Carnegie Mellon

Network Programming

15-213 / 18-213: Introduction to Computer Systems
215t Lecture, April 4, 2013

Instructors:
Anthony Rowe, Seth Goldstein, and Greg Kesden

Carnegie Mellon

A Programmer’s View of the Internet

m Hosts are mapped to a set of 32-bit /P addresses
= 128.2.217.13

m The set of IP addresses is mapped to a set of identifiers
called Internet domain names

= 128.2.217.13 is mapped to www.cs.cmu.edu

m A process on one Internet host can communicate with a
process on another Internet host over a connection

Internet Connections

m Clients and servers communicate by sending streams of bytes
over connections:

= Point-to-point, full-duplex (2-way communication), and reliable

m A socket is an endpoint of a connection
= Socket address is an IPaddress:port pair

m A portis a 16-bit integer that identifies a process:

= Ephemeral port: Assigned automatically on client when client makes a
connection request

= Well-known port: Associated with some service provided by a server
(e.g., port 80 is associated with Web servers)

m A connection is uniquely identified by the socket addresses
of its endpoints (socket pair)

" (cliaddr:cliport, servaddr:servport)

Carnegie Mellon

Anatomy of an Internet Connection

Client socket address Server socket address
128.2.194.242:51213 :80
/ \ Server
Connection socket pair (port 80)
(128.2.194.242:51213, :80)

Client host address Server host address
128.2.194.242

51213 is an ephemeral port 80 is a well-known port
allocated by the kernel associated with Web servers

Carnegie Mellon

A Client-Server Transaction

1. Client sends request

Client) Server

Resource

process / process

4. Client 3. Server sends response 2. Server
handles handles
response request

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

m Most network applications are based on the client-server
model:
= A server process and one or more client processes
= Server manages some resource
= Server provides service by manipulating resource for clients
= Server activated by request from client (vending machine analogy)

Carnegie Mellon

Clients

m Examples of client programs
= Web browsers, £tp, telnet, ssh

m How does a client find the server?

® The IP address in the server socket address identifies the host
(more precisely, an adapter on the host)

= The (well-known) port in the server socket address identifies the
service, and thus implicitly identifies the server process that performs
that service.

= Examples of well know ports
= Port 7: Echo server
= Port 23: Telnet server
= Port 25: Mail server
= Port 80: Web server

Carnegie Mellon

Using Ports to Identify Services

Server host 128.2.194.242

Client host Service request for
128.2.194.242:80

(i.e., the Web server)
Client

Web server
(port 80)

Kernel

) 4

Echo server
(port 7)

Service request for
128.2.194.242:7

) (i.e., the echo server)
Client

Web server
(port 80)

) 4

Kernel

Echo server
(port 7)

Carnegie Mellon

Servers

m Servers are long-running processes (daemons)
= Created at boot-time (typically) by the init process (process 1)
= Run continuously until the machine is turned off

m Each server waits for requests to arrive on a well-known port
associated with a particular service
" Port 7: echo server
= Port 23: telnet server
" Port 25: mail server
Port 80: HTTP server

m A machine that runs a server process is also often referred to
as a “server”

Carnegie Mellon

Server Examples
m Web server (port 80)

= Resource: files/compute cycles (CGI programs)
= Service: retrieves files and runs CGI programs on behalf of the client

m FTP server (20, 21) See /etc/services fora
= Resource: files comprehensive list of the port
= Service: stores and retrieve files mappings on a Linux machine

m Telnet server (23)
= Resource: terminal
= Service: proxies a terminal on the server machine

m Mail server (25)
® Resource: emai

Ill

spool” file
= Service: stores mail messages in spool file

Carnegie Mellon

Sockets Interface

m Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of the
Internet protocols

m Provides a user-level interface to the network
m Underlying basis for all Internet applications

m Based on client/server programming model

10

Carnegie Mellon

Sockets

m What is a socket?

