Carnegie Mellon

Web Services

15-213 / 18-213: Introduction to Computer Systems
22" L ecture, April 9, 2013

Instructors:
Seth Copen Goldstein, Anthony Rowe, and Greg Kesden

Carnegie Mellon

“Consider a future device for
individual use, which is a sort of
mechanized private file and library.
It needs a name, and to coin one at
random, "memex" will do. A memex
is a device in which an individual
stores all his books, records, and
communications, and which is
mechanized so that it may be
consulted with exceeding speed and
flexibility. It is an enlarged intimate
supplement to his memory.”

m 1945:
® Vannevar Bush, “As we may think”, Atlantic Monthly, July, 1945
= Describes the idea of a distributed hypertext system
= A “memex” that mimics the “web of trails” in our minds

‘ -

Carnegie Mellon

Web History (as described by most)

m 1989:
= Tim Berners-Lee (CERN) writes internal proposal to develop a
distributed hypertext system
= Connects “a web of notes with links”

= Intended to help CERN physicists in large projects share and
manage information

m 1990:
= Tim BL writes a graphical browser for Next machines

Web History (cont)

m 1992
= NCSA server released
= 26 WWW servers worldwide
m 1993
® Marc Andreessen releases first version of NCSA Mosaic browser
= Mosaic version released for (Windows, Mac, Unix)
= Web (port 80) traffic at 1% of NSFNET backbone traffic
= QOver 200 WWW servers worldwide
m 1994

= Andreessen and colleagues leave NCSA to form “Mosaic
Communications Corp” (predecessor to Netscape)

m 1996

= Cookies implemented in major browsers

Web History (cont)

m 1999-2002
= Web 2.0 coined

®= Changes the web from a content delivery system to a framework
for building interactive applications through the browser

m 2005
= AJAX coined
= XMLHttpRequest specification to support truly asychronous
web pages
m 2006
® jQuery released

Carnegie Mellon

Web Servers

HTTP request

A . Web
m Clients and servers communicate dla Web
using the HyperText Transfer (browser) J+————— \ SEMVE

Protocol (HTTP) HTTP response

= (Client and server establish TCP (content)
connection

= Client requests content

= Server responds with requested
content HTTP Web content

= (Client and server close connection
(eventually) TCP Streams

m Current version is HTTP/1.1
= RFC 2616, June, 1999. P Datagrams

http://www.w3.org/Protocols/rfc2616/rfc2616.html

Web Content

m Web servers return content to clients
= content: a sequence of bytes with an associated MIME (Multipurpose
Internet Mail Extensions) type
m Example MIME types
= text/html
= text/plain
= application/postscript Postcript document
= image/qgif
= image/jpeg
= application/json
= text/css

HTML document
Unformatted text

Binary image encoded in GIF format
Binary image encoded in JPEG format
JSON object

CSS document

Static and Dynamic Content

m The content returned in HTTP responses can be either
static or dynamic

= Static content: content stored in files and retrieved in response to
an HTTP request

= Examples: HTML files, images, audio clips
= Request identifies which content file

= Dynamic content: content produced on-the-fly in response to an
HTTP request

= Example: content produced by a program executed by the
server on behalf of the client

= Request identifies which file containing executable code
m Bottom line: (some) Web content is associated with a file
that is managed by the server

Carnegie Mellon

URLs and how clients and servers use them

m Unique name for a file: URL (Universal Resource Locator)
m Example URL: http://www.cmu.edu:80/index.html

m Clients use prefix (http://www.cmu.edu:80) to infer:
= What kind (protocol) of server to contact (HTTP)
= Where the server is (Www . cmu . edu)
® What port it is listening on (80)
m Servers use suffix (/ index.html) to:
= Determine if request is for static or dynamic content.
= No hard and fast rules for this
= Old convention: executables reside in cgi-bin directory
® Find file on file system
= Initial “/” in suffix denotes home directory for requested content.

