
Carnegie Mellon

1

Dynamic	
 Memory	
 Alloca/on:	
 	

Basic	
 Concepts	

	

15-­‐213	
 /	
 18-­‐213:	
 Introduc2on	
 to	
 Computer	
 Systems 	
 	

18th	
 Lecture,	
 March.	
 26,	
 2013	

Instructors:	
 	

Anthony	
 Rowe,	
 Seth	
 Goldstein,	
 and	
 Gregory	
 Kesden	

Carnegie Mellon

2

Today	

¢  Basic	
 concepts	

¢  Implicit	
 free	
 lists	

	

Carnegie Mellon

3

Dynamic	
 Memory	
 Alloca/on	
 	

¢  Programmers	
 use	

dynamic	
 memory	

allocators	
 (such	
 as	

malloc)	
 to	
 acquire	
 VM	

at	
 run	
 /me.	
 	

§  For	
 data	
 structures	
 whose	

size	
 is	
 only	
 known	
 at	

run2me.	

¢  Dynamic	
 memory	

allocators	
 manage	
 an	

area	
 of	
 process	
 virtual	

memory	
 known	
 as	
 the	

heap.	
 	

Heap	
 (via	
 malloc)	

Program	
 text	
 (.text)	

Ini/alized	
 data	
 (.data)	

Unini/alized	
 data	
 (.bss)	

User	
 stack	

0	

Top	
 of	
 heap	

	
 (brk ptr)	

Applica/on	

Dynamic	
 Memory	
 Allocator	

Heap	

Carnegie Mellon

4

Dynamic	
 Memory	
 Alloca/on	

¢  Allocator	
 maintains	
 heap	
 as	
 collec/on	
 of	
 variable	
 sized	

blocks,	
 which	
 are	
 either	
 allocated	
 or	
 free	

¢  Types	
 of	
 allocators	

§  Explicit	
 allocator:	
 	
 applica2on	
 allocates	
 and	
 frees	
 space	
 	

§  E.g.,	
 	
 malloc	
 and	
 free	
 in	
 C	

§  Implicit	
 allocator:	
 applica2on	
 allocates,	
 but	
 does	
 not	
 free	
 space	

§  E.g.	
 garbage	
 collec2on	
 in	
 Java,	
 ML,	
 and	
 Lisp	

¢  Will	
 discuss	
 simple	
 explicit	
 memory	
 alloca/on	
 today	

Carnegie Mellon

5

The	
 malloc	
 Package	

#include <stdlib.h>

void *malloc(size_t size)
§  Successful:	

§  Returns	
 a	
 pointer	
 to	
 a	
 memory	
 block	
 of	
 at	
 least	
 size	
 bytes	

(typically)	
 aligned	
 to	
 8-­‐byte	
 boundary	

§  If	
 size == 0,	
 returns	
 NULL	

§  Unsuccessful:	
 returns	
 NULL	
 (0)	
 and	
 sets	
 errno

void free(void *p)
§  Returns	
 the	
 block	
 pointed	
 at	
 by	
 p	
 to	
 pool	
 of	
 available	
 memory	

§  p	
 must	
 come	
 from	
 a	
 previous	
 call	
 to	
 malloc or	
 realloc

Other	
 func/ons	

§  calloc:	
 Version	
 of	
 malloc	
 that	
 ini2alizes	
 allocated	
 block	
 to	
 zero.	
 	

§  realloc:	
 Changes	
 the	
 size	
 of	
 a	
 previously	
 allocated	
 block.	

§  sbrk:	
 Used	
 internally	
 by	
 allocators	
 to	
 grow	
 or	
 shrink	
 the	
 heap	

Carnegie Mellon

6

malloc	
 Example	

void foo(int n, int m) {
 int i, *p;

 /* Allocate a block of n ints */
 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) {
 perror("malloc");
 exit(0);
 }

 /* Initialize allocated block */
 for (i=0; i<n; i++)
 p[i] = i;

 /* Return p to the heap */
 free(p);
}

Carnegie Mellon

7

Assump/ons	
 Made	
 in	
 This	
 Lecture	

¢  Memory	
 is	
 word	
 addressed	
 (each	
 word	
 can	
 hold	
 a	

pointer)	

Allocated	
 block	

(4	
 words)	

