
Carnegie Mellon

1

Threading + Proxy II

15/18-213
Recitation 13
4/15/2013



Carnegie Mellon

2

Outline

 Proxy
 Due Thursday, April 25th

 No late/penalty days

 Absolute last time to turn in is April 25th, 11:59 PM

 Threading



Carnegie Mellon

3

Proxy - Functionality

 Should work on vast majority of sites
 Reddit, Vimeo, CNN, YouTube, etc.

 Some features of sites which require the POST operation (sending 
data to the website), will not work

 Logging in to websites, sending Facebook messages

 Cache previous requests

 Use LRU eviction policy

 Must allow for concurrent reads

 Details in write up



Carnegie Mellon

4

Proxy - Partner

 Allowed to work with a partner
 Highly encouraged

 No difference in grading vs. solo work

 Sign-up on Autolab

 Collaborating

 Splitting up work

 Proxy and cache can be done independently...

 Use Git for version control



Carnegie Mellon

5

Git

 What is Git?
 Version control software

 Easily collaborate/update shared project
 Can roll back to previous version if needed

 Already installed on Andrew machines

 Set up a repo on GitHub, BitBucket, or AFS
 Make sure only you and your partner can access it!

 Using Git
 git pull

 git add .

 git commit -m “I changed something”

 git push



Carnegie Mellon

6

Multi-threaded Cache

 Why?
 Sequential cache would bottleneck parallel proxy

 Multiple threads can read cached content safely

 Search cache for the right data and return it

 Two threads can read from the same cache block

 But what about writing content?

 Overwrite block while another thread reading?

 Two threads writing to same cache block?



Carnegie Mellon

7

Read-Write Lock

 Cache can be read in parallel safely

 If thread is writing, no other thread can read or write

 If thread is reading, no other thread can write

 Potential issues
 Writing starvation

 If threads always reading, no thread can write

 Fix: if a thread is waiting to write, it gets priority over 
any new threads trying to read

 How can we lock out threads?



Carnegie Mellon

8

Mutexes & Semaphores

 Mutexes
 Allow only one thread to run code section at a time

 If other threads are trying to run the code, they will wait

 Semaphores

 Allows a fixed number of threads to run the code

 Mutexes are a special case of semaphores, where the 
number of threads=1

 Examples will be done with semaphores to illustrate



Carnegie Mellon

9

N^2

 Let's write a program!
 Spawns N threads

 Each thread stores the current value of a global 
variable, adds 1 to that value N times, then writes the 
result back into the global

 After the threads have finished running, print the global

 It should be N^2



Carnegie Mellon

10

N^2 – No Semaphores



Carnegie Mellon

11

N^2 – No Semaphores - Output



Carnegie Mellon

12

What went wrong?

 Read-write racing!
 What should happen:

 Thread 1: read global=0 into globLoc

 Thread 1: add 1000 to globLoc

 Thread 1: write global=globLoc=1000

 Thread 2: read global=1000...

 What actually happened:

 Thread 1: read global=0 into globLoc

 Thread 2: read global=0 into globLoc

 ...



Carnegie Mellon

13

Fixing N^2 with Semaphores

 Let's give each thread a read/write mutex to global
 Will ensure each thread reads/writes the correct value

 Note: in this example, this will cause the code to essentially 
run sequentially, and thread overhead will actually give 
worse performance compared to a sequential solution



Carnegie Mellon

14

N^2 - Semaphores



Carnegie Mellon

15

N^2 – Semaphores - Output



Carnegie Mellon

16

Read-Write Locks Cont.

 How would you make a read-write lock with semaphores?
 Luckily, you don't have to!

 pthread_rwlock_* handles that for you

 pthread_rwlock_t lock;

 pthread_rwlock_init(&lock,NULL);

 pthread_rwlock_rdlock(&lock);

 pthread_rwlock_wrlock(&lock);

 pthread_rwlock_unlock(&lock);



Carnegie Mellon

17

Proxy

 Your proxy must be robust
 Cannot crash for any malformed/bad input

 Assume the user is an idiot

 Be wary of malformed web addresses, and in general, 
requests

 Memory management

 Free what you malloc

 Webservers like proxy will run for a long time, and 
memory leaks will actually add up



Carnegie Mellon

18

Proxy

 Test extensively!
 There is no autograded feedback for Proxy

 Use your proxy with Firefox for visual feedback

 Try everything you can think of to break your program

 If you have questions about what should/shouldn't be 
working on your proxy, come talk to us

 Start early

 Not as time-consuming as malloc

 Collaborating can be difficult

 Test extensively!


