
GIFT FROM ANITA

For those of you who asked:

http://www.contrib.andrew.cmu.edu/~anitazha/15213_tips.html

ANITA’S SUPER AWESOME

RECITATION SLIDES
15/18-213: Introduction to Computer Systems

Assembly and GDB, 4 Feb 2013

Anita Zhang, Section M

MANAGEMENT AND WHATNOT

� FAQ: http://www.cs.cmu.edu/~213/faq.html

� Read this before anything else

� It may be updated

� Answers to “Permission denied” errors, etc

� Style: http://www.cs.cmu.edu/~213/codeStyle.html

Read it, follow it� Read it, follow it

� Style is worth 5-10 points every lab. Don’t lose it.

� .vimrc and .emacs configurations help your style

� TA Feedback: https://www.ugrad.cs.cmu.edu/ta/feedback

� Because we want to make your experience that much better

WHAT’S ON THE AGENDA TODAY?

� Books (again)

� Motivation

� Registers

� Assembly Instructions

Bomblab Overview� Bomblab Overview

� Bomblab Hints

� GDB

� Walkthrough

WHAT HAVE YOU READ?

� Randal E. Bryant and David R. O'Hallaron,
Computer Systems: A Programmer's Perspective,
Second Edition, Prentice Hall, 2011

� Brian W. Kernighan and Dennis M. Ritchie,
The C Programming Language, Second Edition, The C Programming Language, Second Edition,
Prentice Hall, 1988

� Koenig, Andrew. C Traps and Pitfalls. Reading, MA:
Addison-Wesley, 1988

� Kernighan, Brian W., and Rob Pike. The Practice of
Programming. Reading, MA: Addison-Wesley, 1999

WHY ARE WE DOING THIS AGAIN?

BETTER MOTIVATION (..OR NOT)

REGISTERS AND ALL THEM BITS

%rax – 64 bits

%eax – 32 bits

� Quad = 64 bits

� Doubleword = 32 bits

� Word = 16 bits

� Byte = 8 bits

These are all parts of the same register

%ax – 16 bits

%ah %al

8 bits 8 bits

WHAT WE’RE WORKING WITH

� General Purpose (x86)

� Caller Save: %eax, %ecx, %edx

� Callee Save: %ebx, %esi, %edi, %ebp, %esp

� x86_64 conventions on the next slide

� Specials� Specials

� %eip – instruction pointer

� %ebp – frame pointer

� %esp – stack pointer

� Conditional Flags

� Sit in a special register of its own

� Carry (CF), Parity (PF), Zero (ZF), Sign (SF), Overflow
(OF) are the ones you need to worry about

X86_64, LOTS OF REGISTERS!
64 bits wide 32 bits wide 16 bits wide 8 bits wide 8 bits wide Use

%rax %eax %ax %ah %al Return Value

%rbx %ebx %bx %bh %bl Callee Save

%rcx %ecx %cx %ch %cl 4th Argument

%rdx %edx %dx %dh %dl 3rd Argument

%rsi %esi %si %sil 2nd Argument

%rdi %edi %di %dil 1st Argument

%rbp %ebp %bp %bpl Callee Save

%rsp %esp %sp %spl Stack Pointer

%r8 %r8d %r8w %r8b 5th Argument

%r9 %r9d %r9w %r9b 6th Argument

%r10 %r10d %r10w %r10b Caller Save

%r11 %r11d %r11w %r11b Caller Save

%r12 %r12d %r12w %r12b Callee Save

%r13 %r13d %r13w %r12b Callee Save

%r14 %r14d %rw %14b Callee Save

%r15 %r15d %r15w %15b Callee Save

REASONS WHY INTEL IS RIDICULOUS AND AWESOME

� Common Addressing Form

� Offset(Base, Index, Scale)

� D(Rb, Ri, S) � Mem[Rb + Ri*S + D]

� D can be any signed integer

� Scale is 1, 2, 4, 8 (assume 1 if omitted)

Assume 0 for base if omitted� Assume 0 for base if omitted

� Examples of parenthesis usage:

� (%eax) � Contents of memory at address stored in %eax

� (%ebx, %ecx) � Contents of memory stored at the

address in %ebx + %ecx

� (%ebx, %ecx, 8) � Contents of memory stored at the

address in %ebx + 8*%ecx

REASONS WHY INTEL IS RIDICULOUS AND AWESOME

� Operations can take several forms:

� Register-to-Register

� Register-to-Memory / Memory-to-Register

� Immediate-to-Register / Immediate-to-Memory

� One address operations (push, pop)� One address operations (push, pop)

� Did I miss any?