= Minimal suffix is “/”, which server expands to configured default
filename (usually, index.html)

Carnegie Mellon

Example of an HTTP Transaction

unix> telnet www.cmu.edu 80
Trying 128.2.10.162. ..
Connected to www.cmu.edu.
Escape character is "~]".
GET / HTTP/1.1

host: www.cmu.edu

Client: open connection to server
Telnet prints 3 lines to the terminal

Client: request line

Client: required HTTP/1.1 HOST header
Client: empty line terminates headers .
HTTP/1.1 301 Moved Permanently Server: response line
Location: http://www.cmu.edu/index.shtml Client should try again

Connection closed by foreign host. Server: closes connection
unix> Client: closes connection and terminates

10

Carnegie Mellon

Example of an HTTP Transaction, Take 2

unix> telnet www.cmu.edu 80
Trying 128.2.10.162...
Connected to www.cmu.edu.
Escape character is "~]".
GET /index.shtml HTTP/1.1
host: www.cmu.edu

Client: open connection to server
Telnet prints 3 lines to the terminal

Client: request line

Client; required HTTP/1.1 HOST header
Client: empty line terminates headers .
HTTP/1.1 200 OK Server: responds with web page
Date: Fri, 29 Oct 2010 19:41:08 GMT

Server: Apache/1.3.39 (Unix) mod_pubcookie/3.3.3 ...
Transfer-Encoding: chunked

Content-Type: text/html

- Lots of stuff

Connection closed by foreign host. Server: closes connection

unix> Client: closes connection and terminates

1n

Carnegie Mellon

HTTP Requests

m HTTP request is a request line, followed by zero or more
request headers

m Request line: <method> <uri> <version>

= <method> isoneof GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE

= <uri>is typically URL for proxies, URL suffix for servers
= A URLis a type of URI (Uniform Resource Identifier)
= See http://www.ietf.org/rfc/rfc2396.txt
= <version>is HTTP version of request (HTTP/1.0 or HTTP/1.1)

12

HTTP Requests (cont)

m HTTP methods:
= GET: Retrieve static or dynamic content
= Arguments for dynamic content are in URI
= Workhorse method (99% of requests)
= POST: Retrieve dynamic content
= Arguments for dynamic content are in the request body
= OPTIONS: Get server or file attributes
= HEAD: Like GET but no data in response body
= PUT: Write a file to the server!
= DELETE: Delete a file on the server!
= TRACE: Echo request in response body
= Useful for debugging
m Request headers: <header name>: <header data>
® Provide additional information to the server

13

Carnegie Mellon

HTTP Versions

m Major differences between HTTP/1.1 and HTTP/1.0
= HTTP/1.0 uses a new connection for each transaction
= HTTP/1.1 also supports persistent connections
= multiple transactions over the same connection
= Connection: Keep-Alive
= HTTP/1.1 requires HOST header
= Host: www.cmu.edu
= Makes it possible to host multiple websites at single Internet host
= HTTP/1.1 supports chunked encoding (described later)
= Transfer-Encoding: chunked
= HTTP/1.1 adds additional support for caching

14

Carnegie Mellon

HTTP Responses

m HTTP response is a response line followed by zero or more
response headers, possibly followed by data
m Response line:
<version> <status code> <status msg>
= <version> is HTTP version of the response
= <status code> is numeric status
= <status msg> is corresponding English text
= 200 OK
= 301 Moved
= 403 Forbidden
= 404 Not found Server couldn’t find the file
m Response headers: <header name>: <header data>
= Provide additional information about response
= Content-Type: MIME type of content in response body
= Content-Length: Length of content in response body

Request was handled without error
Provide alternate URL
Server lacks permission to access file

15

Carnegie Mellon

GET Request to Apache Server
From Firefox Browser

URI is just the suffix, not the entire URL

GET |/~bryant/test.html [HTTP/1.1

Host: www.cs.cmu.edu

User-Agent: Mozillas5.0 (Windows; U; Windows NT 6.0; en-US;
rv:1.9.2.11) Gecko/20101012 Firefox/3.6.11

Accept:

text/html ,application/xhtml+xml,application/xml;q=0.9,*/*;9=0.8
Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 1S0-8859-1,utf-8;9=0.7,*;0=0.7

Keep-Alive: 115

Connection: keep-alive

CRLF (\r\n)

16

GET Response From Apache Server

HTTP/1.1 200 OK

Date: Fri, 29 Oct 2010 19:48:32 GMT
Server: Apaches/2.2.14 (Unix) mod_ssl/2.2.14 OpenSSL/0.9.7m
mod_pubcookie/3.3.2b PHP/5.3.1
Accept-Ranges: bytes

Content-Length: 479

Keep-Alive: timeout=15, max=100
Connection: Keep-Alive

Content-Type: text/html

<html>

<head><title>Some Tests</title></head>

<body>
<h1>Some Tests</hl>
</body>
</html>

17

Tiny Web Server

m Tiny Web server described in text
® Tiny is a sequential Web server
= Serves static and dynamic content to real browsers
= text files, HTML files, GIF and JPEG images
= 226 lines of commented C code
= Not as complete or robust as a real web server

