Carnegie Mellon

Threading + Proxy Il

15/18-213
Recitation 13
4/15/2013

Carnegie Mellon

Outline

m Proxy
= Due Thursday, April 25th
= No late/penalty days
= Absolute last time to turn in is April 25%", 11:59 PM

m Threading

Carnegie Mellon

Proxy - Functionality

m Should work on vast majority of sites
= Reddit, Vimeo, CNN, YouTube, etc.

= Some features of sites which require the POST operation (sending
data to the website), will not work
—- Logging in to websites, sending Facebook messages

m Cache previous requests
= Use LRU eviction policy

= Must allow for concurrent reads

= Details in write up

Carnegie Mellon

Proxy - Partner

m Allowed to work with a partner
=« Highly encouraged

= No difference in grading vs. solo work
= Sign-up on Autolab
B Collaborating
= Splitting up work
= Proxy and cache can be done independently...

= Use Git for version control

Carnegie Mellon
Git

m What is Git?
= \/ersion control software

Easily collaborate/update shared project
— Can roll back to previous version if needed

Already installed on Andrew machines

Set up a repo on GitHub, BitBucket, or AFS
— Make sure only you and your partner can access it!

m Using Git
= git pull
= gitadd.
= git commit -m “l changed something”
= gijt push

Multi-threaded Cache

m Why?
= Sequential cache would bottleneck parallel proxy

= Multiple threads can read cached content safely

= Search cache for the right data and return it

= Two threads can read from the same cache block
=« But what about writing content?

= Overwrite block while another thread reading?

= Two threads writing to same cache block?

Carnegie Mellon

Read-Write Lock

Cache can be read in parallel safely
If thread is writing, no other thread can read or write

|
|
m If thread is reading, no other thread can write
|

Potential issues
« Writing starvation

= |f threads always reading, no thread can write

« Fix: if a thread is waiting to write, it gets priority over
any new threads trying to read

B How can we lock out threads?

Carnegie Mellon

Mutexes & Semaphores

B Mutexes
= Allow only one thread to run code section at a time

= |f other threads are trying to run the code, they will wait

B Semaphores

= Allows a fixed number of threads to run the code

= Mutexes are a special case of semaphores, where the
number of threads=1

« Examples will be done with semaphores to illustrate

Carnegie Mellon

B Let's write a program!
= Spawns N threads

= Each thread stores the current value of a global
variable, adds 1 to that value N times, then writes the
result back into the global

= After the threads have finished running, print the global
= |t should be N2

Carnegie Mellon

NA2 — No Semaphores

b L R3O}

10

NA2 — No Semaphores - Output

11

Carnegie Mellon

What went wrong?

B Read-write racing!
= What should happen:

= Thread 1: read global=0 into globLoc
= Thread 1: add 1000 to globLoc
= Thread 1: write global=globLoc=1000
= Thread 2: read global=1000...

= What actually happened:
=« Thread 1: read global=0 into globLoc
= Thread 2: read global=0 into globLoc

12

Carnegie Mellon

Fixing N2 with Semaphores

B Let's give each thread a read/write mutex to global
= Will ensure each thread reads/writes the correct value

= Note: in this example, this will cause the code to essentially
run sequentially, and thread overhead will actually give
worse performance compared to a sequential solution

13

Carnegie Mellon

NA2 - Semaphores

s Ll Ry =

1 &y L

sem T mutex;

* threadFunc (* wargp)

[T e O &

i ;
Sem walt (Amutex) ;
locGlob global:;
or (1 = 0; 1 < H; i++)
locGlob = locGlob +
global = locGlob:
Sem posSt (AmUTex) ;

[¥ O LT %

[v v 1 v N

VI %]

pthread t tids[N]:
pthread t tid;
sem init (&mutex, 1,1}

1%

- u
4 r

1 &y i

f1l < Hy i++)
pthread create(tids+i, threadFunc,

s 1 < Hy i++)

i T W v Y 8

Ly k3 =

Carnegie Mellon

NA2 — Semaphores - Output

15

Carnegie Mellon

Read-Write Locks Cont.

B How would you make a read-write lock with semaphores?
= Luckily, you don't have to!

« pthread rwlock * handles that for you
= pthread_rwlock tlock;
= pthread_rwlock_init(&lock,NULL);
« pthread_rwlock_rdlock(&lock);
« pthread_rwlock_wrlock(&lock);
« pthread_rwlock_unlock(&lock);

16

Carnegie Mellon

Proxy

B Your proxy must be robust
= Cannot crash for any malformed/bad input

= Assume the useris an idiot

= Be wary of malformed web addresses, and in general,
requests

= Memory management
= Free what you malloc

= Webservers like proxy will run for a long time, and
memory leaks will actually add up

17

Carnegie Mellon

Proxy

B Test extensively!
= There is no autograded feedback for Proxy

= Use your proxy with Firefox for visual feedback
= Try everything you can think of to break your program

= |f you have questions about what should/shouldn't be
working on your proxy, come talk to us

M Start early

= Not as time-consuming as malloc
= Collaborating can be difficult

= Test extensively!

18