Free	
 block	

(3	
 words)	
 Free	
 word	

Allocated	
 word	

Carnegie Mellon

8

Alloca/on	
 Example	

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Carnegie Mellon

9

Constraints	

¢  Applica/ons	

§  Can	
 issue	
 arbitrary	
 sequence	
 of	
 malloc	
 and	
 free	
 requests	

§  free	
 request	
 must	
 be	
 to	
 a	
 malloc’d	
 	
 block	

¢  Allocators	

§  Can’t	
 control	
 number	
 or	
 size	
 of	
 allocated	
 blocks	

§  Must	
 respond	
 immediately	
 to	
 malloc	
 requests	

§  i.e.,	
 can’t	
 reorder	
 or	
 buffer	
 requests	

§  Must	
 allocate	
 blocks	
 from	
 free	
 memory	

§  i.e.,	
 can	
 only	
 place	
 allocated	
 blocks	
 in	
 free	
 memory	

§  Must	
 align	
 blocks	
 so	
 they	
 sa2sfy	
 all	
 alignment	
 requirements	

§  8	
 byte	
 alignment	
 for	
 GNU	
 malloc	
 (libc	
 malloc)	
 on	
 Linux	
 boxes	

§  Can	
 manipulate	
 and	
 modify	
 only	
 free	
 memory	

§  Can’t	
 move	
 the	
 allocated	
 blocks	
 once	
 they	
 are	
 malloc’d	

§  i.e.,	
 compac2on	
 is	
 not	
 allowed	

Carnegie Mellon

10

Performance	
 Goal:	
 Throughput	

¢  Given	
 some	
 sequence	
 of	
 malloc	
 and	
 free	
 requests:	

§  	
 R0,	
 R1,	
 ...,	
 Rk,	
 ...	
 ,	
 Rn-­‐1	

¢  Goals:	
 maximize	
 throughput	
 and	
 peak	
 memory	
 u/liza/on	

§  These	
 goals	
 are	
 o\en	
 conflic2ng	

¢  Throughput:	

§  Number	
 of	
 completed	
 requests	
 per	
 unit	
 2me	

§  Example:	

§  5,000	
 	
 malloc	
 calls	
 and	
 5,000	
 free	
 calls	
 in	
 10	
 seconds	
 	

§  Throughput	
 is	
 1,000	
 opera2ons/second	

Carnegie Mellon

11

Performance	
 Goal:	
 Peak	
 Memory	
 U/liza/on	

¢  Given	
 some	
 sequence	
 of	
 malloc	
 and	
 free	
 requests:	

§  	
 R0,	
 R1,	
 ...,	
 Rk,	
 ...	
 ,	
 Rn-­‐1	

¢  Def:	
 Aggregate	
 payload	
 Pk	
 	

§  	
 malloc(p)	
 results	
 in	
 a	
 block	
 with	
 a	
 payload	
 of	
 p	
 bytes	

§  A\er	
 request	
 Rk	
 has	
 completed,	
 the	
 aggregate	
 payload	
 Pk	
 	
 is	
 the	
 sum	
 of	

currently	
 allocated	
 payloads	

¢  Def:	
 Current	
 heap	
 size	
 Hk	

§  Assume	
 Hk	
 is	
 monotonically	
 nondecreasing	

§  i.e.,	
 heap	
 only	
 grows	
 when	
 allocator	
 uses	
 sbrk

¢  Def:	
 Peak	
 memory	
 u@liza@on	
 aAer	
 k	
 requests	
 	

§  Uk	
 =	
 (
 maxi<k	
 Pi	
)	
 	
 /	
 	
 Hk	

Carnegie Mellon

12

Fragmenta/on	

¢  Poor	
 memory	
 u/liza/on	
 caused	
 by	
 fragmenta@on	

§  internal	
 fragmenta2on	

§  external	
 fragmenta2on	

Carnegie Mellon

13

Internal	
 Fragmenta/on	

¢  For	
 a	
 given	
 block,	
 internal	
 fragmenta@on	
 occurs	
 if	
 payload	
 is	

smaller	
 than	
 block	
 size	

	

¢  Caused	
 by	
 	

§  Overhead	
 of	
 maintaining	
 heap	
 data	
 structures	

§  Padding	
 for	
 alignment	
 purposes	

§  Explicit	
 policy	
 decisions	
 	

(e.g.,	
 to	
 return	
 a	
 big	
 block	
 to	
 sa2sfy	
 a	
 small	
 request)	

¢  Depends	
 only	
 on	
 the	
 paUern	
 of	
 previous	
 requests	

§  Thus,	
 easy	
 to	
 measure	

Payload	
 Internal	
 	

fragmenta/on	

Block	

Internal	
 	

fragmenta/on	

Carnegie Mellon

14

External	
 Fragmenta/on	

¢  Occurs	
 when	
 there	
 is	
 enough	
 aggregate	
 heap	
 memory,	

but	
 no	
 single	
 free	
 block	
 is	
 large	
 enough	

¢  Depends	
 on	
 the	
 paUern	
 of	
 future	
 requests	

§  Thus,	
 difficult	
 to	
 measure	

	

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops!	
 (what	
 would	
 happen	
 now?)	

