
Carnegie Mellon

1

Network Programming

15-213 / 18-213: Introduction to Computer Systems
21st Lecture, April 4, 2013

Instructors:

Anthony Rowe, Seth Goldstein, and Greg Kesden

Carnegie Mellon

2

A Programmer’s View of the Internet

 Hosts are mapped to a set of 32-bit IP addresses
 128.2.217.13

 The set of IP addresses is mapped to a set of identifiers
called Internet domain names
 128.2.217.13 is mapped to www.cs.cmu.edu

 A process on one Internet host can communicate with a
process on another Internet host over a connection

Carnegie Mellon

3

Internet Connections
 Clients and servers communicate by sending streams of bytes

over connections:
 Point-to-point, full-duplex (2-way communication), and reliable

 A socket is an endpoint of a connection
 Socket address is an IPaddress:port pair

 A port is a 16-bit integer that identifies a process:
 Ephemeral port: Assigned automatically on client when client makes a

connection request

 Well-known port: Associated with some service provided by a server
(e.g., port 80 is associated with Web servers)

 A connection is uniquely identified by the socket addresses
of its endpoints (socket pair)
 (cliaddr:cliport, servaddr:servport)

Carnegie Mellon

4

Anatomy of an Internet Connection

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80)

Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

51213 is an ephemeral port
allocated by the kernel

80 is a well-known port
associated with Web servers

Carnegie Mellon

5

A Client-Server Transaction

Client
process

Server
process

1. Client sends request

2. Server
handles
request

3. Server sends response 4. Client
handles

response

Resource

 Most network applications are based on the client-server
model:
 A server process and one or more client processes

 Server manages some resource

 Server provides service by manipulating resource for clients

 Server activated by request from client (vending machine analogy)

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

Carnegie Mellon

6

Clients

 Examples of client programs
 Web browsers, ftp, telnet, ssh

 How does a client find the server?
 The IP address in the server socket address identifies the host

(more precisely, an adapter on the host)

 The (well-known) port in the server socket address identifies the
service, and thus implicitly identifies the server process that performs
that service.

 Examples of well know ports

 Port 7: Echo server

 Port 23: Telnet server

 Port 25: Mail server

 Port 80: Web server

Carnegie Mellon

7

Using Ports to Identify Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client

Carnegie Mellon

8

Servers

 Servers are long-running processes (daemons)
 Created at boot-time (typically) by the init process (process 1)

 Run continuously until the machine is turned off

 Each server waits for requests to arrive on a well-known port
associated with a particular service
 Port 7: echo server

 Port 23: telnet server

 Port 25: mail server

 Port 80: HTTP server

 A machine that runs a server process is also often referred to
as a “server”

Carnegie Mellon

9

Server Examples
 Web server (port 80)

 Resource: files/compute cycles (CGI programs)

 Service: retrieves files and runs CGI programs on behalf of the client

 FTP server (20, 21)
 Resource: files

 Service: stores and retrieve files

 Telnet server (23)
 Resource: terminal

 Service: proxies a terminal on the server machine

 Mail server (25)
 Resource: email “spool” file

 Service: stores mail messages in spool file

See /etc/services for a
comprehensive list of the port
mappings on a Linux machine

Carnegie Mellon

10

Sockets Interface

 Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of the
Internet protocols

 Provides a user-level interface to the network

 Underlying basis for all Internet applications

 Based on client/server programming model

Carnegie Mellon

11

Sockets

 What is a socket?
 To the kernel, a socket is an endpoint of communication

 To an application, a socket is a file descriptor that lets the
application read/write from/to the network

 Remember: All Unix I/O devices, including networks, are
modeled as files

 Clients and servers communicate with each other by
reading from and writing to socket descriptors

 The main distinction between regular file I/O and socket
I/O is how the application “opens” the socket descriptors

Client

clientfd

Server

serverfd

Carnegie Mellon

12

Client /
Server
Session

Overview of the Sockets Interface
Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

Carnegie Mellon

13

Socket Address Structures

 Generic socket address:
 For address arguments to connect, bind, and accept

 Necessary only because C did not have generic (void *) pointers
when the sockets interface was designed

struct sockaddr {

 unsigned short sa_family; /* protocol family */

 char sa_data[14]; /* address data. */

};

sa_family

Family Specific

Carnegie Mellon

14

Socket Address Structures

 Internet-specific socket address:
 Must cast (sockaddr_in *) to (sockaddr *) for connect,
bind, and accept