18

Carnegie Mellon

Tiny Operation

Accept connection from client

Read request from client (via connected socket)

Split into method / uri / version
" |f not GET, then return error

If URI contains “cgi-bin” then serve dynamic content
= (Would do wrong thing if had file “abcgi-bingo.html”)

= Fork process to execute program

m Otherwise serve static content
= Copy file to output

19

Carnegie Mellon

Tiny Serving Static Content

/* Send response headers to client */
get_filetype(filename, filetype);
sprintf(buf, "HTTP/1.0 200 OK\r\n'");
sprintf(buf, "%sServer: Tiny Web Server\r\n, buf);
sprintf(buf, "%sContent-length: %d\r\n", buf, Ffilesize);
sprintf(buf, "%sContent-type: %s\r\n\r\n‘,

buf, filetype);
Rio_writen(fd, buf, strlen(buf));

From tiny.c

/* Send response body to client */

srcfd = Open(filename, O_RDONLY, 0);

srcp = Mmap(0O, filesize, PROT_READ, MAP_PRIVATE, srcfd, 0);
Close(srcfd);

Rio_writen(fd, srcp, Filesize);

Munmap(srcp, filesize);

= Serve file specified by Fi lename
= Use file metadata to compose header
= “Read” file via mmap

= Write to output
20

Carnegie Mellon

Serving Dynamic Content

m Client sends request to server GET /cgi-bin/env.pl HTTP/1.1

m If request URI contains the
string “/cgi-bin”, then the
server assumes that the
request is for dynamic content

Carnegie Mellon

Serving Dynamic Content (cont)

fork/exec

m The server creates a child
process and runs the
program identified by the
URI in that process

22

Carnegie Mellon

Serving Dynamic Content (cont)

m The child runs and generates
the dynamic content

Content

m The server captures the
content of the child and
forwards it without
modification to the client

23

Carnegie Mellon

Issues in Serving Dynamic Content

m How does the client pass program
arguments to the server?

m How does the server pass these
arguments to the child?

Request

m How does the server pass other info Content Create
relevant to the request to the child?

m How does the server capture the
content produced by the child?

m These issues are addressed by the
Common Gateway Interface (CGl)
specification.

24

Carnegie Mellon

CaGl

m Because the children are written according to the CGI
spec, they are often called CGI programs.

m Because many CGI programs are written in Perl, they are
often called CGI scripts.

m However, CGl really defines a simple standard for
transferring information between the client (browser),
the server, and the child process.

25

Carnegie Mellon

The add.com Experience

input URL host port CGl program args

& httpy/greatwhite.ics.cs.cmu.edu; 15}%9\ kinladderinl 15213&n] 18243 - Wingafis Internet Explorer ENT | B et
@\/ [] nttps/greatwhite.ics.cs.cmr ecu: 52 3/cgr-bin/addernl=152136n2= 18243 ~ [42] x || Googte o -
Eile Edit View Faverites Tools Help

Google [z] B search - @ - v | @ sharer | ® N+ Signin - | @Convert ~ [Select

¢l | @ nttpy/greatwhite.cs.cs.cmu.edu: 15213/ cgi-bin/a. . % v B v @ v [ZrPage v i Tooks v

Welcome to add com: THE Internet addition portal
I The answer 1s: 15213 + 18243 -» 33456

|| Thanks for visiting]

Done \ @ Intemet | Protected Made: On w100% v

Output page

26

Carnegie Mellon

Serving Dynamic Content With GET

m Question: How does the client pass arguments to the server?
m Answer: The arguments are appended to the URI

m Can be encoded directly in a URL typed to a browser or a URL
in an HTML link
= http://add.com/cgi-bin/adder?n1=15213&n2=18243
adder is the CGI program on the server that will do the addition.
= argument list starts with ““?”

® arguments separated by “&”’
= gspaces represented by “+”” or “%20”

27

Carnegie Mellon

Serving Dynamic Content With GET

= URL:
= cgi-bin/adder?n1=15213&n2=18243

m Result displayed on browser:

Welcome to add.com: THE Internet addition portal. The
answer is: 15213 + 18243 -> 33456
Thanks for visiting!