= To the kernel, a socket is an endpoint of communication

"= To an application, a socket is a file descriptor that lets the
application read/write from/to the network

= Remember: All Unix I/O devices, including networks, are
modeled as files

m Clients and servers communicate with each other by
reading from and writing to socket descriptors

Client l‘ ‘l Server

clientfd serverfd

m The main distinction between regular file 1/0 and socket
1/0 is how the application “opens” the socket descriptors

1

Carnegie Mellon

Overview of the Sockets Interface

> open_listenfd

Await connection

request from
next client

Client Server
socket socket
bind
open clientfd < l
listen
Connection l
request
connect [~~~ ---—--- 4 accept <
v v
Client / rio_writen »rio readlinebi«
Server
. \4 v
Session rio_readlineb [« rio writen
\4 v
EOF

close

rio_readlineb

A 4

close

12

Socket Address Structures

m Generic socket address:
= For address arguments to connect, bind, and accept

= Necessary only because C did not have generic (void *) pointers
when the sockets interface was designed

struct sockaddr {
unsigned short sa family; /* protocol family */
char sa data[l4]; /* address data. */

};

sa family

~
Family Specific

13

Socket Address Structures

m Internet-specific socket address:

" Must cast (sockaddr in *)to(sockaddr *)for connect,
bind, and accept

struct sockaddr in {
unsigned short sin family; /* address family (always AF INET) */
unsigned short sin port; /* port num in network byte order */
struct in addr sin_addr; /* IP addr in network byte order */
unsigned char sin zero[8]; /* pad to sizeof (struct sockaddr) */

sin_port sin_addr

AF INET o(o0ol0|O0|O0O|O0O]O0]|O0

sa_family -

Family Specific

sin family

14

Example: Echo Client and Server

On Client On Server

greatwhite> ./echoserveri 15213

linux> echoclient greatwhite.ics.cs.cmu.edu 15213

server connected to BRYANT-TP4.VLSI.CS.CMU.EDU
(128.2.213.29), port 64690

type: hello there

server received 12 bytes

echo: HELLO THERE
type: “~D

Connection closed

15

Carnegie Mellon

Echo Client Main Routine

#include "csapp.h"

/* usage: ./echoclient host port */

int main(int argc, char **argv)

{ .
int clientfd, port; :?::d input
char *host, buf[MAXLINE];
rio t rio;
host = argv[l]; port = atoi(argv[2]);
clientfd = Open clientfd(host, port);

Rio readinitb(&rio, clientfd);

Send line to printf ("type:"); fflush(stdout);

server -~ while (Fgets(buf, MAXLINE, stdin) != NULL) {

Receive line \Rio_writen(clientfd, buf, strlen(buf)) ;

» Rio readlineb (&rio, buf, MAXLINE) ;
from server .
printf ("echo:") ;
Fputs (buf, stdout); <
printf ("type:"); fflush(stdout);

Print server
response

}
Close(clientfd) ;

exit(0) ;

16

Carnegie Mellon

Overview of the Sockets Interface

Client Server

socket socket

I

bind > open_listenfd

open_clientfd< l

listen

Connection l /

request
connect [~~~ ""TT--o-o- > accept

17

Echo Client: open clientfd

int open clientfd(char *hostname, int port) ({ |
int clientfd;

This function opens a connection

struct hostent *hp; from the client to the server at
struct sockaddr in serveraddr; hostname:port
if ((clientfd = socket (AF_INET, SOCK STREAM, 0)) < 0) Create
return -1; /* check errno for cause of error */ socket
/* Fill in the server's IP address and port */)
if ((hp = gethostbyname (hostname)) == NULL)
return -2; /* check h errno for cause of error */
bzero ((char *) &serveraddr, sizeof (serveraddr)) >Create
serveraddr.sin family = AF INET; address
bcopy ((char *)hp->h addr list[O0],
(char *) &serveraddr.sin addr.s addr, hp->h length);
serveraddr.sin port = htons(port); /
/* Establish a connection with the server */
if (connect(clientfd, (SA *) &serveraddr,
Establish

sizeof (serveraddr)) < 0)
return -1; connection

return clientfd;

