Carnegie Mellon

Dynamic Memory Allocation

malloc(woo!)

lan Hartwig

Section F
April 15t, 2013

Carnegie Mellon

Outline

m Schedule

m Dynamic Memory Allocation
= Keeping Track of Free Blocks
" Finding a Free Block
= Splitting Blocks
= Freeing Blocks

m MallocLab Tips

Carnegie Mellon

Schedule

m Cachelab style grades should be up shortly (<1 day)
= Sorry for the delay.

m Shell Lab was due Thursday, March 28th.

® Last turn in option was last night.
® Should have style grades in ~2 weeks.

m Malloc Lab out.
= Due April 11,

= Use your late days if you have them — the chances of using these
days on proxy is slim.

Carnegie Mellon

Dynamic Memory Allocation

m Programmers use Application
dynamic memory Dynamic Memory Allocator
allocators (such as Heap
malloc) to acquire VM
at run time.
u F.or c':Iata structures whose User stack
size is only known at
time.
runtime . Top of heap
m Dynamic memory (brk ptr)

Heap (viamalloc)
allocators manage an

area of process virtual

memory known as the Initialized data (.data)
heap. Program text (. text)

Uninitialized data (.bss)

Carnegie Mellon

Dynamic Memory Allocation

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)

p4 = malloc(2)

m How do we know where to put the next block?

Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

m Method 2: Explicit list among the free blocks using pointers

/\

5 4 6 2

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit list using length—Ilinks all blocks

m Method 2: Explicit list among the free blocks using pointers

/\

5 4 6 2

= Additionally: Segregated free list
» Different free lists for different size classes

= Additionally: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within
each free block, and the length used as a key

Carnegie Mellon

Method 1 - Implicit List

m For each block we need both size and allocation status
® Could store this information in two words: wasteful!

m Standard trick
" |f blocks are aligned, some low-order address bits are always O
" |nstead of storing an always-0 bit, use it as a allocated/free flag
= When reading size word, must mask out this bit

1 word
A
/ ~
Size a a = 1: Allocated block
a = 0: Free block
Format of
allocated and payload Size: block size
free blocks o
Payload: application data
(allocated blocks only)
Optional
padding

Carnegie Mellon

Method 2 - Explicit Free Lists

Allocated (as before) Free
Size a Size a
Next
Payload and Prev
padding
Size a Size a

m Maintain list(s) of free blocks, not all blocks
" The “next” free block could be anywhere

= So we need to store forward/back pointers, not just sizes
= Still need boundary tags for coalescing

= Luckily we track only free blocks, so we can use payload area

Method 2 - Explicit Free Lists

m Logically:

m Physically: blocks can be in any order

—
v

/ Forward (next) links
A m B

~ 4.4 ale /|| |64 Al al)

AL c~—_ __—

4

Back (prev) links

10

Segregated List (Seglist) Allocators

m Each size class of blocks has its own free list

1-2 > > > —>

5_8 > —>

9-inf —

m Often have separate classes for each small size
m For larger sizes: One class for each two-power size

1"

Finding a Free Block

m First fit;

= Search list from beginning, choose first free block that fits:

Carnegie Mellon

= Can take linear time in total number of blocks (allocated and free)

" |n practice it can cause “splinters” at beginning of list
= Many small free blocks left at beginning.

2 2 4

E\

start here

f

allocate this

2

2

4

N

start here

T

allocate this

malloc(4)

malloc(4)

12

Carnegie Mellon

Finding a Free Block

m Next fit:
= Like first fit, but search list starting where previous search finished

= Should often be faster than first fit: avoids re-scanning unhelpful
blocks

= Some research suggests that fragmentation is worse

sz\ 2! |2 2] |a 4 4 2| |2 malloc(4)

start here allocate this

2 2 2 2 4 4 4 2 2 malloc(4)

T

start here allocate this

13

Carnegie Mellon

Finding a Free Block

m Best fit:

= Search the list, choose the best free block: fits, with fewest bytes
left over

= Keeps fragments small—usually improves memory utilization
= Will typically run slower than first fit

m If the block we find is larger than we need, split it.