0 0 0 0 0 0 0 0

sa_family

Family Specific

struct sockaddr_in {

 unsigned short sin_family; /* address family (always AF_INET) */

 unsigned short sin_port; /* port num in network byte order */

 struct in_addr sin_addr; /* IP addr in network byte order */

 unsigned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */

};

sin_port

AF_INET

sin_addr

sin_family

Carnegie Mellon

15

Example: Echo Client and Server

greatwhite> ./echoserveri 15213

On Server On Client

Connection closed

server received 12 bytes

server connected to BRYANT-TP4.VLSI.CS.CMU.EDU

(128.2.213.29), port 64690

echo: HELLO THERE

type: ^D

type: hello there

linux> echoclient greatwhite.ics.cs.cmu.edu 15213

Carnegie Mellon

16

Echo Client Main Routine
#include "csapp.h"

/* usage: ./echoclient host port */

int main(int argc, char **argv)

{

 int clientfd, port;

 char *host, buf[MAXLINE];

 rio_t rio;

 host = argv[1]; port = atoi(argv[2]);

 clientfd = Open_clientfd(host, port);

 Rio_readinitb(&rio, clientfd);

 printf("type:"); fflush(stdout);

 while (Fgets(buf, MAXLINE, stdin) != NULL) {

 Rio_writen(clientfd, buf, strlen(buf));

 Rio_readlineb(&rio, buf, MAXLINE);

 printf("echo:");

 Fputs(buf, stdout);

 printf("type:"); fflush(stdout);

 }

 Close(clientfd);

 exit(0);

}

Send line to
server

Receive line
from server

Read input
line

Print server
response

Carnegie Mellon

17

Overview of the Sockets Interface

Client Server

socket socket

bind

listen

Connection
request

open_listenfd

open_clientfd

accept connect

Carnegie Mellon

18

Echo Client: open_clientfd
int open_clientfd(char *hostname, int port) {

 int clientfd;

 struct hostent *hp;

 struct sockaddr_in serveraddr;

 if ((clientfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)

 return -1; /* check errno for cause of error */

 /* Fill in the server's IP address and port */

 if ((hp = gethostbyname(hostname)) == NULL)

 return -2; /* check h_errno for cause of error */

 bzero((char *) &serveraddr, sizeof(serveraddr));

 serveraddr.sin_family = AF_INET;

 bcopy((char *)hp->h_addr_list[0],

 (char *)&serveraddr.sin_addr.s_addr, hp->h_length);

 serveraddr.sin_port = htons(port);

 /* Establish a connection with the server */

 if (connect(clientfd, (SA *) &serveraddr,

 sizeof(serveraddr)) < 0)

 return -1;

 return clientfd;

}

This function opens a connection
from the client to the server at
hostname:port

Create
socket

Create
address

Establish
connection

Carnegie Mellon

19

Echo Client: open_clientfd
(socket)

int clientfd; /* socket descriptor */

if ((clientfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)

 return -1; /* check errno for cause of error */

... <more>

 socket creates a socket descriptor on the client
 Just allocates & initializes some internal data structures

 AF_INET: indicates that the socket is associated with Internet protocols

 SOCK_STREAM: selects a reliable byte stream connection

 provided by TCP

Carnegie Mellon

20

Echo Client: open_clientfd
(gethostbyname)

 The client then builds the server’s Internet address

int clientfd; /* socket descriptor */

struct hostent *hp; /* DNS host entry */

struct sockaddr_in serveraddr; /* server’s IP address */

...

/* fill in the server's IP address and port */

if ((hp = gethostbyname(hostname)) == NULL)

 return -2; /* check h_errno for cause of error */

bzero((char *) &serveraddr, sizeof(serveraddr));

serveraddr.sin_family = AF_INET;

serveraddr.sin_port = htons(port);

bcopy((char *)hp->h_addr_list[0],

 (char *)&serveraddr.sin_addr.s_addr, hp->h_length);

Check
this out!

Carnegie Mellon

21

A Careful Look at bcopy Arguments
/* DNS host entry structure */

struct hostent {

 . . .

 int h_length; /* length of an address, in bytes */

 char **h_addr_list; /* null-terminated array of in_addr structs */

};

struct hostent *hp; /* DNS host entry */

struct sockaddr_in serveraddr; /* server’s IP address */

...

bcopy((char *)hp->h_addr_list[0], /* src, dest */

 (char *)&serveraddr.sin_addr.s_addr, hp->h_length);

struct sockaddr_in {

 . . .

 struct in_addr sin_addr; /* IP addr in network byte order */

 . . .

}; /* Internet address structure */

struct in_addr {

 unsigned int s_addr; /* network byte order (big-endian) */

};

Carnegie Mellon

22

Bcopy Argument Data Structures

0 0 0 0 0 0 0 0

sin_port

AF_INET

sin_addr sin_family

struct sockaddr_in

struct in_addr s_addr

0

h_length h_addr_list

struct hostent

struct

in_addr

s_addr

s_addr

. . .

