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Today

m Basic concepts
m Implicit free lists
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Dynamic Memory Allocation

m Programmers use Application
dynamic memory Dynamic Memory Allocator
allocators (such as Heap
malloc) to acquire VM
at run time.
= For data structures whose User stack
size is only known at
runtime.
Top of heap
m Dynamic memor -
y y Heap (viamalloc) (brk ptr)

allocators manage an

area of process virtual
memory known as the Initialized data (.data)
heap. Program text (. text)

Uninitialized data (.bss)
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Dynamic Memory Allocation

m Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free
m Types of allocators

= Explicit allocator: application allocates and frees space
= E.g.,, mallocand freeinC

= Implicit allocator: application allocates, but does not free space
= E.g. garbage collection in Java, ML, and Lisp

m Will discuss simple explicit memory allocation today



The malloc Package

#include <stdlib.h>

void *malloc(size t size)
= Successful:

= Returns a pointer to a memory block of at least size bytes
(typically) aligned to 8-byte boundary

» [f size == 0, returns NULL
= Unsuccessful: returns NULL (0) and sets exrrno

void free (void *p)
= Returns the block pointed at by p to pool of available memory
= p must come from a previous call tomalloc or realloc

Other functions
" calloc: Version of malloc that initializes allocated block to zero.
" realloc: Changes the size of a previously allocated block.
= sbrk: Used internally by allocators to grow or shrink the heap



malloc Example

void foo(int n, int m) {
int 1, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int))
if (p == NULL) {
perror ("malloc") ;
exit (0) ;
}

/* Initialize allocated block */
for (i=0; i<n; i++)
pli] = 1i;

/* Return p to the heap */
free(p) ;
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Assumptions Made in This Lecture

m Memory is word addressed (each word can hold a

pointer)
\ Y J Q ,_I
Allocated block Free block
(4 words) (3 words) Free word

Allocated word
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Allocation Example

pl = malloc(4)

p2 = malloc (5)

p3 = malloc(6)

free (p2)

p4 = malloc(2)




Constraints

m Applications
® Canissue arbitrary sequence of malloc and free requests
= freerequest must betoamalloc’d block

m Allocators
= Can’t control number or size of allocated blocks
" Must respond immediately tomalloc requests
= j.e., can’t reorder or buffer requests
= Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory
= Must align blocks so they satisfy all alignment requirements
= 8 byte alignment for GNUmalloc (1ibcmalloc) on Linux boxes
= Can manipulate and modify only free memory
® Can’t move the allocated blocks once they aremalloc’d
= j.e., compaction is not allowed
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Performance Goal: Throughput

m Given some sequence of malloc and free requests:
R, R, ...,R,...,R

m Goals: maximize throughput and peak memory utilization
" These goals are often conflicting

m Throughput:
" Number of completed requests per unit time
= Example:
= 5,000 malloc calls and 5,000 £ree calls in 10 seconds
= Throughput is 1,000 operations/second
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Performance Goal: Peak Memory Utilization

m Given some sequence of malloc and free requests:
Ry, Ry, ... R, ..., R,

m Def: Aggregate payload P,
" malloc (p) resultsin a block with a payload of p bytes

= After request R, has completed, the aggregate payload P, is the sum of
currently allocated payloads

m Def: Current heap size H,
= Assume H, is monotonically nondecreasing
= i.e., heap only grows when allocator uses sbrk

m Def: Peak memory utilization after k requests
" Ug=(max4P;) / Hy

1"
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Fragmentation

m Poor memory utilization caused by fragmentation
" jnternal fragmentation
= external fragmentation

12
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Internal Fragmentation

m For a given block, internal fragmentation occurs if payload is
smaller than block size

Block
A
o Y
Internal Internal
—— G
fragmentation HElee fragmentation
m Caused by

"= QOverhead of maintaining heap data structures
= Padding for alignment purposes

= Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

m Depends only on the pattern of previous requests

" Thus, easy to measure
13



Carnegie Mellon

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

malloc (4)

o
=
I

o
N
I

malloc (5)

p3 = malloc (6)

free (p2)

p4 = malloc(6) Oops! (what would happen now?)

m Depends on the pattern of future requests
" Thus, difficult to measure
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Implementation Issues

m How do we know how much memory to free given just a
pointer?

m How do we keep track of the free blocks?

m What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

m How do we pick a block to use for allocation -- many
might fit?

m How do we reinsert freed block?