14

Carnegie Mellon

Finding a Free Block

m What happens if we can’t find a block?
" Need to extend the heap.
= Use the brk() or sbrk() system calls.
= In mallocLab, use mem_sbrk()
= sbrk(requested space) allocates space and returns pointer to start

of space
= shrk(0) returns pointer User stack
to top of current heap
= Use what you need, add the Top of heap
rest as a free block. N (brk ptr)

Heap (viamalloc)

Uninitialized data (.bss)

Initialized data (.data)

Program text (. text)

15

Splitting a Block

m What happens if the block we have is too big?
= Split between portion we need and free space.
= For implicit lists: correct size maintains list
= For explicit lists:
= (if segregated) determine correct size list
= Insert with insertion policy (we’ll talk about this momentarily)

n 0 m 1
next ptr
m 1
prev ptr n-m 0
—
next ptr
prev ptr
n 0 n-m 0

16

Carnegie Mellon

Freeing Blocks

m Simplest implementation:

= Need only clear the “allocated” flag
void free block(ptr p) { *p = *p & -2 }

= But can lead to “false fragmentation”

4
t
free (p) p

malloc (5) Oops!

There is enough free space, but the allocator won'’t be able to find it

17

Carnegie Mellon

Freeing Blocks

m Need to combine blocks nearby in memory.
m For implicit lists:

= Simply look backwards and forwards using block sizes.
m For explicit lists:

" Look backwards/forwards using block sizes, not next/prev pointers.
= |f seg. list, use the size of new block to determine proper list

" |nsert back into list based on insertion policy (LIFO, FIFO)

Case 1 Case 2 Case 3 Case 4

Allocated Allocated Free Free

Block being
freed

Allocated Free Allocated Free

18

Carnegie Mellon

Freeing Blocks

m Graphical depiction (both implicit & explicit):
" (these are physical mappings)

ml 0 n+ml 0 ml 0 n+ml+m?2 0
next ptr next ptr
ml 0 ml
n 1 prev ptr - 3 prev ptr
—) —
n 1 n+ml 0 n 1
m2 1 m2 1 m2
m2 1 m2 1 m2 0 n+ml+m?2 0

19

Carnegie Mellon

Insertion Policy

m Where in the free list do you put a newly freed block?

m LIFO (last-in-first-out) policy
" |nsert freed block at the beginning of the free list

® Pro: simple and constant time

® Con: studies suggest fragmentation is worse than address ordered

m Address-ordered policy

" |nsert freed blocks so that free list blocks are always in address
order:

addr(prev) < addr(curr) < addr(next)
= Con: requires search

" Pro: studies suggest fragmentation is lower than LIFO

20

Carnegie Mellon

Freeing Blocks (LIFO Policy)

Before

conceptual graphic

free(®)

o Tail

|
Root ! I

%o

m Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

These may be different

After pemmm———a- , lists if using seg. lists.

21

Carnegie Mellon

MallocLab Tips

m You need to implement the following functions:
int mm_init(void);
void *malloc(size t size);
void free(void *ptr);
void *realloc(void *ptr, size t size);
void *calloc (size_t nmemb, size t size);
void mm_checkheap(int);

Scored on space efficiency and throughput
Cannot call system memory functions
Use helper functions (as static/inline functions)

May want to consider practicing version control

22

MallocLab Tips

m void mm_checkheap(int) is critical for debugging.
= Write this early, and update it when you change cache topology

= |t should ensure that you haven’t lost control of any part of heap
memory (everything should either be allocated or listed)

= Optionally test for consecutive free blocks. (This is bad.)

= Look over lecture notes on garbage collection (particularly mark &
sweep).

" This function is meant to be correct, not efficient.

23

Carnegie Mellon

MallocLab Tips

m inline
= Essentially copies function code into location of each function call.
= Avoids overhead of stack discipline/function call (once assembled).
= Can often be used in place of macros.
= Strong type checking and input variable handling, unlike macros.
m static
= We've discussed static variables — this is same.
= Resides in a single place in memory
= Limits scope of function to the current translations unit (file)
= Should use this for helper functions only called locally
= Avoids polluting namespace.
m static inline

= Not surprisingly, can be used together.

24

Carnegie Mellon

Debugging

m Using printf, assert, etc only in debug mode:

m #define DEBUG -or- //#define DEBUG

#ifdef DEBUG
define dbg printf(...) printf(__VA ARGS)
define dbg assert(...) assert(VA ARGS)
define dbg(...) __VA_ARGS

#else
define dbg printf(...)
define dbg assert(...)
define dbg(...)

#endif

25

Carnegie Mellon

Debugging

m Valgrind
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
® Can detect all errors as debuggingmalloc
= (Can also check each individual reference at runtime
= Bad pointers
= Overwriting

= Referencing outside of allocated block

m GDB

"= You know how to use this (hopefully).

26

