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Schedule

m Cachelab style grades should be up shortly (<1 day)
= Sorry for the delay.

m Shell Lab was due Thursday, March 28th.

® Last turn in option was last night.
® Should have style grades in ~2 weeks.

m Malloc Lab out.
= Due April 11,

= Use your late days if you have them — the chances of using these
days on proxy is slim.
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Dynamic Memory Allocation

m Programmers use Application
dynamic memory Dynamic Memory Allocator
allocators (such as Heap
malloc) to acquire VM
at run time.
u F.or c':Iata structures whose User stack
size is only known at
time.
runtime . Top of heap
m Dynamic memory (brk ptr)

Heap (viamalloc)
allocators manage an

area of process virtual

memory known as the Initialized data (.data)
heap. Program text (. text)

Uninitialized data (.bss)
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Dynamic Memory Allocation

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)

p4 = malloc(2)

m How do we know where to put the next block?
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Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

m Method 2: Explicit list among the free blocks using pointers

/\

5 4 6 2

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key
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Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

m Method 2: Explicit list among the free blocks using pointers

/\

5 4 6 2

= Additionally: Segregated free list
» Different free lists for different size classes

= Additionally: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within
each free block, and the length used as a key
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Method 1 - Implicit List

m For each block we need both size and allocation status
® Could store this information in two words: wasteful!

m Standard trick
" |f blocks are aligned, some low-order address bits are always O
" |nstead of storing an always-0 bit, use it as a allocated/free flag
= When reading size word, must mask out this bit

1 word
A
/ ~
Size a a = 1: Allocated block
a = 0: Free block
Format of
allocated and payload Size: block size
free blocks o
Payload: application data
(allocated blocks only)
Optional
padding
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Method 2 - Explicit Free Lists

Allocated (as before) Free
Size a Size a
Next
Payload and Prev
padding
Size a Size a

m Maintain list(s) of free blocks, not all blocks
" The “next” free block could be anywhere

= So we need to store forward/back pointers, not just sizes
= Still need boundary tags for coalescing

= Luckily we track only free blocks, so we can use payload area



Method 2 - Explicit Free Lists

m Logically:

m Physically: blocks can be in any order

—
v

/ Forward (next) links
A m B

~ 4.4 ale /|| |64 Al al)

AL c~—_ __—

4

Back (prev) links
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Segregated List (Seglist) Allocators

m Each size class of blocks has its own free list

1-2 > > > —>

5_8 > —>

9-inf —

m Often have separate classes for each small size
m For larger sizes: One class for each two-power size

1"



Finding a Free Block

m First fit;

= Search list from beginning, choose first free block that fits:

Carnegie Mellon

= Can take linear time in total number of blocks (allocated and free)

" |n practice it can cause “splinters” at beginning of list
= Many small free blocks left at beginning.

2 2 4

E\

start here

f

allocate this

2

2

4

N

start here

T

allocate this

malloc(4)

malloc(4)
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Finding a Free Block

m Next fit:
= Like first fit, but search list starting where previous search finished

= Should often be faster than first fit: avoids re-scanning unhelpful
blocks

= Some research suggests that fragmentation is worse

sz\ 2! |2 2] |a 4 4 2| |2 malloc(4)

start here allocate this

2 2 2 2 4 4 4 2 2 malloc(4)

T

start here allocate this
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Finding a Free Block

m Best fit:

= Search the list, choose the best free block: fits, with fewest bytes
left over

= Keeps fragments small—usually improves memory utilization
= Will typically run slower than first fit

m If the block we find is larger than we need, split it.