Carnegie Mellon

15

Implementa/on	
 Issues	

¢  How	
 do	
 we	
 know	
 how	
 much	
 memory	
 to	
 free	
 given	
 just	
 a	

pointer?	

¢  How	
 do	
 we	
 keep	
 track	
 of	
 the	
 free	
 blocks?	

¢  What	
 do	
 we	
 do	
 with	
 the	
 extra	
 space	
 when	
 alloca/ng	
 a	

structure	
 that	
 is	
 smaller	
 than	
 the	
 free	
 block	
 it	
 is	
 placed	
 in?	

¢  How	
 do	
 we	
 pick	
 a	
 block	
 to	
 use	
 for	
 alloca/on	
 -­‐-­‐	
 many	

might	
 fit?	

¢  How	
 do	
 we	
 reinsert	
 freed	
 block?	

Carnegie Mellon

16

Knowing	
 How	
 Much	
 to	
 Free	

¢  Standard	
 method	

§  Keep	
 the	
 length	
 of	
 a	
 block	
 in	
 the	
 word	
 preceding	
 the	
 block.	

§  This	
 word	
 is	
 o\en	
 called	
 the	
 header	
 field	
 or	
 header	

§  Requires	
 an	
 extra	
 word	
 for	
 every	
 allocated	
 block	

p0 = malloc(4)

p0

free(p0)

block	
 size	
 payload	

5	

Carnegie Mellon

17

Keeping	
 Track	
 of	
 Free	
 Blocks	

¢  Method	
 1:	
 Implicit	
 list	
 using	
 length—links	
 all	
 blocks	

¢  Method	
 2:	
 Explicit	
 list	
 among	
 the	
 free	
 blocks	
 using	
 pointers	

	

¢  Method	
 3:	
 Segregated	
 free	
 list	

§  Different	
 free	
 lists	
 for	
 different	
 size	
 classes	

¢  Method	
 4:	
 Blocks	
 sorted	
 by	
 size	

§  Can	
 use	
 a	
 balanced	
 tree	
 (e.g.	
 Red-­‐Black	
 tree)	
 with	
 pointers	
 within	
 each	

free	
 block,	
 and	
 the	
 length	
 used	
 as	
 a	
 key	

5 4	
 2	
 6	

5 4	
 2	
 6	

Carnegie Mellon

18

Today	

¢  Basic	
 concepts	

¢  Implicit	
 free	
 lists	

	

Carnegie Mellon

19

Method	
 1:	
 Implicit	
 List	

¢  For	
 each	
 block	
 we	
 need	
 both	
 size	
 and	
 alloca/on	
 status	

§  Could	
 store	
 this	
 informa2on	
 in	
 two	
 words:	
 wasteful!	

¢  Standard	
 trick	

§  If	
 blocks	
 are	
 aligned,	
 some	
 low-­‐order	
 address	
 bits	
 are	
 always	
 0	

§  Instead	
 of	
 storing	
 an	
 always-­‐0	
 bit,	
 use	
 it	
 as	
 a	
 allocated/free	
 flag	

§  When	
 reading	
 size	
 word,	
 must	
 mask	
 out	
 this	
 bit	

Size	

1	
 word	

Format	
 of	

allocated	
 and	

free	
 blocks	

Payload	

a	
 =	
 1:	
 Allocated	
 block	
 	
 	

a	
 =	
 0:	
 Free	
 block	

	

Size:	
 block	
 size	

	

Payload:	
 applica/on	
 data	

(allocated	
 blocks	
 only)	

	

a	

Op/onal	

padding	

Carnegie Mellon

20

Detailed	
 Implicit	
 Free	
 List	
 Example	

Start	
 	

of	
 	

heap	

Double-­‐word	

aligned	

8/0	
 16/1	
 16/1	
 32/0	

Unused	

0/1	

Allocated	
 blocks:	
 shaded	

Free	
 blocks:	
 unshaded	

Headers:	
 labeled	
 with	
 size	
 in	
 bytes/allocated	
 bit	

Carnegie Mellon

21

Implicit	
 List:	
 Finding	
 a	
 Free	
 Block	

¢  First	
 fit:	

