Carnegie Mellon

Synchronization: Basics

15-213 / 18-213: Introduction to Computer Systems
241 Lecture, April 16, 2013

Instructors:
Seth Copen Goldstein, Anthony Rowe, and Greg Kesden

Carnegie Mellon

Today

Threads review

N
m Sharing
m Mutual exclusion
|

Semaphores

Carnegie Mellon

Process: Traditional View

m Process = process context + code, data, and stack

Process context Code, data, and stack
Program context: 5p —s stack
Data registers
Condition codes shared libraries
Stack pointer (SP)
Program counter (PC) brk — run-time heap
Kernel context: read/write data
VM structures PC— read-only code/data
Descriptor table

brk pointer

Carnegie Mellon

Process: Alternative View

m Process = thread + code, data, and kernel context

Thread Code, data, and kernel context
Program context: shared libraries
Data registers brk —
Condition codes run-time heap
Stack pointer (SP) read/write data
Program counter (PC) PC—* read-only code/data
0
stack
SP— Kernel context:
VM structures
Descriptor table
brk pointer

Carnegie Mellon

Process with Two Threads

Thread 1

SP

SP

Program context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

stack

A A

Thread 2

Program context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

stack

A A

Code, data, and kernel context

shared libraries

brk — :
run-time heap
read/write data
PC— read-only code/data

Kernel context:
VM structures
Descriptor table
brk pointer

Carnegie Mellon

pThreads vs. Processes

m Threads and processes: similarities
= Each has its own logical control flow
® Each can run concurrently with others
= Each is context switched (scheduled) by the kernel

m Threads and processes: differences
" Threads share code and data, processes (typically) do not

" Threads are less expensive than processes

= Process control (creating and reaping) is more expensive as
thread control

= Context switches for processes more expensive than for
threads

Carnegie Mellon

Pros and Cons of Thread-Based Designs

m + Easy to share data structures between threads
= e.g., logging information, file cache

m + Threads are more efficient than processes

m - Unintentional sharing can introduce subtle and hard-to-
reproduce errors!

Carnegie Mellon

Today

Threads review

N
m Sharing
m Mutual exclusion
|

Semaphores

Carnegie Mellon

Shared Variables in Threaded C Programs

m Question: Which variables in a threaded C program are
shared?

" The answer is not as simple as “global variables are shared” and
“stack variables are private”

m Requires answers to the following questions:
" What is the memory model for threads?
" How are instances of variables mapped to memory?
" How many threads might reference each of these instances?

m Def: A variable x is shared if and only if multiple threads
reference some instance of x.

Carnegie Mellon

Threads Memory Model

m Conceptual model:
= Multiple threads run within the context of a single process
® Each thread has its own separate thread context

= Thread ID, stack, stack pointer, PC, condition codes, and GP registers

= All threads share the remaining process context
= Code, data, heap, and shared library segments of the process virtual address space

= QOpen files and installed handlers

m Operationally, this model is not strictly enforced:
= Register values are truly separate and protected, but...
= Any thread can read and write the stack of any other thread

Could you do something to help with this?
The mismatch betwe (at least for debugging)
is a source of confusion and errors

10

Carnegie Mellon

Example Program to lllustrate Sharing

{

char **ptr;

/* global */

int main ()

int 1i;

pthread t tid;

char *msgs[2] = {
"Hello from foo",
"Hello from bar"

};

ptr = msgs;

for (1 = 0; 1 < 2; i++)
Pthread create(&tid,
NULL,
thread,
(void *)i);
Pthread exit (NULL) ;

/* thread routine */

void *thread(void *vargp)

{
int myid = (int) wvargp;
static int cnt = 0;

printf("[%d]: %s (svar=%d)\n",
myid, ptr[myid], ++cnt);

/

Peer threads reference main thread’s stack
indirectly through global ptr variable

1

Carnegie Mellon

Mapping Variable Instances to Memory

m Global variables
= Def: Variable declared outside of a function

= Virtual memory contains exactly one instance of any global variable

m Local variables
= Def: Variable declared inside function without static attribute
= Each thread stack contains one instance of each local variable

m Local static variables

= Def: Variable declared inside function with the static attribute

= Virtual memory contains exactly one instance of any local static
variable.

