbook BTW)

We're not going over every single one...
o Use it as a reference for bomblab

ALL THE CHEAT SHEETS (MOVEMENT)

movb S, D Move byte

movw S, D Move word

movl S, D Move doubleword

movsbw S, D Move byte to word (sign extended)
movsbl S, D Move byte to doubleword (sign extended)
movswl S,D Move word to doubleword (sign extended)
movzbw S,D Move byte to word (zero extended)
movzbl S,D Move byte to doubleword (zero extended)
movzwl S,D Move word to doubleword (zero extended)
pushl S Push double word

popl D Pop double word

ALL THE CHEAT SHEETS (BIT OPS)

LEAL S,D Load effective address of source into destination
INC D D&D+1

DEC D D«D-1

NEG D D&« -D

NOT D D« ~D

ADD S,D D&S+D

SUB S,D D«<S-D

IMUL S,D D&<S*D

XOR S,D D&<S*D

OR S,D D&«<S|D

AND S,D D&S&D

SAL k, D D¢ D<<k

SHL k, D D¢ D<<k

SAR k,D D € D >> k (arithmetic shift)

SHR k,D D € D >> k (logical shift)

ALL THE CHEAT SHEETS (SPECIALS)

Effect

mmull S Signed full multiply of %eax by S
Result stored 1in %edx:%eax

mull S Unsigned full multiply of %eax by S
Result stored in %edx:%eax

cltd Sign extend %eax into %edx

1d1vl S Signed divide of %eax by S

Quotient stored in %eax
Remainder stored in %edx

divl S Unsigned divide of %eax by S
Quotient stored in %eax
Remainder stored 1n %edx

ALL THE CHEAT SHEETS (COMPARISONS)

cmpb S2,S1 Compare byte S1 and S2,
Sets conditional flags based on S1 — S2.

cmpw S2,S1 Compare word S1 and S2,
Sets conditional flags based on S1 — S2.

cmpl S2,S1 Compare double word S1 and S2,
Sets conditional flags based on S1 — S2.

testb S2,S1 Compare byte S1 and S2,
Sets conditional flags based on S1 & S2.

testw S2,S1 Compare word S1 and S2,
Sets conditional flags based on S1 & S2.

testl S2,S1 Compare double word S1 and S2,
Sets conditional flags based on S1 & S2.

sete/ setz

setne/ setnz

sets

setns

setg/ setnle
setge/ setnl
setl/ setnge

setle/ setng

seta/ setnbe
setae/ setnb
setb/ setnae

setbe/ setna

S O

O O g9 o

O O g9 o

ALL THE CHEAT SHEETS (SET)

D & ZF (“set if equal to 07)
D & ~ZF (set if not equal to 0)

D < SF (set if negative)
D € ~SF (set if nonnegative)

D € ~(SF » OF) & ~ZF (set if greater (signed >))

D € ~(SF ~ OF) (set if greater or equal (signed >=))

D € SF » OF (set if less than (signed <))

D €« (SF ~ OF) | ZF (set if less than or equal (signed <=))

D € ~CF & ~ZF (set if above (unsigned >))

D € ~CF (set if above or equal (unsigned >=))

D < CF (set if below (unsigned <))

D €« CF | ZF (set if below or equal (unsigned <=))

ALL THE CHEAT SHEETS (JUMP)

jmp Label Jump to label

jmp *Operand Jump to specified locations

jel jz Label Jump if equal/ zero (ZF)

jne/ jnz Label Jump if not equal/ nonzero (~ZF)

s Label Jump if negative (SF)

jns Label Jump if nonnegative (~SF)

jg/ jnle Label Jump if greater (signed) (~(SF » OF) & ~ZF)
jge/ jnl Label Jump if greater or equal (signed) (~(SF » OF))
jl/ jnge Label Jump if less (signed) (SF » OF)

jle/ jng Label Jump if less or equal (signed) ((SF » OF) | ZF)
ja/ jnbe Label Jump if above (unsigned) (~CF & ~ZF)

jae/ jnb Label Jump if above or equal (unsigned) (~CF)

jb/ jnae Label Jump if below (unsigned) (CF)

jbe/ jna label Jump if below or equal (unsigned) (CF | ZF)