18

Carnegie Mellon

Echo Client: open clientfd
(socket)

m socket creates a socket descriptor on the client
= Just allocates & initializes some internal data structures
" AF INET: indicates that the socket is associated with Internet protocols
" SOCK_STREAM: selects a reliable byte stream connection
= provided by TCP

int clientfd; /* socket descriptor */

if ((clientfd = socket (AF_INET, SOCK STREAM, 0)) < 0)
return -1; /* check errno for cause of error */

. <more>

19

Carnegie Mellon

Echo Client: open clientfd
(gethostbyname)

m The client then builds the server’s Internet address

int clientfd; /* socket descriptor */
struct hostent *hp; /* DNS host entry */
struct sockaddr in serveraddr; /* server’s IP address */

/* £ill in the server's IP address and port */
if ((hp = gethostbyname (hostname)) == NULL)

return -2; /* check h errno for cause of error */
bzero((char *) &serveraddr, sizeof (serveraddr)) ; Check

serveraddr.sin family = AF INET; this out!
serveraddr.sin port = htons (port) ; 4?‘————————————————————— !
bcopy ((char *)hp->h addr list[0],

(char *) &serveraddr.sin _addr.s_addr, hp->h length);

20

Carnegie Mellon

A Careful Look at bcopy Arguments

/* DNS host entry structure */
struct hostent {

int h length; /* length of an address, in bytes */
char **h addr list; /* null-terminated array of in_addr structs */

};

struct sockaddr in {

struct in addr sin_addr; /* IP addr in network byte order */

}; /* Internet address structure */
struct in addr {

unsigned int s _addr; /* network byte order (big-endian) */

};

struct hostent *hp; /* DNS host entry */
struct sockaddr in serveraddr; /* server’s IP address */

bcopy ((char *)hp->h addr list[0], /* src, dest */
(char *) &serveraddr.sin addr.s_addr, hp->h length);

21

Carnegie Mellon

Bcopy Argument Data Structures

struct hostent
h length h addr 1list

0
s_addr
struct
in_addr s_addr
struct sockadd:_in
sin_family sin port sin_addr
AF_INET O/, 0|O0|O0O|]O0O]J]O0O]|]0O0]O0

struct in_addr | 4qr

22

Carnegie Mellon

Echo Client: open clientfd

(connect)

m Finally the client creates a connection with the server
= Client process suspends (blocks) until the connection is created

= After resuming, the client is ready to begin exchanging messages with the
server via Unix I/O calls on descriptor client£fd

int clientfd; /* socket descriptor */
struct sockaddr in serveraddr; /* server address */
typedef struct sockaddr SA; /* generic sockaddr */

/* Establish a connection with the server */

if (connect(clientfd, (SA *) &serveraddr, sizeof (serveraddr)) < 0)
return -1;

return clientfd;

23

Echo Server: Main Routine

int main(int argc, char **argv) {
int listenfd, connfd, port, clientlen;
struct sockaddr in clientaddr;
struct hostent *hp;
char *haddrp;
unsigned short client port;

port = atoi(argv[l]); /* the server listens on a port passed
on the command line */
listenfd = open listenfd(port);

while (1) {

clientlen = sizeof (clientaddr) ;

connfd = Accept(listenfd, (SA *)&clientaddr, é&clientlen);

hp = Gethostbyaddr ((const char *)é&clientaddr.sin addr.s addr,
sizeof (clientaddr.sin addr.s addr), AF INET)

haddrp = inet ntoa(clientaddr.sin addr)

client port = ntohs(clientaddr.sin port);

printf ("server connected to %s (%s), port %u\n",

hp->h name, haddrp, client port);
echo (connfd) ;
Close (connfd) ;

Carnegie Mellon

Overview of the Sockets Interface

Client Server

socket socket

I

bind > open_listenfd

open_clientfd< l

listen

Connection l /

request
connect [~~~ ""TT--o-o- > accept

m Office Telephone Analogy for Server
= Socket: Buya phone
" Bind: Tell the local administrator what number you want to use
= Listen: Plug the phone in
= Accept: Answer the phone when it rings

