Carnegie Mellon

Virtual Memory: Concepts

15-213 / 18-213: Introduction to Computer Systems
16t Lecture, Mar. 19, 2013

Instructors:
Anthony Rowe, Seth Goldstein, and Gregory Kesden

Carnegie Mellon

Today

VM Motivation and Address spaces
VM as a tool for caching

H
H
m VM as a tool for memory management
m VM as a tool for memory protection

H

Address translation

Carnegie Mellon

Virtual Memory Abstraction

m Programs refer to virtual memory addresses 00-+++-0
" movl (%ecx),%eax

= Conceptually very large array of bytes
= Each byte has its own address

= Actually implemented with hierarchy of different
memory types

= System provides address space private to particular
“process’

m Allocation: Compiler and run-time system
= Where different program objects should be stored
= All allocation within single virtual address space

m But why virtual memory?

m Why not physical memory?

Carnegie Mellon

Problem 1: How Does Everything Fit?

64-bit addresses: Physical main memory:
16 Exabyte Few Gigabytes

And there are many processes

Carnegie Mellon

Problem 2: Memory Management

Physical main memory

Process 1
Process 2

Process3)X

stack

W L-ET I \What goes
.text where?

.data

Process n

Carnegie Mellon

A
Problem 3: How To Protect 2

Physical main memory

Process i \

Process j

Problem 4: How To Share?

Physical main memory

Process i \
Process j /

Carnegie Mellon

Solution: Level Of Indirection

Virtual memory

Process 1

Physical memory

mapping <)

| 1

Virtual memory

I

Process n

m Each process gets its own private memory space
m Solves the previous problems

One simple trick solves all of these problems

m Each process gets its own private image of memory
= appears to be a full-sized private memory range
m This fixes “how to choose” and “others shouldn’t mess w/
yours”
" in addition to “making everything fit”
m Implementation: translate addresses transparently

= add a mapping function
= to map private (i.e. “virtual”) addresses to physical addresses
= do the mapping on every load or store

= This mapping trick is the heart of virtual memory

Carnegie Mellon

Address Spaces

m Linear address space: Ordered set of contiguous non-negative integer
addresses:
{0,1,2,3...}

m Virtual address space: Set of N = 2" virtual addresses
{0,1,2,3,.. N-1}

m Physical address space: Set of M = 2™ physical addresses
{0,1,2,3, .. M-1}

m Clean distinction between data (bytes) and their attributes (addresses)
m Each datum can now have multiple addresses

m Every byte in main memory:
one physical address, one (or more) virtual addresses

Carnegie Mellon

A System Using Physical Addressing

Main memory

0:
1:
Physical address 2:
(PA) 3:
CPU > 4:
4 5.
X :
6:
7:
8:
M-1:
Data word

m Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

10

Carnegie Mellon

A System Using Virtual Addressing

Main memory

0:
CPU Chip 1:
Virtual address Physical address ;
(VA) (PA))
CPU -> MMU 7 > 4
4100 5:
- :
6:
7:
8:
M-1
Data word

m Used in all modern servers, desktops, and laptops
m One of the great ideas in computer science

1"

Carnegie Mellon

Why Virtual Memory (summary)?

m Uses main memory (RAM) efficiently
= Use DRAM as a cache for the parts of a virtual address space

m Simplifies memory management
= Each process gets the same uniform linear address space

m Isolates address spaces

" One process can’t interfere with another’s memory
= User program cannot access privileged kernel information

12

Carnegie Mellon

Today

m VM Motivation and Address spaces

m (1) VM as a tool for caching

m (2) VM as a tool for memory management
m (3) VM as a tool for memory protection

m Address translation

13

(1) VM as a Tool for Caching

m Virtual memory is an array of N contiguous bytes stored
on disk.
m The contents of the array on disk are cached in physical

memory (DRAM cache)
" These cache blocks are called pages (size is P = 2P bytes)

Virtual memory Physical memory

0
VP 0 | Unallocated
0

VP 1 | Cached Empty PPO
Uncached \ PP 1

Unallocated Empty

Cached

Uncached >< Empty

Cached PP 2m-P-1

VP 2n-p-1 | Uncached M1

N-1

Virtual pages (VPs) Physical pages (PPs)
stored on disk cached in DRAM

14

Carnegie Mellon

Enabling data structure: Page Table

m A page table is an array of page table entries (PTEs) that
maps virtual pages to physical pages.
= Per-process kernel data structure in DRAM

Physical memory

Physical page (DRAM)
number or
Valid disk address / x: ; PPO
PTEO| O null /
" VP 7
1 — VP 4 PP3
1 —
0 e _—
1 . _
0 null P ¢ Virtual memory
0 o« ~ S (disk)
PTE7 [1 o« "~ The VP 1
Memory resident ~~(A VP 2
page table NN YA
(DRAM) s VP3
\\\ VP4
VP 6
VP 7 15