PREP FOR ALL THE CHEAT SHEETS

� Warning: The following slides contain lots of

assembly instructions.

� All from CS:APP (our textbook BTW)

� We’re not going over every single one…

� Use it as a reference for bomblab� Use it as a reference for bomblab

ALL THE CHEAT SHEETS (MOVEMENT)

Instruction Effect

movb S, D Move byte

movw S, D Move word

movl S, D Move doubleword

movsbw S, D Move byte to word (sign extended)

movsbl S, D Move byte to doubleword (sign extended)

movswl S, D Move word to doubleword (sign extended)

movzbw S, D Move byte to word (zero extended)

movzbl S, D Move byte to doubleword (zero extended)

movzwl S, D Move word to doubleword (zero extended)

pushl S Push double word

popl D Pop double word

ALL THE CHEAT SHEETS (BIT OPS)

Instruction Effect

LEAL S, D Load effective address of source into destination

INC D D � D + 1

DEC D D � D – 1

NEG D D � - D

NOT D D � ~ D

ADD S, D D � S + D

SUB S, D D � S – D

IMUL S, D D � S * D

XOR S, D D � S ^ D

OR S, D D � S | D

AND S, D D � S & D

SAL k, D D � D << k

SHL k, D D � D << k

SAR k, D D � D >> k (arithmetic shift)

SHR k, D D � D >> k (logical shift)

ALL THE CHEAT SHEETS (SPECIALS)

Instruction Effect

imull S Signed full multiply of %eax by S

Result stored in %edx:%eax

mull S Unsigned full multiply of %eax by S

Result stored in %edx:%eax

cltd Sign extend %eax into %edxcltd Sign extend %eax into %edx

idivl S Signed divide of %eax by S

Quotient stored in %eax

Remainder stored in %edx

divl S Unsigned divide of %eax by S

Quotient stored in %eax

Remainder stored in %edx

ALL THE CHEAT SHEETS (COMPARISONS)

Instruction Effect

cmpb S2, S1 Compare byte S1 and S2,

Sets conditional flags based on S1 – S2.

cmpw S2, S1 Compare word S1 and S2,

Sets conditional flags based on S1 – S2.

cmpl S2, S1 Compare double word S1 and S2,cmpl S2, S1 Compare double word S1 and S2,

Sets conditional flags based on S1 – S2.

testb S2, S1 Compare byte S1 and S2,

Sets conditional flags based on S1 & S2.

testw S2, S1 Compare word S1 and S2,

Sets conditional flags based on S1 & S2.

testl S2, S1 Compare double word S1 and S2,

Sets conditional flags based on S1 & S2.

ALL THE CHEAT SHEETS (SET)

Instruction Effect

sete/ setz D D � ZF (“set if equal to 0”)

setne/ setnz D D � ~ZF (set if not equal to 0)

sets D D � SF (set if negative)

setns D D � ~SF (set if nonnegative)

setg/ setnle D D � ~(SF ^ OF) & ~ZF (set if greater (signed >))

setge/ setnl D D � ~(SF ^ OF) (set if greater or equal (signed >=))

setl/ setnge D D � SF ^ OF (set if less than (signed <))

setle/ setng D D � (SF ^ OF) | ZF (set if less than or equal (signed <=))

seta/ setnbe D D � ~CF & ~ZF (set if above (unsigned >))

setae/ setnb D D � ~CF (set if above or equal (unsigned >=))

setb/ setnae D D � CF (set if below (unsigned <))

setbe/ setna D D � CF | ZF (set if below or equal (unsigned <=))

ALL THE CHEAT SHEETS (JUMP)

Instructions Effect

jmp Label Jump to label

jmp *Operand Jump to specified locations

je/ jz Label Jump if equal/ zero (ZF)

jne/ jnz Label Jump if not equal/ nonzero (~ZF)

js Label Jump if negative (SF)js Label Jump if negative (SF)

jns Label Jump if nonnegative (~SF)

jg/ jnle Label Jump if greater (signed) (~(SF ^ OF) & ~ZF)

jge/ jnl Label Jump if greater or equal (signed) (~(SF ^ OF))

jl/ jnge Label Jump if less (signed) (SF ^ OF)

jle/ jng Label Jump if less or equal (signed) ((SF ^ OF) | ZF)

ja/ jnbe Label Jump if above (unsigned) (~CF & ~ZF)

jae/ jnb Label Jump if above or equal (unsigned) (~CF)

jb/ jnae Label Jump if below (unsigned) (CF)

jbe/ jna label Jump if below or equal (unsigned) (CF | ZF)