28

Serving Dynamic Content With GET

m Question: How does the server pass these arguments to
the child?

m Answer: In environment variable QUERY_STRING

= Asingle string containing everything after the “?”
® Foradd: QUERY_STRING = “n1=15213&n2=18243"

From adder.c

it ((buf = getenv("'QUERY_STRING'™)) I= NULL) {
if (sscanf(buf, ""n1=%d&n2=%d\n", &nl, &n2) == 2)
sprintf(msg, "%d + %d -> %d\n", nl, n2, nl+n2);
else
sprintf(msg, "Can"t parse buffer "%s"\n', buf);

29

Additional CGI Environment Variables

m General
= SERVER_SOFTWARE
= SERVER_NAME
= GATEWAY_INTERFACE (CGlI version)
m Request-specific
= SERVER_PORT
= REQUEST_METHOD (GET, POST, etc)
= QUERY_STRING (contains GET args)
= REMOTE_HOST (domain name of client)
= REMOTE_ADDR (IP address of client)

= CONTENT_TYPE (for POST, type of data in message body, e.g.,
text/html)

= CONTENT_LENGTH (length in bytes)

30

Even More CGI Environment Variables

m In addition, the value of each header of type type received
from the client is placed in environment variable HTTP__type
= Examples (any “-”
= HTTP_ACCEPT
« HTTP_HOST

« HTTP_USER_AGENT

is changedto “_"):

31

Serving Dynamic Content With GET

m Question: How does the server capture the content produced by the child?
m Answer: The child generates its output on stdout. Server uses dup2 to
redirect stdout to its connected socket.

= Notice that only the child knows the type and size of the content. Thus the child
(not the server) must generate the corresponding headers.

/* Make the response body */
sprintf(content, "Welcome to add.com: ');
sprintf(content, "%sSTHE Internet addition portal.\r\n<p>",

content);
sprintf(content, "%sThe answer is: %s\r\n<p>",
content, msg);
sprintf(content, "%sThanks for visiting!\r\n', content);

From adder.c

/* Generate the HTTP response */
printf(*"Content-length: %u\r\n', (unsigned) strlen(content));
printf("Content-type: text/htmI\r\n\r\n™);

printf("'%s', content);

32

Serving Dynamic Content With GET

linux> telnet greatwhite.ics.cs.cmu.edu 15213
Trying 128.2.220.10...
Connected to greatwhite.ics.cs.cmu.edu (128.2.220.10).
GET /cgi-bin/adder?n1=5&n2=27 HTTP/1.1
host: greatwhite.ics.cs.cmu.edu
<CRLF>
TTTHTTP/1I0 20000k T T T T TTTTTTTTTooTTTmTmmmmmmmmmmmmT
Server: Tiny Web Server
- T~ TContent-1€Mgth:~"I09 -~~~ ~ -~~~ ~~-"TTTTTTToT oo s s s s s e
Content-type: text/html

HTTP request sent by client

Welcome to add.com: THE Internet addition portal.
<p>The answer is: 5 + 27 -> 32

HTTP response generated by
<p>Thanks for visiting! the CGI program

Connection closed by foreign host.

33

Carnegie Mellon

Tiny Serving Dynamic Content

/* Return first part of HTTP response */
sprintf(buf, "HTTP/1.0 200 OK\r\n'");
Rio_writen(fd, buf, strlen(buf));
sprintf(buf, "Server: Tiny Web Server\r\n');
Rio_writen(fd, buf, strlen(buf));

From tiny.c

if (Fork() == 0) { /7* child */
/* Real server would set all CGI vars here */
setenv(""'QUERY_STRING", cgiargs, 1);
Dup2(fd, STDOUT_FILENO); /* Redirect stdout to client */
Execve(filename, emptylist, environ);/* Run CGl prog */

Wait(NULL); /* Parent waits for and reaps child */

= Fork child to execute CGI program
® Change stdout to be connection to client
= Execute CGIl program with execve

34

Carnegie Mellon

What really happens today?

m Web page is a misnomer.
= www.facebook.com -> 114 requests!
= Documents (2)
= Images (79)
= Scripts (18)
= AJAX (8)
= www.linkedin.com -> 123 requests!
m Browser is a way to render the front-end of an
application, “web” is an application framework
= client-side programming, e.g., javascript, AJAX
= Server-side programming, e.g., ruby, php, nodejs
= Database programming, e.g., sql, nosqgl

35

Carnegie Mellon

Web 1.0

client

User clic¥ Browser
onlink renders page

—>

Request
sent

server

— —> —>

Server
processing

36

Carnegie Mellon

Web 2.0
Browser
client renders page
User clicv Browserruns User does
on link javascript something
Request
sent AJAX JSON
request response
server