Carnegie Mellon

23

Echo Client: open_clientfd
(connect)

 Finally the client creates a connection with the server
 Client process suspends (blocks) until the connection is created

 After resuming, the client is ready to begin exchanging messages with the
server via Unix I/O calls on descriptor clientfd

 int clientfd; /* socket descriptor */

 struct sockaddr_in serveraddr; /* server address */

 typedef struct sockaddr SA; /* generic sockaddr */

...

 /* Establish a connection with the server */

 if (connect(clientfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)

 return -1;

 return clientfd;

}

Carnegie Mellon

24

Echo Server: Main Routine
int main(int argc, char **argv) {

 int listenfd, connfd, port, clientlen;

 struct sockaddr_in clientaddr;

 struct hostent *hp;

 char *haddrp;

 unsigned short client_port;

 port = atoi(argv[1]); /* the server listens on a port passed

 on the command line */

 listenfd = open_listenfd(port);

 while (1) {

 clientlen = sizeof(clientaddr);

 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

 hp = Gethostbyaddr((const char *)&clientaddr.sin_addr.s_addr,

 sizeof(clientaddr.sin_addr.s_addr), AF_INET);

 haddrp = inet_ntoa(clientaddr.sin_addr);

 client_port = ntohs(clientaddr.sin_port);

 printf("server connected to %s (%s), port %u\n",

 hp->h_name, haddrp, client_port);

 echo(connfd);

 Close(connfd);

 }

}

Carnegie Mellon

25

Overview of the Sockets Interface

 Office Telephone Analogy for Server
 Socket: Buy a phone

 Bind: Tell the local administrator what number you want to use

 Listen: Plug the phone in

 Accept: Answer the phone when it rings

Client Server

socket socket

bind

listen

Connection
request

open_listenfd

open_clientfd

accept connect

Carnegie Mellon

26

Echo Server: open_listenfd

int open_listenfd(int port)

{

 int listenfd, optval=1;

 struct sockaddr_in serveraddr;

 /* Create a socket descriptor */

 if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)

 return -1;

 /* Eliminates "Address already in use" error from bind. */

 if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,

 (const void *)&optval , sizeof(int)) < 0)

 return -1;

... <more>

Carnegie Mellon

27

Echo Server: open_listenfd (cont.)

...

 /* Listenfd will be an endpoint for all requests to port

 on any IP address for this host */

 bzero((char *) &serveraddr, sizeof(serveraddr));

 serveraddr.sin_family = AF_INET;

 serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);

 serveraddr.sin_port = htons((unsigned short)port);

 if (bind(listenfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)

 return -1;

 /* Make it a listening socket ready to accept

 connection requests */

 if (listen(listenfd, LISTENQ) < 0)

 return -1;

 return listenfd;

}

Carnegie Mellon

28

 socket creates a socket descriptor on the server
 AF_INET: indicates that the socket is associated with Internet protocols

 SOCK_STREAM: selects a reliable byte stream connection (TCP)

Echo Server: open_listenfd
(socket)

int listenfd; /* listening socket descriptor */

/* Create a socket descriptor */

if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)

 return -1;

Carnegie Mellon

29

Echo Server: open_listenfd
(setsockopt)

 The socket can be given some attributes

 Handy trick that allows us to rerun the server immediately
after we kill it
 Otherwise we would have to wait about 15 seconds

 Eliminates “Address already in use” error from bind()

 Strongly suggest you do this for all your servers to simplify
debugging

...

/* Eliminates "Address already in use" error from bind(). */

if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,

 (const void *)&optval , sizeof(int)) < 0)

 return -1;

Carnegie Mellon

30

Echo Server: open_listenfd
(initialize socket address)

 Initialize socket with server port number

 Accept connection from any IP address

 IP addr and port stored in network (big-endian) byte order

 struct sockaddr_in serveraddr; /* server's socket addr */

...

 /* listenfd will be an endpoint for all requests to port

 on any IP address for this host */

 bzero((char *) &serveraddr, sizeof(serveraddr));

 serveraddr.sin_family = AF_INET;

 serveraddr.sin_port = htons((unsigned short)port);

 serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);

0 0 0 0 0 0 0 0

sa_family

sin_port

AF_INET

sin_addr

INADDR_ANY

sin_family

Carnegie Mellon

31

Echo Server: open_listenfd
(bind)

 bind associates the socket with the socket address we just
created

int listenfd; /* listening socket */

struct sockaddr_in serveraddr; /* server’s socket addr */

...

 /* listenfd will be an endpoint for all requests to port

 on any IP address for this host */

 if (bind(listenfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)

 return -1;

Carnegie Mellon

32

Echo Server: open_listenfd
(listen)

 listen indicates that this socket will accept connection
(connect) requests from clients

 LISTENQ is constant indicating how many pending requests
allowed

 We’re finally ready to enter the main server loop that
accepts and processes client connection requests.

int listenfd; /* listening socket */

...

