Carnegie Mellon

Dynamic Memory Allocation:
Basic Concepts

15-213 / 18-213: Introduction to Computer Systems
18t Lecture, March. 26, 2013

Instructors:
Anthony Rowe, Seth Goldstein, and Gregory Kesden

Carnegie Mellon

Today

m Basic concepts
m Implicit free lists

Carnegie Mellon

Dynamic Memory Allocation

m Programmers use Application
dynamic memory Dynamic Memory Allocator
allocators (such as Heap
malloc) to acquire VM
at run time.
= For data structures whose User stack
size is only known at
runtime.
Top of heap
m Dynamic memor -
y y Heap (viamalloc) (brk ptr)

allocators manage an

area of process virtual
memory known as the Initialized data (.data)
heap. Program text (. text)

Uninitialized data (.bss)

Carnegie Mellon

Dynamic Memory Allocation

m Allocator maintains heap as collection of variable sized
blocks, which are either allocated or free
m Types of allocators

= Explicit allocator: application allocates and frees space
= E.g.,, mallocand freeinC

= Implicit allocator: application allocates, but does not free space
= E.g. garbage collection in Java, ML, and Lisp

m Will discuss simple explicit memory allocation today

The malloc Package

#include <stdlib.h>

void *malloc(size t size)
= Successful:

= Returns a pointer to a memory block of at least size bytes
(typically) aligned to 8-byte boundary

» [f size == 0, returns NULL
= Unsuccessful: returns NULL (0) and sets exrrno

void free (void *p)
= Returns the block pointed at by p to pool of available memory
= p must come from a previous call tomalloc or realloc

Other functions
" calloc: Version of malloc that initializes allocated block to zero.
" realloc: Changes the size of a previously allocated block.
= sbrk: Used internally by allocators to grow or shrink the heap

malloc Example

void foo(int n, int m) {
int 1, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof(int))
if (p == NULL) {
perror ("malloc") ;
exit (0) ;
}

/* Initialize allocated block */
for (i=0; i<n; i++)
pli] = 1i;

/* Return p to the heap */
free(p) ;

Carnegie Mellon

Assumptions Made in This Lecture

m Memory is word addressed (each word can hold a

pointer)
\ Y J Q ,_I
Allocated block Free block
(4 words) (3 words) Free word

Allocated word

Carnegie Mellon

Allocation Example

pl = malloc(4)

p2 = malloc (5)

p3 = malloc(6)

free (p2)

p4 = malloc(2)

Constraints

m Applications
® Canissue arbitrary sequence of malloc and free requests
= freerequest must betoamalloc’d block

m Allocators
= Can’t control number or size of allocated blocks
" Must respond immediately tomalloc requests
= j.e., can’t reorder or buffer requests
= Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory
= Must align blocks so they satisfy all alignment requirements
= 8 byte alignment for GNUmalloc (1ibcmalloc) on Linux boxes
= Can manipulate and modify only free memory
® Can’t move the allocated blocks once they aremalloc’d
= j.e., compaction is not allowed

Carnegie Mellon

Performance Goal: Throughput

m Given some sequence of malloc and free requests:
R, R, ...,R,...,R

m Goals: maximize throughput and peak memory utilization
" These goals are often conflicting

m Throughput:
" Number of completed requests per unit time
= Example:
= 5,000 malloc calls and 5,000 £ree calls in 10 seconds
= Throughput is 1,000 operations/second

10

Carnegie Mellon

Performance Goal: Peak Memory Utilization

m Given some sequence of malloc and free requests:
Ry, Ry, ... R, ..., R,

m Def: Aggregate payload P,
" malloc (p) resultsin a block with a payload of p bytes

= After request R, has completed, the aggregate payload P, is the sum of
currently allocated payloads

m Def: Current heap size H,
= Assume H, is monotonically nondecreasing
= i.e., heap only grows when allocator uses sbrk

m Def: Peak memory utilization after k requests
" Ug=(max4P;) / Hy

1"

Carnegie Mellon

Fragmentation

m Poor memory utilization caused by fragmentation
" jnternal fragmentation
= external fragmentation

12

Carnegie Mellon

Internal Fragmentation

m For a given block, internal fragmentation occurs if payload is
smaller than block size

Block
A
o Y
Internal Internal
—— G
fragmentation HElee fragmentation
m Caused by

"= QOverhead of maintaining heap data structures
= Padding for alignment purposes

= Explicit policy decisions
(e.g., to return a big block to satisfy a small request)

m Depends only on the pattern of previous requests

" Thus, easy to measure
13

Carnegie Mellon

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

malloc (4)

o
=
I

o
N
I

malloc (5)

p3 = malloc (6)

free (p2)

p4 = malloc(6) Oops! (what would happen now?)

m Depends on the pattern of future requests
" Thus, difficult to measure

14

Carnegie Mellon

Implementation Issues

m How do we know how much memory to free given just a
pointer?

m How do we keep track of the free blocks?

m What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

m How do we pick a block to use for allocation -- many
might fit?

m How do we reinsert freed block?