25

Carnegie Mellon

Echo Server: open listenfd

int open_ listenfd(int port)
{
int listenfd, optval=1l;
struct sockaddr in serveraddr;

/* Create a socket descriptor */
if ((listenfd = socket (AF_INET, SOCK_ STREAM, 0)) < 0)
return -1;

/* Eliminates "Address already in use" error from bind. */
if (setsockopt(listenfd, SOL_SOCKET, SO _REUSEADDR,
(const void *) &optval , sizeof(int)) < 0)
return -1;

<more>

26

Carnegie Mellon

Echo Server: open listenfd (cont.)

/* Listenfd will be an endpoint for all requests to port
on any IP address for this host */

bzero((char *) &serveraddr, sizeof (serveraddr))
serveraddr.sin family = AF INET;

serveraddr.sin addr.s addr = htonl (INADDR ANY) ;
serveraddr.sin port = htons((unsigned short)port);

if (bind(listenfd, (SA *) &serveraddr, sizeof (serveraddr)) < 0)
return -1;

/* Make it a listening socket ready to accept
connection requests */

if (listen(listenfd, LISTENQ) < 0)
return -1;

return listenfd;

27

Carnegie Mellon

Echo Server: open listenfd
(socket)

m socket creates a socket descriptor on the server
" AF INET: indicates that the socket is associated with Internet protocols
" SOCK_ STREAM: selects a reliable byte stream connection (TCP)

int listenfd; /* listening socket descriptor */

/* Create a socket descriptor */
if ((listenfd = socket (AF_INET, SOCK STREAM, 0)) < 0)

return -1;

28

Carnegie Mellon

Echo Server: open listenfd
(setsockopt)

m The socket can be given some attributes

/* Eliminates "Address already in use" error from bind(). */
if (setsockopt(listenfd, SOL_SOCKET, SO _ REUSEADDR,
(const void *) &optval , sizeof(int)) < 0)
return -1;

m Handy trick that allows us to rerun the server immediately
after we kill it
= Otherwise we would have to wait about 15 seconds
" Eliminates “Address already in use” error from bind ()

m Strongly suggest you do this for all your servers to simplify
debugging

29

Carnegie Mellon

Echo Server: open listenfd
(initialize socket address)

m Initialize socket with server port number
m Accept connection from any IP address

struct sockadd:_in serveraddr; /* server's socket addr */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */

bzero((char *) &serveraddr, sizeof (serveraddr)) ;

serveraddr.sin family = AF INET;

serveraddr.sin port = htons((unsigned short)port);

serveraddr.sin addr.s addr = htonl (INADDR ANY) ;

m [P addr and port stored in network (big-endian) byte order

sin_port sin_addr

AF INET INADDR ANY o000 |O0|O0]|]O0]|O

sa family
sin family
30

Carnegie Mellon

Echo Server: open listenfd

(bind)

m bind associates the socket with the socket address we just
created

int listenfd; /* listening socket */

struct sockaddr_in serveraddr; /* server’s socket addr */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */
if (bind(listenfd, (SA *) &serveraddr, sizeof (serveraddr)) < 0)
return -1;

31

Carnegie Mellon

Echo Server: open listenfd
(Listen)

m listen indicates that this socket will accept connection
(connect) requests from clients

m LISTENQ is constant indicating how many pending requests
allowed

int listenfd; /* listening socket */

/* Make it a listening socket ready to accept connection requests */
if (listen(listenfd, LISTENQ) < 0)
return -1;
return listenfd;

}

m We're finally ready to enter the main server loop that
accepts and processes client connection requests.