ALL THE CHEAT SHEETS (CMOVE)

Instruction Effect

cmove/ cmovz S, R S � R if Equal/ zero (ZF)

cmovne/ cmovnz S, R S � R if Not equal/ not zero (~ZF)

cmovs S, R S � R if Negative (SF)

cmovns S, R S � R if Nonnegative (~SF)

cmovg/ cmovnle S, R S � R if Greater (signed >) (~(SF ^ OF) & ~ZF)

cmovge/ cmovnl S, R S � R if Greater or equal (signed >=) (~(SF ^ OF))

cmovl/ cmovnge S, R S � R if Less (signed <) (SF ^ OF)

cmovle/ cmovg S, R S � R if Less or equal (signed <=) ((SF ^ OF) | ZF)

cmova/ cmovnbe S, R S � R if Above (unsigned >) (~CF & ~ZF)

cmovae/ cmovnb S, R S � R if Above or equal (unsigned >=) (~CF)

cmovb/ cmovnae S, R S � R if Below (unsigned <) (CF)

cmovbe/ cmovna S, R S � R if Below or equal (unsigned <=) (CF | SF)

ALL THE CHEAT SHEETS (CALLING)

Instruction Effect

call Label Push return and jump to label

call *operand Push return and jump to specified location

leave Prepare stack for return. Set stack pointer to

%ebp and pop top stack into %ebp. In assembly

(AT&T syntax of source, destination):(AT&T syntax of source, destination):

mov %ebp, %esp

pop %ebp

ret Pop return address from stack and jump there

DR. EVIL AND BOMBLAB

� 6 stages, each asking for input

� Wrong input � bomb explodes (lose 1/2 point)

� Each stage may have multiple answers

� You get:� You get:

� Bomb executable

� Partial source of Dr. Evil mocking you

� Speed up next phase traversal with a text file

� Place answers on each line

� Run with bomb as ./bomb <solution file>

HOW IT WORKS

� “But how do I find the solutions if I don’t have C

code to work from?”

� Read a lot of bomb disassembly

� GDB

� If you’re not working on a shark machine, your

bomb won’t work.

� See “illegal host”

WORKING THROUGH THIS THING

� Read the disassembly

� phase_1, phase_2, phase_3….

� explode_bomb

� Understand what’s going on

� GNU Debugger

� Step through each instruction, examine registers..

� Set up breakpoints

� Make sure to type “kill” when you hit the

explode_bomb breakpoint

� You’re screwed once you hit here, so why not exit?

BUT I DON’T KNOW HOW TO GDB??

� Here have a cheat sheet

� http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

� Everything you need to use GDB to solve bomblab

FANCY GDB

FANCY GDB COMMANDS

� Layout commands split GDB into cool windows

� May/ may not lag a lot.

� Has a tendency to not work properly sometimes

� layout asm

� Splits GDB into assembly and GDB commandSplits GDB into assembly and GDB command

� layout src

� Splits GDB into C source and GDB command

� layout regs

� Splits GDB into register window with either source
or assembly, and GDB command

� Arrow, page up/down to traverse layout windows

� ctrl+x a to switch back to normal GDB

GETTING STARTED

� Download and untar ON A SHARK MACHINE

� shark> objdump –d bomb >> disassembly filename

� shark> objdump –t bomb >> symbol table filename

� shark> strings bomb >> strings filename� shark> strings bomb >> strings filename

� shark> gdb bomb

� When you have solutions, put it into a text file. Then when

you run gdb next time:

� (gdb)> run solution filename

CREDITS & QUESTIONS

� http://stackoverflow.com/questions/757398/what-

are-some-ways-you-can-manage-large-scale-

assembly-language-projects

� http://www.xkcd.com/409/

� P. 274 of CS:APP – x86_64 Registers� P. 274 of CS:APP – x86_64 Registers

� P. 171 - 221 of CS:APP – Assembly Instructions

DEMO TIME