15

Carnegie Mellon

Knowing How Much to Free

m Standard method
= Keep the length of a block in the word preceding the block.
= This word is often called the header field or header
= Requires an extra word for every allocated block

pO = malloc(4) 5

(Y

block size payload

free (p0)

16

Carnegie Mellon

Keeping Track of Free Blocks

m Method 1: Implicit list using length—links all blocks

m Method 2: Explicit list among the free blocks using pointers

/\

5 4 6 2

m Method 3: Segregated free list

= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key
17

Carnegie Mellon

Today

m Basic concepts
m Implicit free lists

18

Carnegie Mellon

Method 1: Implicit List

m For each block we need both size and allocation status
® Could store this information in two words: wasteful!

m Standard trick

= |f blocks are aligned, some low-order address bits are always O
" |nstead of storing an always-0 bit, use it as a allocated/free flag
" When reading size word, must mask out this bit

1 word
A
/ ™~
Size a a = 1: Allocated block
a = 0: Free block
Format of
allocated and Payload Size: block size
free blocks o
Payload: application data
(allocated blocks only)
Optional
padding

19

Detailed Implicit Free List Example

Start ”““Sed/\ /\/—\

of
heap

Carnegie Mellon

N

‘8/0

16/1

32/0

16/1

0/1|

. Double-word
. aligned

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

20

Carnegie Mellon

Implicit List: Finding a Free Block

m First fit:
= Search list from beginning, choose first free block that fits:

p = start;
while ((p < end) && \\ not passed end
((*p & 1) || \\ already allocated
(*p <= len))) \\ too small
p=p+ (*p & -2); \\ goto next block (word addressed)

® Can take linear time in total number of blocks (allocated and free)
® |n practice it can cause “splinters” at beginning of list

m Next fit:
= Like first fit, but search list starting where previous search finished
= Should often be faster than first fit: avoids re-scanning unhelpful blocks
= Some research suggests that fragmentation is worse

m Best fit:

= Search the list, choose the best free block: fits, with fewest bytes left over
= Keeps fragments small—usually improves memory utilization

= Will typically run slower than first fit
21

Implicit List: Allocating in Free Block

m Allocating in a free block: splitting

= Since allocated space might be smaller than free space, we might want
to split the block

N N/ T

4 4 6 2
1
p

addblock (p, 4)

void addblock (ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even

int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length
if (newsize < oldsize)
* (p+newsize) = oldsize - newsize; // set length in remaining

} // part of block

22

Carnegie Mellon

Implicit List: Freeing a Block

m Simplest implementation:

= Need only clear the “allocated” flag
void free block(ptr p) { *p = *p & -2 }

= But can lead to “false fragmentation”

4
t
free (p) p

malloc (5) Oops!

There is enough free space, but the allocator won’t be able to find it

23

Carnegie Mellon

Implicit List: Coalescing

m Join (coalesce) with next/previous blocks, if they are free
" Coalescing with next block

4 4 4 2 2 _
t logically
free (p) ///’__\\\L///’_\\\\i/””___§z;x<:/,/,/"gone
4 4 6 2 2
void free block (ptr p) {
*p = *p & -2; // clear allocated flag
next = p + *p; // find next block
if ((*next & 1) == 0)
*p = *p + *next; // add to this block if
} // not allocated

= But how do we coalesce with previous block?

24

Carnegie Mellon

Implicit List: Bidirectional Coalescing

m Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
= |mportant and general technique!

4 4 4 4 6 6|4 4
Header —| Size - a = 1: Allocated block
a = 0: Free block
Format of . _
allocated and Payload and Size: Total block size
padding
free blocks Payload: Application data
(allocated blocks only)
Boundary tag > Size a

(footer)

25

Carnegie Mellon

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4

Allocated Allocated Free Free

Block being
freed

Allocated Free Allocated Free

26

Carnegie Mellon

Constant Time Coalescing (Case 1)

ml 1 ml 1

ml 1 ml 1

n 1 n 0
—

n 1 n 0

m2 1 m2 1

m2 1 m2 1

27

Carnegie Mellon

Constant Time Coalescing (Case 2)

ml 1 ml 1
ml 1 ml 1
n 1 n+m?2 0
—
n 1
m2 0
m2 0 n+m?2 0

28

Carnegie Mellon

Constant Time Coalescing (Case 3)

ml 0 n+ml 0
ml 0
n 1
—
n 1 n+ml 0
m2 1 m2 1
m2 1 m2 1

29

Carnegie Mellon

Constant Time Coalescing (Case 4)

ml 0 n+ml+m2 0
ml 0
n 1
—p
n 1
m2 0
m2 0 n+ml+m2 0

30

Carnegie Mellon

Disadvantages of Boundary Tags

m Internal fragmentation

m Can it be optimized?
= Which blocks need the footer tag?
" What does that mean?

3

Carnegie Mellon

Summary of Key Allocator Policies

m Placement policy:
= First-fit, next-fit, best-fit, etc.
" Trades off lower throughput for less fragmentation

= |nteresting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search entire
free list

m Splitting policy:
= When do we go ahead and split free blocks?
= How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
" Immediate coalescing: coalesce each time £ree is called

= Deferred coalescing: try to improve performance of £ree by deferring
coalescing until needed. Examples:

= Coalesce as you scan the free list formalloc

= Coalesce when the amount of external fragmentation reaches

some threshold N

Carnegie Mellon

Implicit Lists: Summary

m Implementation: very simple

m Allocate cost:
" |inear time worst case

m Free cost:
® constant time worst case
= even with coalescing

m Memory usage:
= will depend on placement policy
" First-fit, next-fit or best-fit

m Not used in practice formalloc/free because of linear-
time allocation
= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators

33