32

Carnegie Mellon

Echo Server: Main Loop

m The server loops endlessly, waiting for connection
requests, then reading input from the client, and echoing
the input back to the client.

main () {
/* create and configure the listening socket */

while (1) {
/* Accept(): wait for a connection request */
/* echo(): read and echo input lines from client til EOF */
/* Close(): close the connection */

33

Carnegie Mellon

Overview of the Sockets Interface

> open_listenfd

Await connection

request from
next client

Client Server
socket socket
bind
open clientfd < l
listen
Connection l
request
connect [~~~ ---—--- 4 accept <
v v
Client / rio_writen »rio readlinebi«
Server
. \4 v
Session rio_readlineb [« rio writen
\4 v
EOF

close

rio_readlineb

A 4

close

34

Carnegie Mellon

Echo Server: accept

m accept () blocks waiting for a connection request

int listenfd; /* listening descriptor */
int connfd; /* connected descriptor */
struct sockaddr in clientaddr;

int clientlen;

clientlen = sizeof (clientaddr) ;
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

m acceptreturns a connected descriptor (connfd) with
the same properties as the listening descriptor
(Listenfd)

m Returns when the connection between client and server is created
and ready for 1/O transfers

m All I/O with the client will be done via the connected socket

m accept alsofillsin client’s IP address

35

Carnegie Mellon

Echo Server: accept lllustrated

listenfd (3)
1. Server blocks in accept,
Client l T Server waiting for connection request
clientfd on listening descriptor
listenfd
Connection listen£d (3)
request . > 2. Client makes connection request by
Client i T Server calling and blocking in connect
clientfd
listenfd (3)
3. Server returns connfd from
Client L) »I Server accept. Client returns from connect.
clientfd connfd (4) Connection is now established between

clientfdand connfd

36

Carnegie Mellon

Connected vs. Listening Descriptors

m Listening descriptor
= End point for client connection requests
= Created once and exists for lifetime of the server

m Connected descriptor
"= End point of the connection between client and server

= A new descriptor is created each time the server accepts a
connection request from a client

= Exists only as long as it takes to service client

m Why the distinction?

= Allows for concurrent servers that can communicate over many
client connections simultaneously

= E.g., Each time we receive a new request, we fork a child to
handle the request

37

Echo Server: Identifying the Client

m The server can determine the domain name, IP address,
and port of the client

struct hostent *hp; /* pointer to DNS host entry */
char *haddrp; /* pointer to dotted decimal string */
unsigned short client port;
hp = Gethostbyaddr ((const char *)é&clientaddr.sin addr.s addr,
sizeof (clientaddr.sin addr.s_addr), AF INET);

haddrp = inet ntoa(clientaddr.sin addr) ;
client port = ntohs(clientaddr.sin port);
printf ("server connected to %s (%s), port %u\n",

hp->h name, haddrp, client port);

38

Carnegie Mellon

Echo Server: echo

m The server uses RIO to read and echo text lines until EOF

(end-of-file) is encountered.
= EOF notification caused by client calling close (client£fd)

void echo(int connfd)
{
size t n;
char buf [MAXLINE] ;
rio t rio;

Rio readinitb(&rio, connfd);

while((n = Rio readlineb (&rio, buf, MAXLINE)) != 0) ({
upper_ case (buf) ;
Rio writen (connfd, buf, n);
printf ("server received %d bytes\n", n);

39

Carnegie Mellon

Testing Servers Using telnet

m The telnet program is invaluable for testing servers
that transmit ASCII strings over Internet connections
® Qursimple echo server
= Web servers
= Mail servers

m Usage:
" unix> telnet <host> <portnumber>

" Creates a connection with a server running on <host>and
listening on port <portnumber>

40

Testing the Echo Server With telnet

greatwhite> echoserver 15213

linux> telnet greatwhite.ics.cs.cmu.edu 15213
Trying 128.2.220.10...

Connected to greatwhite.ics.cs.cmu.edu.
Escape character is '*]'.

hi there

HI THERE

4

Carnegie Mellon

For More Information

m W. Richard Stevens, “Unix Network Programming:
Networking APIs: Sockets and XTI”, Volume 1, Second
Edition, Prentice Hall, 1998

= THE network programming bible

m Unix Man Pages
" Good for detailed information about specific functions

m Complete versions of the echo client and server are
developed in the text
= Updated versions linked to course website
= Feel free to use this code in your assignments

42

Watching Echo Client / Server

r_ﬁ Capturing from Microsoft - Wireshark

Eile

g @

Ma,
1255
1256
1257

1800
1501
1816
2301
2302
2316
2382

21.
21.
22.
29,
29,
29,
30,

Edit View Gao
e @

Filter: |tcp.port eq 15213

Tirne
15.
15.
15.

