Carnegie Mellon

Dynamic Memory Allocation:
Advanced Concepts

15-213 / 18-213: Introduction to Computer Systems
19t Lecture, Mar. 28, 2013

Instructors:
Seth Goldstein, Anthony Rowe and Gregory Kesden

Today

m Explicit free lists

m Segregated free lists

m Garbage collection

m Memory-related perils and pitfalls

Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit free list using length—Ilinks all blocks

m Method 2: Explicit free list among the free blocks using pointers

_— .

5| 7 4 6 2

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Carnegie Mellon

Implicit List: Bidirectional Coalescing

m Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
= |mportant and general technique!

4 4 4 4 6 6|4 4
Header —| Size - a = 1: Allocated block
a = 0: Free block
Format of . _
allocated and Payload and Size: Total block size
padding
free blocks Payload: Application data
(allocated blocks only)
Boundary tag > Size a

(footer)

Carnegie Mellon

Coalescing Cases

Case 1 Case 2 Case 3 Case 4
] Allocated Allocated Free Free
Block being
freed
Allocated Free Allocated Free

ml 1 ml 1 n+ml 0 n+ml+m2 | O
ml 1 ml 1
n 0 n+m2
n 0 n+ml 0
m2 1 m2 1
m2 1 n+m2 0 m2 1 n+ml+m2 | 0

Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit free list using length—Ilinks all blocks

m Method 2: Explicit free list among the free blocks using pointers

_— .

5| 7 4 6 2

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Carnegie Mellon

Explicit Free Lists

Allocated (as before) Free
Size a Size a
Next
Payload and Prev
padding
Size a Size a

m Maintain list(s) of free blocks, not all blocks
" The “next” free block could be anywhere

= So we need to store forward/back pointers, not just sizes
= Still need boundary tags for coalescing

= Luckily we track only free blocks, so we can use payload area

Carnegie Mellon

Explicit Free Lists

m Logically:

—
v

/ Forward (next) links
A m B

ul / 64 4 4|

4

Back (prev) links

Carnegie Mellon

Allocating From Explicit Free Lists

conceptual graphic

Before

2

After (with splitting)

Y

= malloc(..)

Carnegie Mellon

Freeing With Explicit Free Lists

m Insertion policy: Where in the free list do you put a newly
freed block?

= LIFO (last-in-first-out) policy
= Insert freed block at the beginning of the free list
= Pro: simple and constant time
= Con: studies suggest fragmentation is worse than address ordered

= Address-ordered policy

= Insert freed blocks so that free list blocks are always in address
order:
addr(prev) < addr(curr) < addr(next)

= Con: requires search

= Pro: studies suggest fragmentation is lower than LIFO

10

Carnegie Mellon

Freeing With a LIFO Policy (Case 1)

conceptual graphic

Before

free (p)
Root I~ ‘% o)

m Insert the freed block at the root of the list

After

Root IV @

1"

Freeing With a LIFO Policy (Case 2)

conceptual graphic

%o

m Splice out predecessor block, coalesce both memory blocks,
and insert the new block at the root of the list

After

Before free (p)

Root i I

12

Freeing With a LIFO Policy (Case 3)

conceptual graphic
free (p)

Root } I % o

m Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

After o

Root .’ o) B

Before

° |
_
|

13

Freeing With a LIFO Policy (Case 4)

conceptual graphic

iy

m Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

Before free (p)

Root i I

After

Root >

.

o ¢
@

14

Carnegie Mellon

Explicit List Summary

m Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full

= Slightly more complicated allocate and free since needs to splice blocks
in and out of the list

= Some extra space for the links (2 extra words needed for each block)
= Does this increase internal fragmentation?

m Most common use of linked lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects

15

Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit list using length—links all blocks

m Method 2: Explicit list among the free blocks using pointers

/\

5 4 6 2

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key
16

Today

m Explicit free lists

m Segregated free lists

m Garbage collection

m Memory-related perils and pitfalls

17

Segregated List (Seglist) Allocators

m Each size class of blocks has its own free list

1-2 > > > —>

5_8 > —>

9-inf —

m Often have separate classes for each small size
m For larger sizes: One class for each two-power size

18

Seglist Allocator

m Given an array of free lists, each one for some size class

m To allocate a block of size n:
= Search appropriate free list for block of size m > n

= |f an appropriate block is found:

= Split block and place fragment on appropriate list (optional)
" |f no block is found, try next larger class
= Repeat until block is found

m If no block is found:
= Reguest additional heap memory from OS (using sbrk ())
= Allocate block of n bytes from this new memory
= Place remainder as a single free block in largest size class.

