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Today	
  
¢  Basic	
  concepts	
  
¢  Implicit	
  free	
  lists	
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Dynamic	
  Memory	
  Alloca/on	
  	
  
¢  Programmers	
  use	
  

dynamic	
  memory	
  
allocators	
  (such	
  as	
  
malloc)	
  to	
  acquire	
  VM	
  
at	
  run	
  /me.	
  	
  
§  For	
  data	
  structures	
  whose	
  

size	
  is	
  only	
  known	
  at	
  
run2me.	
  

¢  Dynamic	
  memory	
  
allocators	
  manage	
  an	
  
area	
  of	
  process	
  virtual	
  
memory	
  known	
  as	
  the	
  
heap.	
  	
  

Heap	
  (via	
  malloc)	
  

Program	
  text	
  (.text)	
  

Ini/alized	
  data	
  (.data)	
  

Unini/alized	
  data	
  (.bss)	
  

User	
  stack	
  

0	
  

Top	
  of	
  heap	
  
	
  (brk ptr)	
  

Applica/on	
  

Dynamic	
  Memory	
  Allocator	
  

Heap	
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Dynamic	
  Memory	
  Alloca/on	
  

¢  Allocator	
  maintains	
  heap	
  as	
  collec/on	
  of	
  variable	
  sized	
  
blocks,	
  which	
  are	
  either	
  allocated	
  or	
  free	
  

¢  Types	
  of	
  allocators	
  
§  Explicit	
  allocator:	
  	
  applica2on	
  allocates	
  and	
  frees	
  space	
  	
  

§  E.g.,	
  	
  malloc	
  and	
  free	
  in	
  C	
  
§  Implicit	
  allocator:	
  applica2on	
  allocates,	
  but	
  does	
  not	
  free	
  space	
  

§  E.g.	
  garbage	
  collec2on	
  in	
  Java,	
  ML,	
  and	
  Lisp	
  

¢  Will	
  discuss	
  simple	
  explicit	
  memory	
  alloca/on	
  today	
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The	
  malloc	
  Package	
  
#include <stdlib.h> 

void *malloc(size_t size) 
§  Successful:	
  

§  Returns	
  a	
  pointer	
  to	
  a	
  memory	
  block	
  of	
  at	
  least	
  size	
  bytes	
  
(typically)	
  aligned	
  to	
  8-­‐byte	
  boundary	
  

§  If	
  size == 0,	
  returns	
  NULL	
  
§  Unsuccessful:	
  returns	
  NULL	
  (0)	
  and	
  sets	
  errno 

void free(void *p) 
§  Returns	
  the	
  block	
  pointed	
  at	
  by	
  p	
  to	
  pool	
  of	
  available	
  memory	
  
§  p	
  must	
  come	
  from	
  a	
  previous	
  call	
  to	
  malloc or	
  realloc 

Other	
  func/ons	
  
§  calloc:	
  Version	
  of	
  malloc	
  that	
  ini2alizes	
  allocated	
  block	
  to	
  zero.	
  	
  
§  realloc:	
  Changes	
  the	
  size	
  of	
  a	
  previously	
  allocated	
  block.	
  
§  sbrk:	
  Used	
  internally	
  by	
  allocators	
  to	
  grow	
  or	
  shrink	
  the	
  heap	
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malloc	
  Example	
  

void foo(int n, int m) { 
    int i, *p; 
   
    /* Allocate a block of n ints */ 
    p = (int *) malloc(n * sizeof(int)); 
    if (p == NULL) { 
        perror("malloc"); 
        exit(0); 
    } 
   
    /* Initialize allocated block */ 
    for (i=0; i<n; i++)  
        p[i] = i; 
 
   
    /* Return p to the heap */ 
    free(p);  
} 
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Assump/ons	
  Made	
  in	
  This	
  Lecture	
  
¢  Memory	
  is	
  word	
  addressed	
  (each	
  word	
  can	
  hold	
  a	
  

pointer)	
  

