
15213 Recitation 1

In case you didn’t get it (or you were
too lazy to check)

• Class Web page: http://www.cs.cmu.edu/~213
• No Blackboard, no Piazza
• Questions? Email 15‐213‐staff@cs.cmu.edu
• Office hours: MTWR, 5:30‐8:30pm, WeH 5207
• Need help? 1:1 appointments available
• Sharks Machines: ssh shark.ics.cs.cmu.edu

Fun Stuff
• 7 labs, 1 midterm, 1 final
• Labs 1-6 are individual. Lab 7 is a partner lab.
• All assignments due 11:59 pm on their respective

due dates
• Conflicts – talk to us AHEAD of time
• Grade appeals only good for 7 days after grade

release – formal procedures in syllabus
• 5 grace days, max of 2 per lab
• No grace days? 15% per day penalty afterwards
• No handin after 3 late days

Just in case

• Cheating is bad
• Don’t cheat
• Cheating is bad

Bits/Bytes/Ints Overview

• Integers stored in binary representation
• Byte = 8 bits

Different Bases

• Decimal: 10010 = 10010

• Binary: 10010 = 11001002

• Hexadecimal: 10010 = 6416

Data Representations
C Data Type Typical 32-bit Intel IA32 x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 4 8

long long 8 8 8

float 4 4 4

double 8 8 8

long double 8 10/12 10/16

pointer 4 4 8

Boolean Algebra

• AND, OR, NOT, XOR
• Nice figures on slides on website

Representing Sets

• Width w bit vector represents subset of
{0,1,…, w-1}

• 11011 = {0,1,3,4}
• 0101 = {0,2}

Bit-Level Operators

• AND = &
• OR = |
• NOT = ~
• XOR = ^
• Applies to integer types: char, short, int, etc
• ~0x0 = 0xF
• 0x4 | 0x6 = 0x6
• 0xA & 0X6 = 0X2

Logical Operators
• AND = &&
• OR = ||
• NOT = !
• 0 = “False”
• Nonzero = “True”
• (!0x0) = 0x1
• (!0x4) = 0x0
• 0xBEEF && OxDEAF = 0x1
• 0xFEED && 0xDEED = 0x1
• Short-circuit. If second expression does not need to be calculated,

the machine does not. For example, if c = 0,
– (++c || ++c)
– Value of expression above is 0, but c is now 1, not 2

Fun Fact to Keep You From Insanity

• && and & are NOT the same thing. && applies
to logical expression while & applies to bit (or
bitwise vectors)

• Similarly for || & |
• If funny stuff is happening in controls, check

your conditionals for these mistakes

Shifts

• Left shift: x << y. Shift bit vector x left by y
positions. Discard the extra bits on the left. Fill
new bits on right with 0’s

• Right shift: x >> y. Shift bit vector x right by y
positions. Discard extra bits on right.
– Logical: Fill new bits on left with 0’s
– Arithmetic: Fill new bits on left with most

significant bit of x
• If y < 0 or y >= word size, undefined behavior

Encoding Integers

• int =/= integers
• Unsigned: = ∑ 2
• Signed: = −2 + ∑ 2
• Sign bit: most significant bit indicates sign for

two’s complement numbers
– 0 for non-negative
– 1 for negative

Two’s Complement

• -x = ~x + 1
• x = 000001102 = 6
• ~x = 111110012 = -7
• -x = 111110102 = -6

Range

• Unsigned
– = 0 = 000…000
– = 2 − 1 = 111…111

• Signed
– = −2 = 100…000
– = 2 − 1 = 011…111 `

Casting

• The small details are on the website pdf
• Main points to take away:

– There is a unique nice bijective mapping between
signed and unsigned words

– Bit pattern maintained, only reinterpreted

More fun fact to save you from
insanity

• In expressions mixing ints and unsigned ints,
ints are casted to unsigned ints first!
– (unsigned) 0 > (signed -1) returns 0 (false)

• :O

Expanding

• Unsigned: 0s added
• Signed: sign extension
• Both yield expected results

Truncating

• Unsigned/signed: bits truncated
• Results reinterpreted
• Unsigned: mod operation
• Signed: similar to mod

Addition

• Unsigned:
– Ignore carry: addition modulo 2
– (unsigned char): 240 + 56 = 40

• Signed
– Again ignore carry and treat remaining number as

signed
– (signed char): 127 + 1 = -1

Multiplication

• Similar rule of addition apply

Lab 1: Data Lab

• Not a very hard lab
• Still, start early to prepare for any unforeseen

issues with code/Autolab/Shark/Andrew/The
World

• More fun facts to save you from insanity:
– Declare all your variables at the very beginning of

each function, or the dlc will cause you much pain.
– Work on the shark machines. Or else the dlc may

not work and cause you much pain.

Tips for Starting Off 15213

Shark Machines
• Use SSH to login to the machines. You can pick

which shark you like.
– Choose your favorite shark: angelshark, bambooshark,

baskingshark, blueshark , carpetshark , catshark ,
hammerheadshark, houndshark, lemonshark,
makoshark

– Then login to the host, replacing (shark) with your
favorite shark: (shark).ics.cs.cmu.edu

• If you are ambivalent, or indifferent, or
indiscriminant, you can simply login to the
following host:
– shark.ics.cs.cmu.edu

Get a REAL Operating System
• How to login to the Shark machines

– If you’re on linux, use the following command in terminal
• ssh <andrew id>@<shark>.ics.cs.cmu.edu
• Replace <andrew id> with your Andrew ID
• Replace shark with your favorite shark

– If you’re on a Mac, get a REAL operating system. Like
Ubuntu. Or Arch. Or Debian. Or follow the same command
above.

– If you’re on a Windows, get a REAL operating system. Like
Ubuntu. Or Arch. Or Debian. Or:

• Get Putty for free online
• Type the host name into the host name box (demo needed?)
• Connect, and enter password when prompted

Running make

• On linux or Mac, in the directory in which you
extracted your lab handout, simply run make
to “make” and build your files.
– cd lab_directory
– make

GCC

• Compile C code
• gcc –o <executable name> -Wall –Werror <.o

files> <.h files> <.c files>
• gcc –c –o <object name> -Wall –Werror

<.hfiles> <.cfiles>

Coding

• 80 characters per line – we will check! And
deduct style points.

• Make your variables meaningful. Bad variable
names are a, b, c, temp, tmp, fat (unless you
are measuring fat content of some substance)

Productivity

• Use vim, emacs, gedit, nano, pico, notepad+
• You could also use Wordpad, Microsoft Word,

OpenOffice, LibreOffice.
– Hint: Don’t

• Syntax Highlighting is good
• Compile and test your code on your machine!

Don’t repeatedly submit to Autolab. It’s slow
for you and for us and for everybody else.