ALL THE CHEAT SHEETS (CMOVE)

cmove/ cmovz

cmovne/ cmovnz

Cmovs

cmovins

cmovg/ cmovnle
cmovge/ cmovnl
cmovl/ cmovnge

cmovle/ cmovg

cmova/ cmovnbe
cmovae/ cmovnb
cmovb/ cmovnae

cmovbe/ cmovna

S, R
S, R

S, R
S, R

S, R
S, R
S, R
S, R

S, R
S, R
S, R
S, R

S < R if Equal/ zero (ZF)
S < R if Not equal/ not zero (~ZF)

S < R if Negative (SF)
S < R if Nonnegative (~SF)

S < R if Greater (signed >) (~(SF * OF) & ~ZF)

S < R if Greater or equal (signed >=) (~(SF * OF))
S < R if Less (signed <) (SF ~ OF)

S < R if Less or equal (signed <=) ((SF ~ OF) | ZF)

S < R if Above (unsigned >) (~CF & ~ZF)

S < R if Above or equal (unsigned >=) (~CF)

S < R if Below (unsigned <) (CF)

S < R if Below or equal (unsigned <=) (CF | SF)

ALL THE CHEAT SHEETS (CALLING)

call Label Push return and jump to label
call *operand Push return and jump to specified location
leave Prepare stack for return. Set stack pointer to

%ebp and pop top stack into %ebp. In assembly
(AT&T syntax of source, destination):

mov %ebp, %esp

pop %ebp

ret Pop return address from stack and jump there

DR. EVIL AND BOMBLAB

6 stages, each asking for input
Wrong input - bomb explodes (lose 1/2 point)
Each stage may have multiple answers

You get:
Bomb executable
Partial source of Dr. Evil mocking you

Speed up next phase traversal with a text file

Place answers on each line
Run with bomb as ./bomb <solution file>

HOW IT WORKS

“But how do I find the solutions if I don’t have C
code to work from?”

Read a lot of bomb disassembly
GDB

If you’re not working on a shark machine, your
bomb won’t work.

See “1llegal host”

WORKING THROUGH THIS THING

Read the disassembly
phase_1, phase_2, phase_3....
explode_bomb
Understand what’s going on

GNU Debugger

Step through each instruction, examine registers..
Set up breakpoints

Make sure to type “kill” when you hit the
explode_bomb breakpoint

You're screwed once you hit here, so why not exit?

BuT I DoN'T KNOW HOW TO GDB??

o Here have a cheat sheet
e http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

» Everything you need to use GDB to solve bomblab

FANCY GDB

OxTEELET7Efels0 140737354128760 OxTEffETTfel60 140737354128760
OxTEELETAESL47 140737351991111 0x32600 206336

OHTEEfffffelch ORTEEfffffelch BxTEEEFfffelT0 OxTEEfFFffely
Gxlf25bc2 32660418 Gx7 7

Ox400788 41596232 0x206 518

Oxd2e2 63db 3538052058 0x98e8dZe263db 169325249514459
0x93%=8didfe466 16832524931 7980 OxTEffETfca700 140737353818208
OxTEEfE7dens49 OxTELEL7ded349 <dl main+49315> 0x206

OxTEfff7dedf49

FANCY GDB COMMANDS

Layout commands split GDB into cool windows
May/ may not lag a lot.
Has a tendency to not work properly sometimes

layout asm
Splits GDB into assembly and GDB command

layout src
Splits GDB into C source and GDB command

layout regs

Splits GDB into register window with either source
or assembly, and GDB command

Arrow, page up/down to traverse layout windows
ctrl+x a to switch back to normal GDB

GETTING STARTED

Download and untar ON A SHARK MACHINE

shark> objdump —d bomb >> disassembly filename
shark> objdump —t bomb >> symbol table filename

shark> strings bomb >> strings filename
shark> gdb bomb

When you have solutions, put it into a text file. Then when
you run gdb next time:

(gdb)> run solution filename

CREDITS & QUESTIONS

o http://stackovertlow.com/questions/757398/what-
are-some-ways-you-can-manage-large-scale-
assembly-language-projects

o http://www.xkecd.com/409/
o P. 274 of CS:APP — x86_64 Registers
oP. 171 - 221 of CS:APP — Assembly Instructions

DEMO TIME