831493
833817
833897
014380
Ol6474
016534
112223
053134
055004
253626
228193

Capture

Analyze

Source

1:28.
1:28.
1:28.

1:28.
1:28.
1:28.
1:28.
1:28.
1:28.
1:28.

237.252.163
2.220.10
237.252.163

2.220.10
2.220.10
237.252.163
237.252.163
2.220.10
237.252.163
237.252.163

Statistics
2ol e»DTL QeaD | #BM% o

* Expression...

Help

Telephony Toals

Destination
128.2.220.10
128.2537.252.1685
128.2.220.10
128.2.220.10
128.2537.252.1685
128.2537.252.1685
128.2.220.10
128.2.220.10
128.2537.252.1685
128.2.220.10
128.2.220.10

Protocaol
TCP
TCP
TCP

TCF
TCF
TCF
TCF
TCF
TCF
TCF

Info

55308 >
15213 =
55308 >

n
n
L
>
n
= IR R R A

Clear Apply

15213
55306
15213
1

55306
55306
15213
15213
55306
15213
15213

T

[5H]
[S¥H,
[ACK]

[ACK]
[PsH,
[AcK]
[PsH,
[PsH,
[AcK]
[FIN,

Seq=0 Wwin=65535 Len=0 Ms55=1
ACK] Seq=0 Ack=1l win=5840 L
Seg=l Ack=l win=85532 Len=0
Win=65532
Seg=l Ack=1% win=5888 Len=0%
ACK] Seq=l aAck=1% win=5883
Seqg=1% aAck=1% win=65516 Len
ACK] Seq=1% Ack=1% win=56551
ACK] Seq=1% Ack=43 win=35588
Seq=43 Ack=43 win=654%2 Len
ACK] Seq=43 Ack=43 Win=654% -

3

13

F Frame 17959: 72 bytes on wire (576 bits), 72 bytes captured (576 bits)

F Ethernet II, Src: Intel_e3:54:e86 (00:16:ea:e3:54:26), Dst: Carneqgie_20:00:64 (0B:00:7F:20:00:640

F Internet Protocol, Src: 128.237.252.163 (128.237.252.1630, Dst: 128.2.220.10 (128.2.220.10)

F Transmission Control Protocol, Sec Port: 55306 (553060, Dst Port: 15213 (152130, Seqg: 1, ack: 1, Len:
oooo 03 00 FF 20 00 A4 00 16 ea e3 54 e6 OB 00 45 00 N

0010 00 3a 2¢ Fa 40 00 830 08 T4 as 80 ed fc a3 80 02 B -

0020 dc 0a d8 0a 3b 6d f4 a4 9% G- 75 de F1 6a 50 18 ceoaamos JTulgip.

ooz 3fF £ 96 8b 00 00 68 A5 F2 6% 20 69 F3 20 &1 20 G he re iz a

0040 &d 65 F3 T3 Bl 67 &5 0a mes=age.

@ Microsoft: <live capture in progress > File: C:... | Packets: 6950 Displayed: 13 Marked: 0 Profile: Default

158

[,m

L o [

43

Carnegie Mellon

Ethical Issues

m Packet Sniffer

= Program that records network traffic visible at node

= Promiscuous mode: Record traffic that does not have this host as
source or destination

m University Policy

Network Traffic: Network traffic should be considered private. Because of this,
any "packet sniffing"”, or other deliberate attempts to read network information
which is not intended for your use will be grounds for loss of network
privileges for a period of not less than one full semester. In some cases, the
loss of privileges may be permanent. Note that it is permissable to run a packet
sniffer explicitely configured in non-promiscuous mode (you may sniff packets
going to or from your machine). This allows users to explore aspects of
networking while protecting the privacy of others.

44