14
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Finding a Free Block

m What happens if we can’t find a block?
" Need to extend the heap.
= Use the brk() or sbrk() system calls.
= In mallocLab, use mem_sbrk()
= sbrk(requested space) allocates space and returns pointer to start

of space
= shrk(0) returns pointer User stack
to top of current heap
= Use what you need, add the Top of heap
rest as a free block. N (brk ptr)

Heap (viamalloc)

Uninitialized data (.bss)

Initialized data (.data)

Program text (. text)
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Splitting a Block

m What happens if the block we have is too big?
= Split between portion we need and free space.
=  For implicit lists: correct size maintains list
= For explicit lists:
= (if segregated) determine correct size list
= Insert with insertion policy (we’ll talk about this momentarily)

n 0 m 1
next ptr
m 1
prev ptr n-m 0
—
next ptr
prev ptr
n 0 n-m 0
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Freeing Blocks

m Simplest implementation:

= Need only clear the “allocated” flag
void free block(ptr p) { *p = *p & -2 }

= But can lead to “false fragmentation”

4
t
free (p) p

malloc (5) Oops!

There is enough free space, but the allocator won'’t be able to find it
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Freeing Blocks

m Need to combine blocks nearby in memory.
m For implicit lists:

= Simply look backwards and forwards using block sizes.
m For explicit lists:

" Look backwards/forwards using block sizes, not next/prev pointers.
= |f seg. list, use the size of new block to determine proper list

" |nsert back into list based on insertion policy (LIFO, FIFO)

Case 1 Case 2 Case 3 Case 4

Allocated Allocated Free Free

Block being
freed

Allocated Free Allocated Free
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Freeing Blocks

m Graphical depiction (both implicit & explicit):
" (these are physical mappings)

ml 0 n+ml 0 ml 0 n+ml+m?2 0
next ptr next ptr
ml 0 ml
n 1 prev ptr - 3 prev ptr
—) —
n 1 n+ml 0 n 1
m2 1 m2 1 m2
m2 1 m2 1 m2 0 n+ml+m?2 0

19
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Insertion Policy

m Where in the free list do you put a newly freed block?

m LIFO (last-in-first-out) policy
" |nsert freed block at the beginning of the free list

® Pro: simple and constant time

® Con: studies suggest fragmentation is worse than address ordered

m Address-ordered policy

" |nsert freed blocks so that free list blocks are always in address
order:

addr(prev) < addr(curr) < addr(next)
= Con: requires search

"  Pro: studies suggest fragmentation is lower than LIFO

20
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Freeing Blocks (LIFO Policy)

Before

conceptual graphic

free(®)

o Tail

|
Root ! I

%o

m Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

These may be different

After  pemmm———a- , lists if using seg. lists.
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MallocLab Tips

m You need to implement the following functions:
int mm_init(void);
void *malloc(size t size);
void free(void *ptr);
void *realloc(void *ptr, size t size);
void *calloc (size_t nmemb, size t size);
void mm_checkheap(int);

Scored on space efficiency and throughput
Cannot call system memory functions
Use helper functions (as static/inline functions)

May want to consider practicing version control
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MallocLab Tips

m void mm_checkheap(int) is critical for debugging.
= Write this early, and update it when you change cache topology

= |t should ensure that you haven’t lost control of any part of heap
memory (everything should either be allocated or listed)

= Optionally test for consecutive free blocks. (This is bad.)

= Look over lecture notes on garbage collection (particularly mark &
sweep).

" This function is meant to be correct, not efficient.
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MallocLab Tips

m inline
= Essentially copies function code into location of each function call.
= Avoids overhead of stack discipline/function call (once assembled).
= Can often be used in place of macros.
= Strong type checking and input variable handling, unlike macros.
m static
= We've discussed static variables — this is same.
= Resides in a single place in memory
= Limits scope of function to the current translations unit (file)
= Should use this for helper functions only called locally
= Avoids polluting namespace.
m static inline

= Not surprisingly, can be used together.
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Debugging

m Using printf, assert, etc only in debug mode:

m #define DEBUG -or- //#define DEBUG

#ifdef DEBUG
# define dbg printf(...) printf(__VA ARGS )
# define dbg assert(...) assert( VA ARGS )
# define dbg(...) __VA_ARGS

#else
# define dbg printf(...)
# define dbg assert(...)
# define dbg(...)

#endif

25



Carnegie Mellon

Debugging

m Valgrind
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
® Can detect all errors as debuggingmalloc
= (Can also check each individual reference at runtime
= Bad pointers
= Overwriting

= Referencing outside of allocated block

m GDB

"= You know how to use this (hopefully).

26