Allocated	
  block	
  
(4	
  words)	
  

Free	
  block	
  
(3	
  words)	
   Free	
  word	
  

Allocated	
  word	
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Alloca/on	
  Example	
  

p1 = malloc(4) 

p2 = malloc(5) 

p3 = malloc(6) 

free(p2) 

p4 = malloc(2) 
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Constraints	
  
¢  Applica/ons	
  

§  Can	
  issue	
  arbitrary	
  sequence	
  of	
  malloc	
  and	
  free	
  requests	
  
§  free	
  request	
  must	
  be	
  to	
  a	
  malloc’d	
  	
  block	
  

¢  Allocators	
  
§  Can’t	
  control	
  number	
  or	
  size	
  of	
  allocated	
  blocks	
  
§  Must	
  respond	
  immediately	
  to	
  malloc	
  requests	
  

§  i.e.,	
  can’t	
  reorder	
  or	
  buffer	
  requests	
  
§  Must	
  allocate	
  blocks	
  from	
  free	
  memory	
  

§  i.e.,	
  can	
  only	
  place	
  allocated	
  blocks	
  in	
  free	
  memory	
  
§  Must	
  align	
  blocks	
  so	
  they	
  sa2sfy	
  all	
  alignment	
  requirements	
  

§  8	
  byte	
  alignment	
  for	
  GNU	
  malloc	
  (libc	
  malloc)	
  on	
  Linux	
  boxes	
  
§  Can	
  manipulate	
  and	
  modify	
  only	
  free	
  memory	
  
§  Can’t	
  move	
  the	
  allocated	
  blocks	
  once	
  they	
  are	
  malloc’d	
  

§  i.e.,	
  compac2on	
  is	
  not	
  allowed	
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Performance	
  Goal:	
  Throughput	
  
¢  Given	
  some	
  sequence	
  of	
  malloc	
  and	
  free	
  requests:	
  

§  	
  R0,	
  R1,	
  ...,	
  Rk,	
  ...	
  ,	
  Rn-­‐1	
  

¢  Goals:	
  maximize	
  throughput	
  and	
  peak	
  memory	
  u/liza/on	
  
§  These	
  goals	
  are	
  o\en	
  conflic2ng	
  

¢  Throughput:	
  
§  Number	
  of	
  completed	
  requests	
  per	
  unit	
  2me	
  
§  Example:	
  

§  5,000	
  	
  malloc	
  calls	
  and	
  5,000	
  free	
  calls	
  in	
  10	
  seconds	
  	
  
§  Throughput	
  is	
  1,000	
  opera2ons/second	
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Performance	
  Goal:	
  Peak	
  Memory	
  U/liza/on	
  
¢  Given	
  some	
  sequence	
  of	
  malloc	
  and	
  free	
  requests:	
  

§  	
  R0,	
  R1,	
  ...,	
  Rk,	
  ...	
  ,	
  Rn-­‐1	
  

¢  Def:	
  Aggregate	
  payload	
  Pk	
  	
  
§  	
  malloc(p)	
  results	
  in	
  a	
  block	
  with	
  a	
  payload	
  of	
  p	
  bytes	
  
§  A\er	
  request	
  Rk	
  has	
  completed,	
  the	
  aggregate	
  payload	
  Pk	
  	
  is	
  the	
  sum	
  of	
  

currently	
  allocated	
  payloads	
  

¢  Def:	
  Current	
  heap	
  size	
  Hk	
  
§  Assume	
  Hk	
  is	
  monotonically	
  nondecreasing	
  

§  i.e.,	
  heap	
  only	
  grows	
  when	
  allocator	
  uses	
  sbrk 

¢  Def:	
  Peak	
  memory	
  u@liza@on	
  aAer	
  k	
  requests	
  	
  
§  Uk	
  =	
  (	
  maxi<k	
  Pi	
  )	
  	
