15213 Recitation 1

In case you didn’t get it (or you were
too lazy to check)

Class Web page: http://www.cs.cmu.edu/~213

No Blackboard, no Piazza

Questions? Email 15-213-staff@cs.cmu.edu
Office hours: MTWR, 5:30-8:30pm, WeH 5207
Need help? 1:1 appointments available
Sharks Machines: ssh shark.ics.cs.cmu.edu

Fun Stuff

7 labs, 1 midterm, 1 final
Labs 1-6 are individual. Lab 7 is a partner lab.

All assignments due 11:59 pm on their respective
due dates

Conflicts — talk to us AHEAD of time

Grade appeals only good for 7 days after grade
release — formal procedures in syllabus

5 grace days, max of 2 per lab
No grace days? 15% per day penalty afterwards
No handin after 3 late days

Just In case

 Cheating is bad
e Don’t cheat
 Cheating is bad

Bits/Bytes/Ints Overview

e Integers stored in binary representation
e Byte = 8 bits

Different Bases

* Decimal: 100,, = 100,,
* Binary: 100,, =1100100,
* Hexadecimal: 100,, = 64

Data Representations

C Data Type Typical 32-bit M x86-64

char 1 1 1
short 2 2 2
int 4 4 4
long 4 4 8
long long 8 8 8
float 4 4 4
double 8 8 8
long double 8 10/12 10/16
pointer 4 4 8

Boolean Algebra

e AND, OR, NOT, XOR
* Nice figures on slides on website

Representing Sets

e Width w bit vector represents subset of
{0,1,..., w-1}

e 11011 =1{0,1,3,4}
e 0101 ={0,2}

Bit-Level Operators

AND = &

OR = |

NOT =~

XOR =~

Applies to integer types: char, short, int, etc
~0x0 = OxF

Ox4 | Ox6 = 0x6

OxA & 0X6 = 0X2

Logical Operators

AND = &&

OR = ||

NOT = |

0 = “False”
Nonzero = “True”
(10x0) = Ox1
(10x4) = Ox0

OxBEEF && OxDEAF = Ox1
OXFEED && OxDEED = 0x1

Short-circuit. If second expression does not need to be calculated,
the machine does not. For example, if c =0,

— (++c || ++c)
— Value of expression above is 0, but cis now 1, not 2

Fun Fact to Keep You From Insanity

e && and & are NOT the same thing. && applies
to logical expression while & applies to bit (or
bitwise vectors)

Similarly for | | &

If funny stuff is happening in controls, check
your conditionals for these mistakes

Shifts

o Left shift: x <<vy. Shift bit vector x left by y
positions. Discard the extra bits on the left. Fill
new bits on right with 0’s

e Right shift: x >>v. Shift bit vector x right by y
positions. Discard extra bits on right.
— Logical: Fill new bits on left with 0’s

— Arithmetic: Fill new bits on left with most
significant bit of x

e [fy<0ory>=wordsize, undefined behavior

Encoding Integers

int =/= integers

Unsigned: B2U(X) = Y%t x; 2

Signed: B2T(X) = —2W~1 + YW 2 x; 2

Sign bit: most significant bit indicates sign for
two’s complement numbers

— 0 for non-negative
— 1 for negative

Two’s Complement

-X="X+1

x = 00000110, =6
~x=11111001, =-7
-x=11111010, = -6

Range

* Unsigned
— UMin =0 = 000 ...000,
~UMax =2% —1= 111..111,
e Signed
— TMin = —-2%¥"1 = 100...000,
—TMax =2""1—-1= 011..111,

Casting

 The small details are on the website pdf
 Main points to take away:

— There is a unique nice bijective mapping between
sighed and unsigned words

— Bit pattern maintained, only reinterpreted

More fun fact to save you from
Insanity

e [n expressions mixing ints and unsigned ints,
ints are casted to unsigned ints first!
— (unsigned) 0 > (signed -1) returns O (false)
e :0

Expanding

e Unsigned: Os added
e Signed: sigh extension
* Both yield expected results

Truncating

Unsigned/signed: bits truncated
Results reinterpreted

Unsigned: mod operation
Signed: similar to mod

Addition

e Unsigned:
— Ignore carry: addition modulo 2%
— (unsigned char): 240 + 56 = 40

e Signed

— Again ignore carry and treat remaining number as
signhed
— (signed char): 127 +1=-1

Multiplication

e Similar rule of addition apply

Lab 1: Data Lab

 Not a very hard lab

e Still, start early to prepare for any unforeseen
issues with code/Autolab/Shark/Andrew/The
World

e More fun facts to save you from insanity:

— Declare all your variables at the very beginning of
each function, or the dlc will cause you much pain.

— Work on the shark machines. Or else the dlc may
not work and cause you much pain.

Tips for Starting Off 15213

Shark Machines

e Use SSH to login to the machines. You can pick
which shark you like.

— Choose your favorite shark: angelshark, bambooshark,
baskingshark, blueshark , carpetshark , catshark,
hammerheadshark, houndshark, lemonshark,
makoshark

— Then login to the host, replacing (shark) with your
favorite shark: (shark).ics.cs.cmu.edu
e |f you are ambivalent, or indifferent, or
indiscriminant, you can simply login to the
following host:

— shark.ics.cs.cmu.edu

Get a REAL Operating System

e How to login to the Shark machines

— If you’re on linux, use the following command in terminal
e ssh <andrew id>@<shark>.ics.cs.cmu.edu
e Replace <andrew id> with your Andrew ID
* Replace shark with your favorite shark

— If you’re on a Mac, get a REAL operating system. Like
Ubuntu. Or Arch. Or Debian. Or follow the same command
above.

— If you’re on a Windows, get a REAL operating system. Like
Ubuntu. Or Arch. Or Debian. Or:
e Get Putty for free online
e Type the host name into the host name box (demo needed?)
e Connect, and enter password when prompted

Running make

 On linux or Mac, in the directory in which you
extracted your lab handout, simply run make
to “make” and build your files.

— cd lab_directory

— make

GCC

e Compile C code

e gcc —o <executable name> -Wall —Werror <.0
files> <.h files> <.c files>

e gcc —C —0 <object name> -Wall —Werror
<.hfiles> <.cfiles>

Coding

e 80 characters per line — we will check! And
deduct style points.

 Make your variables meaningful. Bad variable
names are a, b, ¢, temp, tmp, fat (unless you
are measuring fat content of some substance)

Productivity

Use vim, emacs, gedit, nano, pico, notepad+

You could also use Wordpad, Microsoft Word,
OpenOffice, LibreOffice.

— Hint: Don’t
Syntax Highlighting is good
Compile and test your code on your machine!

Don’t repeatedly submit to Autolab. It’s slow
for you and for us and for everybody else.