§  Search	
 list	
 from	
 beginning,	
 choose	
 first	
 free	
 block	
 that	
 fits:	

	

	

	

	

	

§  Can	
 take	
 linear	
 2me	
 in	
 total	
 number	
 of	
 blocks	
 (allocated	
 and	
 free)	

§  In	
 prac2ce	
 it	
 can	
 cause	
 “splinters”	
 at	
 beginning	
 of	
 list	

¢  Next	
 fit:	

§  Like	
 first	
 fit,	
 but	
 search	
 list	
 star2ng	
 where	
 previous	
 search	
 finished	

§  Should	
 o\en	
 be	
 faster	
 than	
 first	
 fit:	
 avoids	
 re-­‐scanning	
 unhelpful	
 blocks	

§  Some	
 research	
 suggests	
 that	
 fragmenta2on	
 is	
 worse	

¢  Best	
 fit:	

§  Search	
 the	
 list,	
 choose	
 the	
 best	
 free	
 block:	
 fits,	
 with	
 fewest	
 bytes	
 le\	
 over	

§  Keeps	
 fragments	
 small—usually	
 improves	
 memory	
 u2liza2on	

§  Will	
 typically	
 run	
 slower	
 than	
 first	
 fit	

p = start;
while ((p < end) && \\ not passed end
 ((*p & 1) || \\ already allocated
 (*p <= len))) \\ too small
 p = p + (*p & -2); \\ goto next block (word addressed)

Carnegie Mellon

22

Implicit	
 List:	
 Alloca/ng	
 in	
 Free	
 Block	

¢  Alloca/ng	
 in	
 a	
 free	
 block:	
 spliOng	

§  Since	
 allocated	
 space	
 might	
 be	
 smaller	
 than	
 free	
 space,	
 we	
 might	
 want	

to	
 split	
 the	
 block	

void addblock(ptr p, int len) {
 int newsize = ((len + 1) >> 1) << 1; // round up to even
 int oldsize = *p & -2; // mask out low bit
 *p = newsize | 1; // set new length
 if (newsize < oldsize)
 *(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4	
 4	
 2	
 6	

4	
 2	
 4	

p	

2	
 4	

addblock(p, 4)

Carnegie Mellon

23

Implicit	
 List:	
 Freeing	
 a	
 Block	

¢  Simplest	
 implementa/on:	

§  Need	
 only	
 clear	
 the	
 “allocated”	
 flag	

 void free_block(ptr p) { *p = *p & -2 }

§  But	
 can	
 lead	
 to	
 “false	
 fragmenta2on”	
 	

	

	

	

	

	

	

	

4	
 2	
 4	
 2	
 4	

free(p) p

4	
 4	
 2	
 4	
 2	

malloc(5) Oops!	

There is enough free space, but the allocator won’t be able to find it
	

Carnegie Mellon

24

Implicit	
 List:	
 Coalescing	

¢  Join	
 (coalesce)	
 with	
 next/previous	
 blocks,	
 if	
 they	
 are	
 free	

§  Coalescing	
 with	
 next	
 block	

	

	

	

	

§  But	
 how	
 do	
 we	
 coalesce	
 with	
 previous	
 block?	

void free_block(ptr p) {
 *p = *p & -2; // clear allocated flag
 next = p + *p; // find next block
 if ((*next & 1) == 0)
 *p = *p + *next; // add to this block if
} // not allocated

4	
 2	
 4	
 2	

free(p) p

4	
 4	
 2	

4	

6	
 2	

logically	

gone	

Carnegie Mellon

25

Implicit	
 List:	
 Bidirec/onal	
 Coalescing	
 	

¢  Boundary	
 tags	
 [Knuth73]	

§  Replicate	
 size/allocated	
 word	
 at	
 “bomom”	
 (end)	
 of	
 free	
 blocks	

§  Allows	
 us	
 to	
 traverse	
 the	
 “list”	
 backwards,	
 but	
 requires	
 extra	
 space	

§  Important	
 and	
 general	
 technique!	