  /	
  	
  Hk	
  



Carnegie Mellon 

12 

Fragmenta/on	
  
¢  Poor	
  memory	
  u/liza/on	
  caused	
  by	
  fragmenta@on	
  

§  internal	
  fragmenta2on	
  
§  external	
  fragmenta2on	
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Internal	
  Fragmenta/on	
  
¢  For	
  a	
  given	
  block,	
  internal	
  fragmenta@on	
  occurs	
  if	
  payload	
  is	
  

smaller	
  than	
  block	
  size	
  

	
  
¢  Caused	
  by	
  	
  

§  Overhead	
  of	
  maintaining	
  heap	
  data	
  structures	
  
§  Padding	
  for	
  alignment	
  purposes	
  
§  Explicit	
  policy	
  decisions	
  	
  

(e.g.,	
  to	
  return	
  a	
  big	
  block	
  to	
  sa2sfy	
  a	
  small	
  request)	
  

¢  Depends	
  only	
  on	
  the	
  paUern	
  of	
  previous	
  requests	
  
§  Thus,	
  easy	
  to	
  measure	
  

Payload	
   Internal	
  	
  
fragmenta/on	
  

Block	
  

Internal	
  	
  
fragmenta/on	
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External	
  Fragmenta/on	
  
¢  Occurs	
  when	
  there	
  is	
  enough	
  aggregate	
  heap	
  memory,	
  

but	
  no	
  single	
  free	
  block	
  is	
  large	
  enough	
  

¢  Depends	
  on	
  the	
  paUern	
  of	
  future	
  requests	
  
§  Thus,	
  difficult	
  to	
  measure	
  

	
  

p1 = malloc(4) 

p2 = malloc(5) 

p3 = malloc(6) 

free(p2) 

p4 = malloc(6) Oops!	
  (what	
  would	
  happen	
  now?)	
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Implementa/on	
  Issues	
  
¢  How	
  do	
  we	
  know	
  how	
  much	
  memory	
  to	
  free	
  given	
  just	
  a	
  

pointer?	
  

¢  How	
  do	
  we	
  keep	
  track	
  of	
  the	
  free	
  blocks?	
  

¢  What	
  do	
  we	
  do	
  with	
  the	
  extra	
  space	
  when	
  alloca/ng	
  a	
  
structure	
  that	
  is	
  smaller	
  than	
  the	
  free	
  block	
  it	
  is	
  placed	
  in?	
  

¢  How	
  do	
  we	
  pick	
  a	
  block	
  to	
  use	
  for	
  alloca/on	
  -­‐-­‐	
  many	
  
might	
  fit?	
  

¢  How	
  do	
  we	
  reinsert	
  freed	
  block?	
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Knowing	
  How	
  Much	
  to	
  Free	
  
¢  Standard	
  method	
  

§  Keep	
  the	
  length	
  of	
  a	
  block	
  in	
  the	
  word	
  preceding	
  the	
  block.	
  
§  This	
  word	
  is	
  o\en	
  called	
  the	
  header	
  field	
  or	
  header	
  

§  Requires	
  an	
  extra	
  word	
  for	
  every	
  allocated	
  block	
  

p0 = malloc(4) 

p0 

free(p0) 

block	
  size	
   payload	
  

5	
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Keeping	
  Track	
  of	
  Free	
  Blocks	
  
¢  Method	
  1:	
  Implicit	
  list	
  using	
  length—links	
  all	
  blocks	
  

¢  Method	
  2:	
  Explicit	
  list	
  among	
  the	
  free	
  blocks	
  using	
  pointers	
  

	
  