 /* Make it a listening socket ready to accept connection requests */

 if (listen(listenfd, LISTENQ) < 0)

 return -1;

 return listenfd;

}

Carnegie Mellon

33

Echo Server: Main Loop

 The server loops endlessly, waiting for connection
requests, then reading input from the client, and echoing
the input back to the client.

main() {

 /* create and configure the listening socket */

 while(1) {

 /* Accept(): wait for a connection request */

 /* echo(): read and echo input lines from client til EOF */

 /* Close(): close the connection */

 }

}

Carnegie Mellon

34

Client /
Server
Session

Overview of the Sockets Interface
Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

Carnegie Mellon

35

Echo Server: accept

int listenfd; /* listening descriptor */

int connfd; /* connected descriptor */

struct sockaddr_in clientaddr;

int clientlen;

clientlen = sizeof(clientaddr);

connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

 accept() blocks waiting for a connection request

 accept returns a connected descriptor (connfd) with
the same properties as the listening descriptor
(listenfd)

 Returns when the connection between client and server is created
and ready for I/O transfers

 All I/O with the client will be done via the connected socket

 accept also fills in client’s IP address

Carnegie Mellon

36

Echo Server: accept Illustrated
listenfd(3)

Client
1. Server blocks in accept,
waiting for connection request
on listening descriptor
listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection request by
calling and blocking in connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from
accept. Client returns from connect.
Connection is now established between
clientfd and connfd

connfd(4)

Carnegie Mellon

37

Connected vs. Listening Descriptors

 Listening descriptor
 End point for client connection requests

 Created once and exists for lifetime of the server

 Connected descriptor
 End point of the connection between client and server

 A new descriptor is created each time the server accepts a
connection request from a client

 Exists only as long as it takes to service client

 Why the distinction?
 Allows for concurrent servers that can communicate over many

client connections simultaneously

 E.g., Each time we receive a new request, we fork a child to
handle the request

Carnegie Mellon

38

Echo Server: Identifying the Client

 The server can determine the domain name, IP address,
and port of the client

struct hostent *hp; /* pointer to DNS host entry */

char *haddrp; /* pointer to dotted decimal string */

unsigned short client_port;

hp = Gethostbyaddr((const char *)&clientaddr.sin_addr.s_addr,

 sizeof(clientaddr.sin_addr.s_addr), AF_INET);

haddrp = inet_ntoa(clientaddr.sin_addr);

client_port = ntohs(clientaddr.sin_port);

printf("server connected to %s (%s), port %u\n",

 hp->h_name, haddrp, client_port);

Carnegie Mellon

39

Echo Server: echo

void echo(int connfd)

{

 size_t n;

 char buf[MAXLINE];

 rio_t rio;

 Rio_readinitb(&rio, connfd);

 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {

 upper_case(buf);

 Rio_writen(connfd, buf, n);

 printf("server received %d bytes\n", n);

 }

}

 The server uses RIO to read and echo text lines until EOF
(end-of-file) is encountered.
 EOF notification caused by client calling close(clientfd)

Carnegie Mellon

40

Testing Servers Using telnet

 The telnet program is invaluable for testing servers
that transmit ASCII strings over Internet connections
 Our simple echo server

 Web servers

 Mail servers

 Usage:
 unix> telnet <host> <portnumber>

 Creates a connection with a server running on <host> and
listening on port <portnumber>

Carnegie Mellon

41

Testing the Echo Server With telnet

greatwhite> echoserver 15213

linux> telnet greatwhite.ics.cs.cmu.edu 15213

Trying 128.2.220.10...

Connected to greatwhite.ics.cs.cmu.edu.

Escape character is '^]'.

hi there

HI THERE

Carnegie Mellon

42

For More Information

 W. Richard Stevens, “Unix Network Programming:
Networking APIs: Sockets and XTI”, Volume 1, Second
Edition, Prentice Hall, 1998
 THE network programming bible

 Unix Man Pages
 Good for detailed information about specific functions

 Complete versions of the echo client and server are
developed in the text
 Updated versions linked to course website

 Feel free to use this code in your assignments

Carnegie Mellon

43

Watching Echo Client / Server

Carnegie Mellon

44

Ethical Issues
 Packet Sniffer

 Program that records network traffic visible at node

 Promiscuous mode: Record traffic that does not have this host as
source or destination

 University Policy

Network Traffic: Network traffic should be considered private. Because of this,

any "packet sniffing", or other deliberate attempts to read network information

which is not intended for your use will be grounds for loss of network

privileges for a period of not less than one full semester. In some cases, the

loss of privileges may be permanent. Note that it is permissable to run a packet

sniffer explicitely configured in non-promiscuous mode (you may sniff packets

going to or from your machine). This allows users to explore aspects of
networking while protecting the privacy of others.