19

Carnegie Mellon

Seglist Allocator (cont.)

m To free a block:
" Coalesce and place on appropriate list (optional)

m Advantages of seglist allocators
" Higher throughput
= |og time for power-of-two size classes
= Better memory utilization

= First-fit search of segregated free list approximates a best-fit search
of entire heap.

= Extreme case: Giving each block its own size class is equivalent to
best-fit.

20

More Info on Allocators

m D. Knuth, “The Art of Computer Programming”, 2" edition,
Addison Wesley, 1973

" The classic reference on dynamic storage allocation

m Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.

= Comprehensive survey
= Available from CS:APP student site (csapp.cs.cmu.edu)

21

Today

m Explicit free lists
m Segregated free lists

m Garbage collection
m Memory-related perils and pitfalls

22

Carnegie Mellon

Implicit Memory Management:
Garbage Collection

m Garbage collection: automatic reclamation of heap-allocated
storage—application never has to free

void foo () {
int *p = malloc(128);
return; /* p block is now garbage */

m Common in many dynamic languages:
= Python, Ruby, Java, Perl, ML, Lisp, Mathematica

m Variants (“conservative” garbage collectors) exist for C and C++
" However, cannot necessarily collect all garbage

23

Carnegie Mellon

Garbage Collection

m How does the memory manager know when memory can be
freed?

" |n general we cannot know what is going to be used in the future since it
depends on conditionals

= But we can tell that certain blocks cannot be used if there are no
pointers to them

m Must make certain assumptions about pointers
= Memory manager can distinguish pointers from non-pointers
= All pointers point to the start of a block

= Cannot hide pointers
(e.g., by coercing them to an int, and then back again)

24

Classical GC Algorithms

m Mark-and-sweep collection (McCarthy, 1960)

= Does not move blocks (unless you also “compact”)

m Reference counting (Collins, 1960)
= Does not move blocks (not discussed)

m Copying collection (Minsky, 1963)
= Moves blocks (not discussed)
m Generational Collectors (Lieberman and Hewitt, 1983)

= Collection based on lifetimes
= Most allocations become garbage very soon
= So focus reclamation work on zones of memory recently allocated
m For more information:

Jones and Lin, “Garbage Collection: Algorithms for Automatic
Dynamic Memory”, John Wiley & Sons, 1996.

25

Memory as a Graph

Carnegie Mellon

m We view memory as a directed graph

= Each block is a node in the graph

= Each pointer is an edge in the graph

" Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, locations on the stack, global variables)

Root nodes O O

Q
\

/
&
\O o’

O reachable

Not-reachable

Q (garbage)

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)

26

Carnegie Mellon

Mark and Sweep Collecting

m Can build on top of malloc/free package
= Allocate using malloc until you “run out of space”

m When out of space:
= Use extra mark bit in the head of each block
" Mark: Start at roots and set mark bit on each reachable block
= Sweep: Scan all blocks and free blocks that are not marked

Note: arrows
here denote

I memory refs, not
free list ptrs.

Before mark I_ | | |

_I Mark bit set

After mark | | |

11

After sweep |_| | free | |* free]

27

Carnegie Mellon

Assumptions For a Simple Implementation

m Application
" new (n): returns pointer to new block with all locations cleared
" read(b,i) : read location i of block b into register
" write(b,i,v): write vinto location i of blockb

m Each block will have a header word
= addressedasb[-1], for a block b
= Used for different purposes in different collectors

m Instructions used by the Garbage Collector
" is ptr(p) : determines whether p is a pointer
= length (b): returns the length of block b, not including the header
" get roots(): returns all the roots

28

Carnegie Mellon

Mark and Sweep (cont.)

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return; // do nothing if not pointer
if (markBitSet(p)) return; // check if already marked
setMarkBit (p) ; // set the mark bit
for (i=0; i < length(p); i++) // call mark on all words

mark (p[i]) ; // in the block

return;

}

Sweep using lengths to find next block

ptr sweep (ptr p, ptr end) ({
while (p < end) {
if markBitSet (p)
clearMarkBit () ;
else if (allocateBitSet(p))
free(p) ;
p += length(p) ;

29

Carnegie Mellon

Conservative Mark & Sweep in C

m A “conservative garbage collector” for C programs

" is ptr () determines if a word is a pointer by checking if it points to
an allocated block of memory
= But, in C pointers can point to the middle of a block
ptr
Header l

m So how to find the beginning of the block?