15
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Knowing How Much to Free

m Standard method
= Keep the length of a block in the word preceding the block.
= This word is often called the header field or header
= Requires an extra word for every allocated block

pO = malloc(4) 5

(Y

block size payload

free (p0)

16
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Keeping Track of Free Blocks

m Method 1: Implicit list using length—links all blocks

m Method 2: Explicit list among the free blocks using pointers

/\

5 4 6 2

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key
17
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Today

m Basic concepts
m Implicit free lists
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Method 1: Implicit List

m For each block we need both size and allocation status
® Could store this information in two words: wasteful!

m Standard trick

= |f blocks are aligned, some low-order address bits are always O
" |nstead of storing an always-0 bit, use it as a allocated/free flag
" When reading size word, must mask out this bit

1 word
A
/ ™~
Size a a = 1: Allocated block
a = 0: Free block
Format of
allocated and Payload Size: block size
free blocks o
Payload: application data
(allocated blocks only)
Optional
padding

19



Detailed Implicit Free List Example

Start ”““Sed/\ /\/—\

of
heap

Carnegie Mellon

N

‘8/0

16/1

32/0

16/1

0/1|

. Double-word
. aligned

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

20
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Implicit List: Finding a Free Block

m First fit:
= Search list from beginning, choose first free block that fits:

p = start;
while ((p < end) && \\ not passed end
((*p & 1) || \\ already allocated
(*p <= len))) \\ too small
p=p+ (*p & -2); \\ goto next block (word addressed)

® Can take linear time in total number of blocks (allocated and free)
® |n practice it can cause “splinters” at beginning of list

m Next fit:
= Like first fit, but search list starting where previous search finished
= Should often be faster than first fit: avoids re-scanning unhelpful blocks
= Some research suggests that fragmentation is worse

m Best fit:

= Search the list, choose the best free block: fits, with fewest bytes left over
= Keeps fragments small—usually improves memory utilization

= Will typically run slower than first fit
21



Implicit List: Allocating in Free Block

m Allocating in a free block: splitting

= Since allocated space might be smaller than free space, we might want
to split the block

N N/ T

4 4 6 2
1
p

addblock (p, 4)

void addblock (ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even

int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length
if (newsize < oldsize)
* (p+newsize) = oldsize - newsize; // set length in remaining

} //  part of block

22
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Implicit List: Freeing a Block

m Simplest implementation:

= Need only clear the “allocated” flag
void free block(ptr p) { *p = *p & -2 }

= But can lead to “false fragmentation”

4
t
free (p) p

malloc (5) Oops!

There is enough free space, but the allocator won’t be able to find it

23
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Implicit List: Coalescing

m Join (coalesce) with next/previous blocks, if they are free
" Coalescing with next block

4 4 4 2 2 _
t logically
free (p) ///’__\\\L///’_\\\\i/””___§z;x<:/,/,/"gone
4 4 6 2 2
void free block (ptr p) {
*p = *p & -2; // clear allocated flag
next = p + *p; // find next block
if ((*next & 1) == 0)
*p = *p + *next; // add to this block if
} // not allocated

= But how do we coalesce with previous block?
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Implicit List: Bidirectional Coalescing

m Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
= |mportant and general technique!

4 4 4 4 6 6|4 4
Header —| Size - a = 1: Allocated block
a = 0: Free block
Format of . _
allocated and Payload and Size: Total block size
padding
free blocks Payload: Application data
(allocated blocks only)
Boundary tag > Size a

(footer)
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Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4

Allocated Allocated Free Free

Block being
freed

Allocated Free Allocated Free

26
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Constant Time Coalescing (Case 1)

ml 1 ml 1

ml 1 ml 1

n 1 n 0
—

n 1 n 0

m2 1 m2 1

m2 1 m2 1
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Constant Time Coalescing (Case 2)

ml 1 ml 1
ml 1 ml 1
n 1 n+m?2 0
—
n 1
m2 0
m2 0 n+m?2 0
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Constant Time Coalescing (Case 3)

ml 0 n+ml 0
ml 0
n 1
—
n 1 n+ml 0
m2 1 m2 1
m2 1 m2 1
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Constant Time Coalescing (Case 4)

ml 0 n+ml+m2 0
ml 0
n 1
—p
n 1
m2 0
m2 0 n+ml+m2 0

30
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Disadvantages of Boundary Tags

m Internal fragmentation

m Can it be optimized?
= Which blocks need the footer tag?
" What does that mean?

3
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Summary of Key Allocator Policies

m Placement policy:
= First-fit, next-fit, best-fit, etc.
" Trades off lower throughput for less fragmentation

= |nteresting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search entire
free list

m Splitting policy:
= When do we go ahead and split free blocks?
= How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
" Immediate coalescing: coalesce each time £ree is called

= Deferred coalescing: try to improve performance of £ree by deferring
coalescing until needed. Examples:

= Coalesce as you scan the free list formalloc

= Coalesce when the amount of external fragmentation reaches

some threshold N
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Implicit Lists: Summary

m Implementation: very simple

m Allocate cost:
" |inear time worst case

m Free cost:
® constant time worst case
= even with coalescing

m Memory usage:
= will depend on placement policy
" First-fit, next-fit or best-fit

m Not used in practice formalloc/free because of linear-
time allocation
= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators
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