12

Carnegie Mellon

Mapping Variable Instances to Memory

Global var: 1 instance (ptr [data])

\

Local vars: 1 instance (1.m, msgs.m)

7

{

char **ptr; /* global *

int main ()

int 1i;
pthread t ¥id;
char *msgs[2] = {

"Hello from foo",
"Hello from bar"
};

ptr = msgs;

for (1 = 0; 1 < 2; i++)
Pthread create(&tid,
NULL,
thread,
(void *)i);
Pthread exit (NULL) ;

Local var: 2 instances (
myid.pO [peer thread 0’s stack],
myid.pl [peer thread 1’s stack]

! //
/* thread rouftine */
void *thread/fvoid *vargp)

{

int myid = (int)vargp;
static int cnt = 0;

printf (" [%d]/ %s (svar=%d)\n",
myid, gtr[myid], ++cnt);

/

Local static var: 1 instance (cnt [data))

13

Carnegie Mellon

Shared Variable Analysis

m Which variables are shared?

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes
cnt no yes yes
i.m yes no no
msgs.m yes yes yes
myid.pO no yes no
myid.pl no no yes
char **ptr; /* global */
int main() { /* thread routine */
int i; void *thread(void *vargp)
pthread t tid; {
char *msgs[2] = {“Hello from foo", int myid = (int)vargp;
"Hello from bar"}; static int cnt = O;
Ptr = msgs;
for (1 = 0; i < 2; i++) printf("[%d]: %s (svar=%d)\n",
Pthread create(&tid,.., (void *)i); myid, ptr[myid], ++cnt);
Pthread exit (NULL) ; }

Carnegie Mellon

Shared Variable Analysis

m Which variables are shared?

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr yes yes yes
cnt no yes yes
i.m yes no no
msgs.m yes yes yes
myid.pO no yes no
myid.pl no no yes

m Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:

m ptr, cnt, and msgs are shared
m i and myid are not shared

15

Carnegie Mellon

Today

m Threads review
m Sharing

m Mutual exclusion
m Semaphores

16

badcnt. c: Improper Synchronization

/* Thread routine */
void *thread(void *vargp)

{

volatile int cnt = 0; /* global */

int main(int argc, char **argv)

{ int i, niters = *((int *)vargp).,
int niters = atoi(argv[l]); for (i = 0; i < niters: i++)
pthread t tidl, tid2; ontits '

Pthread create(&tidl, NULL,
thread, &niters);

Pthread create(&tid2, NULL,
thread, &niters);

Pthread join(tidl, NULL);

return NULL;

Pthread join(tid2, NULL); linux> ./badcnt 10000
- OK cnt=20000

/* Check result */ linux> ./badcnt 10000
if (cnt '= (2 * niters)) B?OM! cnt=13051

printf ("BOOM! cnt=%d\n”, cnt); linux>
else

Priorr (MoK ent=hdlnt, ent); cnt should equal 20,000.
exi g

What went wrong?

17

Carnegie Mellon

Assembly Code for Counter Loop

C code for counter loop in thread i

for (i=0;
cnt++;

i < niters; i++)

Corresponding assembly code

.L13:;

movl
movl

Inc
cmpl

j1 .L11

(%rdi) , $ecx
$0, %$edx
gecx, sedx
.L13

cnt ($rip) , seax
eax
%eax,cnt (%rip)

—fedxT T T T T T T T T \

%ecx, $edx

> Head (H.)

Load cnt (L))
> Update cnt (U))
Store cnt (S)

> Tail (T;)

18

Carnegie Mellon

Concurrent Execution

m Keyidea: In general, any sequentially consistent interleaving
is possible, but some give an unexpected result!

= |. denotes that thread i executes instruction |
= %eax;is the content of %eax in thread i’s context

i (thread) instr, %eax, %eax, cnt
1 H, - - 0 Thread 1
1 L, 0 - 0 critical section
1 U, 1 - 0
1 S, 1 - 1 Thread 2
2 H, - - 1 critical section
2 L, - 1 1
2 U, - 2 1
2 S, - 2 2
2 T, - 2 2
1 T, 1 - 2 OK

19

Carnegie Mellon

Concurrent Execution (cont)

m Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2

i (thread) instr, %eax, %eax, cnt
1 H, - - 0
1 L, 0 - 0
1 U, - 0
2 H, - 0
2 L, - 0
1 S, 1 - 1
1 T, 1 ; 1
2 U, - 1 1
2 S, - 1 1
2 T, 1 1 Oops!