T > >

Server
processing

37

Carnegie Mellon

AJAX

Asynchronous JavaScript and XML (AJAX)

= A collection of client-side technologies that support interactive
web applications

= The key is are asynchronous requests to the server to get and
store data without having to reload the page

Nothing more than a network request over http
= XMLHttpRequest object suppored in all major browsers
Made through javascript calls running in the client

Typically returned data in either XML, or, even
more likely JSON

38

Carnegie Mellon

JSON: Javascript Object Notation

m JavaScript-friendly notation
= |ts main application is in Ajax Web application programming.
m A method of serializing an object

m Represents a simple alternative to XML

= A text-based, human-readable format for representing simple
data structures and associative arrays (called objects).

m Used by a growing number of services

39

Carnegie Mellon

JSON: Datatypes

= Number integer or floating point

m String double-quoted Unicode with backslash
escaping

m Boolean true and false

m Array an ordered sequence of values,
comma-separated and
enclosed in square brackets

m Object collection of key:value pairs,

comma-separated and
enclosed in curly braces

m null

40

Carnegie Mellon

JSON: Example
{

"FirstName': ""John",

"lastName": "Smith",

"age': 19,

"address": {
"street': ""5000 Forbes Ave",
“city": "Pittsburgh",
"state'': "'PA",
“'zip™: "15213"

}

honeNumbers™": [
{ Ttype": "home", "number': "412 555-1234" },
{ Ttype": "cell", "number': 412 555-4567" }
1

"enrolled": false,
"previous™: null

41

Carnegie Mellon

Our simple adder for web 2.0

m Introduce form to gather operands of add

m When user hits submit, javascript sends back an ajax
request

/a/add/15213/18243

m Server parses URI and executes add script and returns

{""status’': 0, ""result’'": 3346 }

m Client-side javascript processes result and renders result

42

Carnegie Mellon

Our initial web page

<HTML>

<HEAD>
<script type=""text/javascript'” src="jquery.min.js"></scr
<script type=""text/javascript'” src="adding.js''></script>

</HEAD>

<body>

<hl>Welcome to add.com</h1>

<p>THE Internet addition portal.</p>

n: <input type="input" length="5" id="n"></br>
m: <input type="input"” length="5" id="m"></br>
<input type="button" id="doit" value="add"></br>
result is:

</body>

</HTML>

43

Carnegie Mellon

Our client-side javascript

$(document) .ready(function() {

$("#doit™).click(function() {

var n=$("#n").val();

var m=$("#m").val(Q;

$.ajax({ url: "/a/add/"+n+"/"+m,
cache: false,
dataType: "json”,
success: function(reply) {

$("#result™) .empty();

$("#result®) . append(reply.result);
}
b:

D:;

Carnegie Mellon

Our server loop

var http = require("http~);
var url = require('url™);
var fs = require("fs");

http.createServer(function (req, res) {
var reqdata = url.parse(req.url, true);
var args = reqdata.pathname.split("/");
console.log("request: %j", args);
processReq(reqgdata.pathname, args, res);

P -listen(8896, "127.0.0.1%);

console_log("Server running at http://127.0.0.1:8896/");

45

Carnegie Mellon

Processing requests

function processReq(pathname, args, res) {
if (args[1] == "a") {
res.writeHead(200, {''Content-Type'": "application/json"});
if (args[2] == "add") {
var r=parselnt(args[3], 10)+parselnt(args[4], 10);
res.write(JSON.stringify({status: 0, result:r}));
} else {
res.write(JSON.stringify({status: 1}));
}
res.end();
} else {
fs.readFile("../www"+pathname, "binary", function(err, file) {
res.writeHead(200, { "Content-Type": "text/html"});
res.write(file);
res.end();
;s
}

T 46

Carnegie Mellon

Proxies

m A proxy is an intermediary between a client and an origin server
= To the client, the proxy acts like a server
= To the server, the proxy acts like a client

1. Client request - 2. Proxy request
Client (?‘D (Qrgin

4. Proxy response 3. Server response

47

Carnegie Mellon

Why Proxies?

m Can perform useful functions as requests and responses pass by
= Examples: Caching, logging, anonymization, filtering, transcoding

Request foo.html

Request foo. html

Origin
foo._html Server

Request foo.ht
Slower more
expensive
global network

Fast inexpensive local network

48

Carnegie Mellon

Two types of web proxy

m Explicit (browser-known) proxies
= Used by configuring browser to send requests to proxy
® Each request specifies entire URL
= allowing proxy to know target server
m Transparent proxies
= Browser/client behaves as though there is no proxy

® Proxy runs on network component in route between client and
server

= intercepting and interposing on web requests

49

For More Information

m Study the Tiny Web server described in your text
= Tiny is a sequential Web server.
= Serves static and dynamic content to real browsers.
= text files, HTML files, GIF and JPEG images.
= 220 lines of commented C code.