¢  Method	
  3:	
  Segregated	
  free	
  list	
  

§  Different	
  free	
  lists	
  for	
  different	
  size	
  classes	
  

¢  Method	
  4:	
  Blocks	
  sorted	
  by	
  size	
  
§  Can	
  use	
  a	
  balanced	
  tree	
  (e.g.	
  Red-­‐Black	
  tree)	
  with	
  pointers	
  within	
  each	
  

free	
  block,	
  and	
  the	
  length	
  used	
  as	
  a	
  key	
  

5 4	
   2	
  6	
  

5 4	
   2	
  6	
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Today	
  
¢  Basic	
  concepts	
  
¢  Implicit	
  free	
  lists	
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Method	
  1:	
  Implicit	
  List	
  
¢  For	
  each	
  block	
  we	
  need	
  both	
  size	
  and	
  alloca/on	
  status	
  

§  Could	
  store	
  this	
  informa2on	
  in	
  two	
  words:	
  wasteful!	
  

¢  Standard	
  trick	
  
§  If	
  blocks	
  are	
  aligned,	
  some	
  low-­‐order	
  address	
  bits	
  are	
  always	
  0	
  
§  Instead	
  of	
  storing	
  an	
  always-­‐0	
  bit,	
  use	
  it	
  as	
  a	
  allocated/free	
  flag	
  
§  When	
  reading	
  size	
  word,	
  must	
  mask	
  out	
  this	
  bit	
  

Size	
  

1	
  word	
  

Format	
  of	
  
allocated	
  and	
  
free	
  blocks	
  

Payload	
  

a	
  =	
  1:	
  Allocated	
  block	
  	
  	
  
a	
  =	
  0:	
  Free	
  block	
  
	
  
Size:	
  block	
  size	
  
	
  
Payload:	
  applica/on	
  data	
  
(allocated	
  blocks	
  only)	
  
	
  

a	
  

Op/onal	
  
padding	
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Detailed	
  Implicit	
  Free	
  List	
  Example	
  

Start	
  	
  
of	
  	
  

heap	
  

Double-­‐word	
  
aligned	
  

8/0	
   16/1	
   16/1	
  32/0	
  

Unused	
  

0/1	
  

Allocated	
  blocks:	
  shaded	
  
Free	
  blocks:	
  unshaded	
  
Headers:	
  labeled	
  with	
  size	
  in	
  bytes/allocated	
  bit	
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Implicit	
  List:	
  Finding	
  a	
  Free	
  Block	
  
¢  First	
  fit:	
  

§  Search	
  list	
  from	
  beginning,	
  choose	
  first	
  free	
  block	
  that	
  fits:	
  
	
  
	
  
	
  
	
  
	
  
§  Can	
  take	
  linear	
  2me	
  in	
  total	
  number	
  of	
  blocks	
  (allocated	
  and	
  free)	
  
§  In	
  prac2ce	
  it	
  can	
  cause	
  “splinters”	
  at	
  beginning	
  of	
  list	
  

¢  Next	
  fit:	
  
§  Like	
  first	
  fit,	
  but	
  search	
  list	
  star2ng	
  where	
  previous	
  search	
  finished	
  
§  Should	
  o\en	
  be	
  faster	
  than	
  first	
  fit:	
  avoids	
  re-­‐scanning	
  unhelpful	
  blocks	
  
§  Some	
  research	
  suggests	
  that	
  fragmenta2on	
  is	
  worse	
  

¢  Best	
  fit:	
  
§  Search	
  the	
  list,	
  choose	
  the	
  best	
  free	
  block:	
  fits,	
  with	
  fewest	
  bytes	
  le\	
  over	
  
§  Keeps	
  fragments	
  small—usually	
  improves	
  memory	
  u2liza2on	
  
§  Will	
  typically	
  run	
  slower	
  than	
  first	
  fit	
  

p = start;  
while ((p < end) &&     \\ not passed end 
       ((*p & 1) ||     \\ already allocated 
       (*p  <= len)))   \\ too small  
  p = p + (*p & -2);    \\ goto next block (word addressed) 
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Implicit	
  List:	
  Alloca/ng	
  in	
  Free	
  Block	
  