Size	

Format	
 of	

allocated	
 and	

free	
 blocks	

Payload	
 and	

padding	

a	
 =	
 1:	
 Allocated	
 block	
 	
 	

a	
 =	
 0:	
 Free	
 block	

	

Size:	
 Total	
 block	
 size	

	

Payload:	
 Applica/on	
 data	

(allocated	
 blocks	
 only)	

	

a	

Size	
 a	
 Boundary	
 tag	

(footer)	

4	
 4	
 4	
 4	
 6	
 4	
 6	
 4	

Header	

Carnegie Mellon

26

Constant	
 Time	
 Coalescing	

Allocated	

Allocated	

Allocated	

Free	

Free	

Allocated	

Free	

Free	

Block	
 being	

freed	

Case	
 1	
 Case	
 2	
 Case	
 3	
 Case	
 4	

Carnegie Mellon

27

m1	
 1	

Constant	
 Time	
 Coalescing	
 (Case	
 1)	

m1	
 1	

n	
 1	

n	
 1	

m2	
 1	

m2	
 1	

m1	
 1	

m1	
 1	

n	
 0	

n	
 0	

m2	
 1	

m2	
 1	

Carnegie Mellon

28

m1	
 1	

Constant	
 Time	
 Coalescing	
 (Case	
 2)	

m1	
 1	

n+m2	
 0	

n+m2	
 0	

m1	
 1	

m1	
 1	

n	
 1	

n	
 1	

m2	
 0	

m2	
 0	

Carnegie Mellon

29

m1	
 0	

Constant	
 Time	
 Coalescing	
 (Case	
 3)	

m1	
 0	

n	
 1	

n	
 1	

m2	
 1	

m2	
 1	

n+m1	
 0	

n+m1	
 0	

m2	
 1	

m2	
 1	

Carnegie Mellon

30

m1	
 0	

Constant	
 Time	
 Coalescing	
 (Case	
 4)	

m1	
 0	

n	
 1	

n	
 1	

m2	
 0	

m2	
 0	

n+m1+m2	
 0	

n+m1+m2	
 0	

Carnegie Mellon

31

Disadvantages	
 of	
 Boundary	
 Tags	

¢  Internal	
 fragmenta/on	

¢  Can	
 it	
 be	
 op/mized?	

§  Which	
 blocks	
 need	
 the	
 footer	
 tag?	

§  What	
 does	
 that	
 mean?	

Carnegie Mellon

32

Summary	
 of	
 Key	
 Allocator	
 Policies	

¢  Placement	
 policy:	

§  First-­‐fit,	
 next-­‐fit,	
 best-­‐fit,	
 etc.	

§  Trades	
 off	
 lower	
 throughput	
 for	
 less	
 fragmenta2on 	
 	

§  Interes@ng	
 observa@on:	
 segregated	
 free	
 lists	
 (next	
 lecture)	

approximate	
 a	
 best	
 fit	
 placement	
 policy	
 without	
 having	
 to	
 search	
 en2re	

free	
 list	

¢  Splifng	
 policy:	

§  When	
 do	
 we	
 go	
 ahead	
 and	
 split	
 free	
 blocks?	

§  How	
 much	
 internal	
 fragmenta2on	
 are	
 we	
 willing	
 to	
 tolerate?	

¢  Coalescing	
 policy:	

§  Immediate	
 coalescing:	
 coalesce	
 each	
 2me	
 free	
 is	
 called	
 	

§  Deferred	
 coalescing:	
 try	
 to	
 improve	
 performance	
 of	
 free	
 by	
 deferring	

coalescing	
 un2l	
 needed.	
 Examples:	

§  Coalesce	
 as	
 you	
 scan	
 the	
 free	
 list	
 for	
 malloc	

§  Coalesce	
 when	
 the	
 amount	
 of	
 external	
 fragmenta2on	
 reaches	

some	
 threshold	

Carnegie Mellon

33

Implicit	
 Lists:	
 Summary	

¢  Implementa/on:	
 very	
 simple	

¢  Allocate	
 cost:	
 	

§  linear	
 2me	
 worst	
 case	

¢  Free	
 cost:	
 	

§  constant	
 2me	
 worst	
 case	

§  even	
 with	
 coalescing	

¢  Memory	
 usage:	
 	

§  will	
 depend	
 on	
 placement	
 policy	

§  First-­‐fit,	
 next-­‐fit	
 or	
 best-­‐fit	

	

¢  Not	
 used	
 in	
 prac/ce	
 for	
 malloc/free because	
 of	
 linear-­‐
/me	
 alloca/on	

§  used	
 in	
 many	
 special	
 purpose	
 applica2ons	

	

¢  However,	
 the	
 concepts	
 of	
 splifng	
 and	
 boundary	
 tag	

coalescing	
 are	
 general	
 to	
 all	
 allocators	