= Also comes with an implementation of the CGlI script for the add.com
addition portal.

m See the HTTP/1.1 standard:
= http://www.w3.0org/Protocols/rfc2616/rfc2616.html

50

Data Transfer Mechanisms

m Standard
= Specify total length with content-length
= Requires that program buffer entire message

m Chunked

= Break into blocks
= Prefix each block with number of bytes (Hex coded)

51

Chunked Encoding Example

HTTP/1.1 200 OK\n

Date: Sun, 31 Oct 2010 20:47:48 GMT\n
Server: Apache/1.3.41 (Unix)\n
Keep-Alive: timeout=15, max=100\n
Connection: Keep-Alive\n
Transfer-Encoding: chunked\n
Content-Type: text/htmi\n

L\r\n

GRS First Chunk: 0xd75 = 3445 bytes

(<head>
.<link href="http://www.cs.cmu.edu/style/calendar.css™ rel="stylesheet"
type=""text/css">

</head>

< <body id="calendar_body"'>

<div id="calendar"><table width="100%" border="0" cellpadding="0~
cellspacing="1" id="cal">

</body>

</html>
L\r\n
% Yaulll| Second Chunk: 0 bytes (indicates last chunk)

52

Carnegie Mellon

URLs

m Each file managed by a server has a unique name called a URL
(Universal Resource Locator)
m URLs for static content:
= http://www.cs.cmu.edu:80/index.html
= http://www.cs.cmu.edu/index._html
= http://www.cs.cmu.edu

= |dentifies a file called index.html, managed by a Web server at
WWW . CS .Cmu . edu that is listening on port 80

m URLs for dynamic content:

" http://www.cs.cmu.edu:8000/cgi-bin/proc?15000&213

= |dentifies an executable file called proc, managed by a Web server at
WWW . CS.cmu . edu that is listening on port 8000, that should be
called with two argument strings: 15000 and 213

m Today distinction is really meaningless!

53

Carnegie Mellon

Internet Hosts

Internet Domain Survey Host Count

400,000,000 +
G00,000,000 +
700,000,000 +
E00.000.000 +
500,000,000 +
400,000,000 +
300,000,000 +
200,000,000 +
100,000,000 +

0

~
=

Jan-34 &
Jan-95
Jan-96
Jan-97
Jan-95
Jan-99
Jan-00
Jan-01
Jar-02
Jar-03
Jan-04
Jar-05
Jar-06
Jan-08
Jan-09
Jan-10

=
[ix]
K]
Source: Internet Systems Consortium [www.isc_org)

= How many of the 232 IP addresses have registered domain names?

54

Carnegie Mellon

55

Carnegie Mellon
- » Relational normalization |

_ Structured programming:
. » Software patterns '

 « Object-oriented design :
- « Functional decompositiorj

i | Client Hardware | o)

g;'; | Web Browser | (1E, Firefox)
é) | Client-side Programming | (JavaScript)
§;-; | Interchange Language RGLY B
; i | Server-side Programming \ (PHP)

§ - | Database ® | (MySQL)

| Server Hardware | (Pc, unix)

56

Carnegie Mellon

Conceptual Overview

Representational State Transfer (REST)

m Representational State Transfer (REST)
= A style of software architecture for distributed hypermedia
systems such as the World Wide Web.
m REST is basically client/server architectural style

= Requests and responses are built around the transfer of
"representations" of "resources".

m Architectural style means
= Set of architectural constraints.
= Not a concrete architecture.
= An architecture may adopt REST constraints.
m HTTP is the main and the best example of a REST
style implementation
= But it should not be confused with REST

57

Carnegie Mellon

Technologies

m Todays’s set of technologies, protocols and
languages used to apply RESTful paradigm:
= HTTP as the basis
= XML and JSON for data exchange
= AJAX for client-side programming (e.g. browser)

m There exists an attempt to develop WSDL-like
definition language for describing RESTful
services

= Web Application Description Language (WADL)

58