¢  Alloca/ng	
  in	
  a	
  free	
  block:	
  spliOng	
  

§  Since	
  allocated	
  space	
  might	
  be	
  smaller	
  than	
  free	
  space,	
  we	
  might	
  want	
  
to	
  split	
  the	
  block	
  

void addblock(ptr p, int len) { 
  int newsize = ((len + 1) >> 1) << 1;  // round up to even 
  int oldsize = *p & -2;                // mask out low bit 
  *p = newsize | 1;                     // set new length 
  if (newsize < oldsize) 
    *(p+newsize) = oldsize - newsize;   // set length in remaining 
}                                       //   part of block 

4	
   4	
   2	
  6	
  

4	
   2	
  4	
  

p	
  

2	
  4	
  

addblock(p, 4) 
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Implicit	
  List:	
  Freeing	
  a	
  Block	
  
¢  Simplest	
  implementa/on:	
  

§  Need	
  only	
  clear	
  the	
  “allocated”	
  flag	
  
  void free_block(ptr p) { *p = *p & -2 } 

§  But	
  can	
  lead	
  to	
  “false	
  fragmenta2on”	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

4	
   2	
  4	
   2	
  4	
  

free(p) p 

4	
   4	
   2	
  4	
   2	
  

malloc(5) Oops!	
  

There is enough free space, but the allocator won’t be able to find it 
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Implicit	
  List:	
  Coalescing	
  
¢  Join	
  (coalesce)	
  with	
  next/previous	
  blocks,	
  if	
  they	
  are	
  free	
  

§  Coalescing	
  with	
  next	
  block	
  
    

 
 
 
 
 

	
  
	
  
	
  
	
  
§  But	
  how	
  do	
  we	
  coalesce	
  with	
  previous	
  block?	
  

void free_block(ptr p) { 
    *p = *p & -2;          // clear allocated flag 
    next = p + *p;         // find next block 
    if ((*next & 1) == 0) 
      *p = *p + *next;     // add to this block if 
}                          //    not allocated 

4	
   2	
  4	
   2	
  

free(p) p 

4	
   4	
   2	
  

4	
  

6	
   2	
  

logically	
  
gone	
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Implicit	
  List:	
  Bidirec/onal	
  Coalescing	
  	
  
¢  Boundary	
  tags	
  [Knuth73]	
  

§  Replicate	
  size/allocated	
  word	
  at	
  “bomom”	
  (end)	
  of	
  free	
  blocks	
  
§  Allows	
  us	
  to	
  traverse	
  the	
  “list”	
  backwards,	
  but	
  requires	
  extra	
  space	
  
§  Important	
  and	
  general	
  technique!	
  

Size	
  

Format	
  of	
  
allocated	
  and	
  
free	
  blocks	
  

Payload	
  and	
  
padding	
  

a	
  =	
  1:	
  Allocated	
  block	
  	
  	
  
a	
  =	
  0:	
  Free	
  block	
  
	
  
Size:	
  Total	
  block	
  size	
  
	
  
Payload:	
  Applica/on	
  data	
  
(allocated	
  blocks	
  only)	
  
	
  

a	
  

Size	
   a	
  Boundary	
  tag	
  
(footer)	
  

4	
   4	
   4	
   4	
   6	
   4	
  6	
   4	
  

Header	
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Constant	
  Time	
  Coalescing	
  

Allocated	
  

Allocated	
  

Allocated	
  

Free	
  

Free	
  

Allocated	
  

Free	
  

Free	
  

Block	
  being	
  
freed	
  

Case	
  1	
   Case	
  2	
   Case	
  3	
   Case	
  4	
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m1	
   1	
  