20

Carnegie Mellon

Concurrent Execution (cont)

m How about this ordering?

i (thread) instr, %eax, %eax, cnt
1 H, 0
1 L, 0
2 H,

2 L, 0

2 U, 1

2 S, 1 1

1 U, 1

1 S, 1 1

1 T,

2 T, 1 Oops!

m We can analyze the behavior using a progress graph

21

Carnegie Mellon

Progress Graphs

Thread 2 A progress graph depicts
the discrete execution

¢ o o o o O state space of concurrent

T, threads.
(L, S))

1 ¢ ¢ ° @ @ Each axis corresponds to
S, the sequential order of

P ° ° ° ° ° instructions in a thread.
U,

Each point corresponds to

1 ° ° ¢ ¢ ¢ a possible execution state
L, (Inst,, Inst,).
L o o o o o
E.g., (L, S,) denotes state
H, where thread 1 has

o o o ‘ ¢ *“—Thread1 completed L, and thread
2 has completed S,.

22

Carnegie Mellon

Trajectories in Progress Graphs

Thread 2
A trajectory is a sequence of legal
o o o o o state transitions that describes one
T, x possible concurrent execution of the
threads.
o o o o [
S, x Example:
1 ¢ ¢ ¢ ¢ x H1, 11, U1, H2, L2, S1,T1, U2,S2, T2
— —
o o

@ T “— Thread 1

23

Carnegie Mellon

Critical Sections and Unsafe Regions

Thread 2
L, U, and S form a critical
® ° ° ° ° o section with respect to the
shared variable cnt
T,
9 @ e @ @ @ Instructions in critical
S, sections (wrt to some
critical o o . . o o shared variable) should not
section) be interleaved
wrt <y, Unsafe region
cnt T ¢ ° ° ° ° Sets of states where such
L, interleaving occurs form
" 4 o unsafe regions
H,
° ¢ N N ° *— Thread 1
N\ /
T

critical section wrt cnt
24

Carnegie Mellon

Critical Sections and Unsafe Regions

Thread 2

safe

[o = » > . . .
Def: A trajectory is safe iff it does
T, not enter any unsafe region

9 ® e
S, ‘ x Claim: A trajectory is correct (wrt
critical cnt) iff itis safe

section)
wrt < U, Unsafe region
cnt x o o — —
unsafe
o o

¢ T “— Thread 1

critical section wrt cnt
25

Carnegie Mellon

Enforcing Mutual Exclusion

m Question: How can we guarantee a safe trajectory?

m Answer: We must synchronize the execution of the threads so
that they never have an unsafe trajectory.
= j.e., need to guarantee mutually exclusive access to critical regions

m Classic solution:
= Semaphores (Edsger Dijkstra)

m Other approaches (out of our scope)
= Mutex and condition variables (Pthreads)
" Monitors (Java)

26

Carnegie Mellon

Today

m Threads review
m Sharing

m Mutual exclusion
m Semaphores

27

Carnegie Mellon

Semaphores

m Semaphore: non-negative global integer synchronization
variable

m Manipulated by P and V operations:
= P(s): [while (s == 0) wait(); s--;]
= Dutch for "Proberen" (test)
" V(s): [s++;]
= Dutch for "Verhogen" (increment)

m OS kernel guarantees that operations between brackets [] are
executed indivisibly

= Only one P or V operation at a time can modify s.
= When while loop in P terminates, only that P can decrement s

m Semaphore invariant: (s >= 0)

28

C Semaphore Operations

Pthreads functions:

#include <semaphore.h>
int sem init(sem t *sem, 0, unsigned int val);} /* s = val */

int sem wait(sem t *s); /* P(s) */
int sem post(sem t *s); /* V(s) */

CS:APP wrapper functions:

#include '"csapp.h”

void P(sem t *s); /* Wrapper function for sem wait */
void V(sem t *s); /* Wrapper function for sem post */

29

Carnegie Mellon

badcnt. c: Improper Synchronization

{

volatile int cnt = 0; /* global */

int main(int argc, char **argv)

int niters = atoi(argv[1l]);
pthread t tidl, tid2;

Pthread create(&tidl, NULL,
thread, &niters);
Pthread create(&tid2, NULL,
thread, &niters);
Pthread join(tidl, NULL);
Pthread join(tid2, NULL);

/* Check result */
if (cnt !'= (2 * niters))

printf ("BOOM! cnt=%d\n”, cnt);
else

printf ("OK cnt=%d\n", cnt);
exit (0) ;

/* Thread routine */
void *thread(void *vargp)

{

int i, niters = *((int *)vargp).,
for (i = 0; 1 < niters; i++)
cnt++;

return NULL;

How can we fix this using
semaphores?