= Can use a balanced binary tree to keep track of all allocated blocks (key
is start-of-block)

= Balanced-tree pointers can be stored in header (use two additional

words
) Head Data

Size , \
/ \ Left: smaller addresses
Right: larger addresses

Left Right
30

Today

m Explicit free lists
m Segregated free lists

m Garbage collection
m Memory-related perils and pitfalls

31

Carnegie Mellon

Memory-Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks

32

C operators

Operators Associativity
() [1] -> . left to right
' ~ 44+ -- 4+ - * & (type) sizeof righttoleft
*x /% left to right
+ - left to right
<< >> left to right
< <= > >= left to right
= I= left to right
& left to right
A left to right
| left to right
&& left to right
| | left to right
2. right to left
= 4= -= *= [= %= &= A= I= <<= >>= right to left
, left to right

m ->, (),and [] have high precedence, with * and & just below
m Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53 ;;

C Pointer Declarations: Test Yourself!

int *p p is a pointer to int

int *p[13] p is an array[13] of pointer to int

int *(p[13]) p is an array[13] of pointer to int

int **p p is a pointer to a pointer to an int

int (*p) [13] p is a pointer to an array[13] of int

int *£() fis a function returning a pointer to int
int (*£) () fis a pointer to a function returning int
int (*(*£())[13]) () fis a function returning ptr to an array[13]

of pointers to functions returning int

int (*(*x[3]) () [5] X is an.array[.3] of pointers to fur?ctlons
returning pointers to array[5] of ints

Source: K&R Sec 5.12

34

Carnegie Mellon

Dereferencing Bad Pointers

m The classic scanf bug

int wval;

scanf (“%d”, wval) ;

35

Carnegie Mellon

Reading Uninitialized Memory

m Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec (int **A, int *x) {
int *y = malloc(N*sizeof (int));
int i, j;

for (i=0; i<N; i++)
for (j=0; j<N; Jj++)
y[i] += A[i] [J]1*x[]];
return y;

36

Carnegie Mellon

Overwriting Memory

m Allocating the (possibly) wrong sized object

int **p;
p = malloc (N*sizeof (int)) ;
for (i=0; i<N; i++) {

pl[i] = malloc (M*sizeof (int)) ;

}

37

Carnegie Mellon

Overwriting Memory

m Off-by-one error

int **p;
p = malloc (N*sizeof (int *));

for (i=0; i<=N; i++) {
pl[i] = malloc (M*sizeof (int)) ;

}

38

Carnegie Mellon

Overwriting Memory

m Not checking the max string size

char s[8];
int 1i;

gets(s); /* reads “123456789” from stdin */

m Basis for classic buffer overflow attacks

39

Carnegie Mellon

Overwriting Memory

m Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (*p && *p != wval)
p += sizeof (int);

return p;

40

Carnegie Mellon

Referencing Nonexistent Variables

m Forgetting that local variables disappear when a function
returns

int *foo () {
int wval;

return &val;

4

Carnegie Mellon

Freeing Blocks Multiple Times

m Nasty!

x = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int)) ;
<manipulate y>
free (x) ;

42

Carnegie Mellon

Referencing Freed Blocks

m Evil!

X = malloc(N*sizeof (int)) ;
<manipulate x>
free (x) ;

y = malloc (M*sizeof (int)) ;
for (i=0; i<M; i++)
y[i] = x[i]++;

43

Carnegie Mellon

Failing to Free Blocks (Memory Leaks)

m Slow, long-term killer!

foo() {
int *x = malloc(N*sizeof (int)) ;

return;

44

Carnegie Mellon

Failing to Free Blocks (Memory Leaks)

m Freeing only part of a data structure

struct list {
int wval;
struct list *next;

};

foo () {
struct list *head = malloc(sizeof (struct list)) ;
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return;

45

Carnegie Mellon

Dealing With Memory Bugs
m Conventional debugger (gdb)

" Good for finding bad pointer dereferences
" Hard to detect the other memory bugs

m Debuggingmalloc (UToronto CSRImalloc)
= Wrapper around conventionalmalloc
= Detects memory bugs atmalloc and £free boundaries
= Memory overwrites that corrupt heap structures
= Some instances of freeing blocks multiple times

= Memory leaks
= Cannot detect all memory bugs

= Overwrites into the middle of allocated blocks
= Freeing block twice that has been reallocated in the interim
= Referencing freed blocks

46

Carnegie Mellon

Dealing With Memory Bugs (cont.)

m Some malloc implementations contain checking code
" Linux glibc malloc: setenv MALLOC CHECK 3
" FreeBSD: setenv MALLOC OPTIONS AJR

m Binary translator: valgrind (Linux), Purify

= Powerful debugging and analysis technique
= Rewrites text section of executable object file

® Can detect all errors as debuggingmalloc
® Can also check each individual reference at runtime

= Bad pointers
= Overwriting
= Referencing outside of allocated block

m Garbage collection (Boehm-Weiser Conservative GC)
" Let the system free blocks instead of the programmer.

47

