Floating point & Datalab

15-213 (18-213): Introduction to Computer Systems

Recitation 3, Jan. 28 2013

Jimmy Guo, Section H

FAQ page

- http://www.cs.cmu.edu/~213/faq.html
- **■** General/assignment issues
 - E.g. Why do I get "permission denied" error?
 - Read through before you ask questions
 - Check back for any future update

Outline

- Integer
- IEEE floating point
 - Overview
 - Examples
- Datalab
- Questions

Integers

■ Power-of-2 Multiply/Divide with shift

- Multiply
 - Left shift by k
- Divide
 - Negative number needs bias
 - (x + (1 << k) 1) >> k

Representation in memory

- Big Endian vs. Little Endian
- Keep in mind when doing Bomblab

Floating point

Encoding

- Sign
 - Symmetric on axis (thus there are both +0 and -0)
- Exponent
 - 3(normalized, denormalized, special) cases based on exp
 - More bits --> wider range
- Fraction (Mantissa)
 - Implied leading 1 (for normalized number)
 - More bits --> higher precision

Floating point

Bias

■ Bias = 2^{k-1} -1, where k is number of exponent bits

■ Normalized vs. Denormalized

exp?

Implied leading 1
vs. Implied leading 0

• $E = \exp - Bias$ vs. E = 1 - Bias

Denser nearer the origin vs. evenly spaced

■ Special case (exp = 111...1)

- Infinity
- NaN

Floating point

Rounding

- Round to even
- Why?
 - Avoid statistical bias
- How?
 - 1.1011 (All round to nearest 1/4)
 - **1.1010**
 - **1.0101**
 - **1.1110**

Addition & Multiplication

- Associativity/distributivity may not hold
 - 3.14 + (1e20 1e20) *vs.* (3.14 + 1e20) 1e20

1.a Consider the following 5-bit floating point representation based on the IEEE floating point format. This format does not have a sign bit – it can only represent nonnegative numbers.

- There are k = 3 exponent bits.
- There are n = 2 fraction bits.

What is the...

- Bias?
- The largest denormalized number?
- The smalleset normalized number?
- Largest finite number it can represent?
- Smallest non-zero value it can represent?

1.b For the same problem, you are given some decimal values below, and your task it to encode them in floating point format. In addition, you should give the rounded value of the encoded floating point number.

Value	Floating Point Bits	Rounded value
9/32	001 00	1/4
3		
9		
3/16		
15/2		

1.b For the same problem, you are given some decimal values below, and your task it to encode them in floating point format. In addition, you should give the rounded value of the encoded floating point number.

Value	Floating Point Bits	Rounded value
9/32	001 00	1/4
3	100 10	3
9	110 00	8
3/16	000 11	3/16
15/2	110 00	8

2. Consider the following two 7-bit floating point representation based on the IEEE floating point format. Neither has a sign bit – they can only represent nonnegative numbers.

Format A

- There are k = 3 exponent bits. The exponent bias is 3.
- There are n = 4 fraction bits.

Format B

- There are k = 4 exponent bits. The exponent bias is 7.
- There are n = 3 fraction bits.

Convert these bit patterns to the closest value in Format B.

Format A	<u>Format B</u>
011 0000	0111 000
101 1110	
010 1001	
110 1111	
000 0001	

2. Consider the following two 7-bit floating point representation based on the IEEE floating point format. Neither has a sign bit – they can only represent nonnegative numbers.

Format A

- There are k = 3 exponent bits. The exponent bias is 3.
- There are n = 4 fraction bits.

Format B

- There are k = 4 exponent bits. The exponent bias is 7.
- There are n = 3 fraction bits.

Convert these bit patterns to the closest value in Format B.

	<u>Format B</u>	Format A
	0111 000	011 0000
	1001 111	101 1110
Round down	0110 100	010 1001
Round up	1011 000	110 1111
Denorm -> norm	0001 000	000 0001

Datalab Tips

Operator precedence

z = x << 2 + y?

Edge cases

- 0? T_{min}?
- Shift by 32? (Undefined behavior!)

■ SubOK()?

Use bddcheck & driver.pl

- Test thoroughly and provide more details on failure
- Please do that early to avoid any grading surprise
- Declare variables at very beginning of each function

Questions?