30

Carnegie Mellon

Using Semaphores for Mutual Exclusion

m Basicidea:

= Associate a unique semaphore mutex, initially 1, with each shared
variable (or related set of shared variables).

= Surround corresponding critical sections with P(mutex) and
V(mutex) operations.

m Terminology:
® Binary semaphore: semaphore whose value is always 0 or 1
= Mutex: binary semaphore used for mutual exclusion
= P operation: “locking” the mutex
= V operation: “unlocking” or “releasing” the mutex
= “Holding” a mutex: locked and not yet unlocked.

= Counting semaphore: used as a counter for set of available

resources.
31

Carnegie Mellon

goodcnt. c: Proper Synchronization

m Define and initialize a mutex for the shared variable cnt:

volatile int cnt = 0; /* Counter */
sem t mutex; /* Semaphore that protects cnt */
Sem init(&mutex, 0, 1); /* mutex = 1 */

m Surround critical section with P and V:

for (1 = 0; i < niters; i++) { linux> ./goodcnt 10000
P (&mutex) ; OK cnt=20000
cnt++; linux> ./goodcnt 10000
V (&mutex) ; OK cnt=20000

} linux>

Warning: It’s much slower
thanbadcnt.c.

32

Carnegie Mellon

Why Mutexes Work

Thread 2
1 1 0 0 0 0 1 1 Provide mutually exclusive
' * * * * ¢ ¢ * access to shared variable by
T, surrounding critical section
! o 0L . o ! . o with P and V operations on
V(s) . , Forbidden region : : semaphore s (initially set to 1)
s, ! ! o Semaphore invariant
L0 o0 e ed e e WO 0 creates a forbidden region
u, Unsafe region that encloses unsafe region
R Jiv9 o0 that cannot be entered by any
trajectory.
I'2
0 0 1 -1 1 -1 0 0
P(s) 1 1 0 0 0 0 1 1
HZ
1 1 1
. T . Thread 1
AN H Ps) L U S V) T,
Initially

s=1 33

Carnegie Mellon

Summary

m Programmers need a clear model of how variables are
shared by threads.

m Variables shared by multiple threads must be protected
to ensure mutually exclusive access.

m Semaphores are a fundamental mechanism for enforcing
mutual exclusion.

34

Carnegie Mellon

Threads vs. Processes (cont.)

m Processes form a tree hierarchy
m Threads form a pool of peers

= Each thread can kill any other

= Each thread can wait for any other thread to terminate
" Main thread: first thread to run in a process

Process hierarchy Thread pool

@ ! "4 shared code, data
! and kernel context

@) @) @
@ .

35

Carnegie Mellon

Posix Threads (Pthreads) Interface

m Pthreads: Standard interface for ~60 functions that manipulate
threads from C programs
= Threads run thread routines:
= void *threadroutine (void *vargp)
" Creating and reaping threads
= pthread create(pthread t *tid, .., func *f, void *arq)
= pthread join(pthread t tid, void **thread return)
= Determining your thread ID
= pthread self()

" Terminating threads
= pthread cancel (pthread t tid)
= pthread exit(void *tread return)
= return (in primary thread routine terminates the thread)
» exit (terminates all threads)

36

Carnegie Mellon

The Pthreads “Hello, world" Program

/ *
* hello.c - Pthreads "hello, world" program
*/
#include "csapp.h" Thread attributes

1 (usually NULL)

void *thread(void *vargp) ;

int main() { Thread arguments

pthread t tid; k////// (void *p)

Pthread create(&tid, NULL, thread, NULL);

Pthread join(tid, NULL) ;
exit (0) ;
} assigns return value

(void **p)

/* thread routine */

void *thread(void *vargp) ({
printf ("Hello, world'\n");
return NULL;

37