Constant	
  Time	
  Coalescing	
  (Case	
  1)	
  

m1	
   1	
  
n	
   1	
  

n	
   1	
  
m2	
   1	
  

m2	
   1	
  

m1	
   1	
  

m1	
   1	
  
n	
   0	
  

n	
   0	
  
m2	
   1	
  

m2	
   1	
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m1	
   1	
  

Constant	
  Time	
  Coalescing	
  (Case	
  2)	
  

m1	
   1	
  
n+m2	
   0	
  

n+m2	
   0	
  

m1	
   1	
  

m1	
   1	
  
n	
   1	
  

n	
   1	
  
m2	
   0	
  

m2	
   0	
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m1	
   0	
  

Constant	
  Time	
  Coalescing	
  (Case	
  3)	
  

m1	
   0	
  
n	
   1	
  

n	
   1	
  
m2	
   1	
  

m2	
   1	
  

n+m1	
   0	
  

n+m1	
   0	
  
m2	
   1	
  

m2	
   1	
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m1	
   0	
  

Constant	
  Time	
  Coalescing	
  (Case	
  4)	
  

m1	
   0	
  
n	
   1	
  

n	
   1	
  
m2	
   0	
  

m2	
   0	
  

n+m1+m2	
   0	
  

n+m1+m2	
   0	
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Disadvantages	
  of	
  Boundary	
  Tags	
  
¢  Internal	
  fragmenta/on	
  

¢  Can	
  it	
  be	
  op/mized?	
  
§  Which	
  blocks	
  need	
  the	
  footer	
  tag?	
  
§  What	
  does	
  that	
  mean?	
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Summary	
  of	
  Key	
  Allocator	
  Policies	
  
¢  Placement	
  policy:	
  

§  First-­‐fit,	
  next-­‐fit,	
  best-­‐fit,	
  etc.	
  
§  Trades	
  off	
  lower	
  throughput	
  for	
  less	
  fragmenta2on 	
  	
  
§  Interes@ng	
  observa@on:	
  segregated	
  free	
  lists	
  (next	
  lecture)	
  

approximate	
  a	
  best	
  fit	
  placement	
  policy	
  without	
  having	
  to	
  search	
  en2re	
  
free	
  list	
  

¢  Splifng	
  policy:	
  
§  When	
  do	
  we	
  go	
  ahead	
  and	
  split	
  free	
  blocks?	
  
§  How	
  much	
  internal	
  fragmenta2on	
  are	
  we	
  willing	
  to	
  tolerate?	
  

¢  Coalescing	
  policy:	
  
§  Immediate	
  coalescing:	
  coalesce	
  each	
  2me	
  free	
  is	
  called	
  	
  
§  Deferred	
  coalescing:	
  try	
  to	
  improve	
  performance	
  of	
  free	
  by	
  deferring	
  

coalescing	
  un2l	
  needed.	
  Examples:	
  
§  Coalesce	
  as	
  you	
  scan	
  the	
  free	
  list	
  for	
  malloc	
  
§  Coalesce	
  when	
  the	
  amount	
  of	
  external	
  fragmenta2on	
  reaches	
  
some	
  threshold	
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Implicit	
  Lists:	
  Summary	
  
¢  Implementa/on:	
  very	
  simple	
  
¢  Allocate	
  cost:	
  	
  

§  linear	
  2me	
  worst	
  case	
  
¢  Free	
  cost:	
  	
  

§  constant	
  2me	
  worst	
  case	
  
§  even	
  with	
  coalescing	
  

¢  Memory	
  usage:	
  	
  
§  will	
  depend	
  on	
  placement	
  policy	
  
§  First-­‐fit,	
  next-­‐fit	
  or	
  best-­‐fit	
  
	
  

¢  Not	
  used	
  in	
  prac/ce	
  for	
  malloc/free because	
  of	
  linear-­‐
/me	
  alloca/on	
  
§  used	
  in	
  many	
  special	
  purpose	
  applica2ons	
  
	
  

¢  However,	
  the	
  concepts	
  of	
  splifng	
  and	
  boundary	
  tag	
  
coalescing	
  are	
  general	
  to	
  all	
  allocators	
  