Carnegie Mellon

Page Hit

m Page hit: reference to VM word that is in physical memory
(DRAM cache hit)

Physical memory

Virtual address Physical page (DRAM)
number or
Valid disk address / x: : PPO
PTEO| O null / F
1 & — VP 4 PP3
> 1 —
0 e
1 . _
0 null P ¢ Virtual memory
0 o ~ S (disk)
PTE7 [1 o =] AN VP 1
Memory re;lident The N VP 2
page table S “~a
(DRAM) s VP3
\\\ VP4
VP 6
VP 7

16

Page Fault

Carnegie Mellon

m Page fault: reference to VM word that is not in physical
memory (DRAM cache miss)

Virtual address

Physical memory

Physical page (DRAM)
number or
Valid disk address / x: : PPO
PTEO| O null /
" VP 7
1 — VP 4 PP3
1 —
> 0 «]
1 . _
0 null P ¢ Virtual memory
0 o ~ S (disk)
PTE7 [1 o« "~ The VP 1
Memory resident ~~_ A VP 2
page table S~ T
(DRAM) s VP3
\\\ VP4
VP 6
VP 7

17

Handling Page Fault

m Page miss causes page fault (an exception)

Virtual address

Carnegie Mellon

Physical memory

Physical page (DRAM)
number or
Valid disk address / x: ; PPO
PTEO| 0 null /
= VP 7
! — VP 4 PP 3
1 —
0 «
1 c/?\t/
0 null Y ¢ Virtual memory
0 .~\/ \\\ (diSk)
PTE7 [1 o« -~ The VP 1
Memory resident ~~(Th el VP 2
page table N Y a
(DRAM) so. VP3
\\\ VP 4
VP 6
VP 7

18

Handling Page Fault

m Page miss causes page fault (an exception)

Carnegie Mellon

m Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTE 7

PTEO| 0

Physical memory

Physical page (DRAM)
number or o1
id disk address
nu
VP 7
1 — VP 4
1 —
0 @
1 . _
0 null P ¢ Virtual memory
0 o« ~ S (disk)
1 AN . The VP 1
Memory resident ™~ . VP 2
page table ~a
(DRAM) VP3
. VP4
VP 6

VP 7

PP O

PP3

19

Handling Page Fault

m Page miss causes page fault (an exception)

Carnegie Mellon

m Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE 7

Physical memory

Physical page

number or

0

(DRAM)
VP 1 PPO
VP 2
VP 7
VP 3 PP 3

mlolololk |k |-~

Valid disk address /
null —1 /
—
—
— |
.

null S Virtual memory
.- -~ (disk)
TN — VP 1
Memory resident ~~(\\\ VP 2
page table VN
(DRAM) Ssoo s VP3
\\\ VP4
VP 6
VP 7

20

Handling Page Fault

m Page miss causes page fault (an exception)

Carnegie Mellon

m Page fault handler selects a victim to be evicted (here VP 4)

m Offending instruction is restarted: page hit!

Virtual address

Physical memory

Physical page (DRAM)
number or
Valid disk address / x: : PPO
PTEO| O null / F
L s VP 3 PP3
1 —
0 N
0 null S Virtual memory
0 o\/‘\\\ (disk)
PTE7[1 o« 1 1
Memory re;lident The) S VP 2
page table RN
(DRAM) Ssoo s VP3
\\\ VP 4
VP 6
VP 7

21

Carnegie Mellon

Locality to the Rescue Again!

m Virtual memory works because of locality

m At any point in time, programs tend to access a set of active
virtual pages called the working set

" Programs with better temporal locality will have smaller working sets

m If (working set size < main memory size)
" Good performance for one process after compulsory misses

m If (SUM(working set sizes) > main memory size)

" Thrashing: Performance meltdown where pages are moved (copied) in
and out continuously

22

Carnegie Mellon

Today

m VM Motivation and Address spaces

m (1) VM as a tool for caching

m (2) VM as a tool for memory management
m (3) VM as a tool for memory protection

m Address translation

23

Carnegie Mellon

(2) VM as a Tool for Memory Management

m Key idea: each process has its own virtual address space
" |t can view memory as a simple linear array
= Mapping function scatters addresses through physical memory
= Well chosen mappings simplify memory allocation and management

0 Address 0

Virtual lati Physical
Address VP 1 transiation Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
PP 6 (e.g., read-only library code)

: 0
Virtual > pps
Address VP 1
Space for VP 2
Process 2:

N-1 M-1 24

Carnegie Mellon

Simplifying allocation and sharing

m Memory allocation
= Each virtual page can be mapped to any physical page

= Avirtual page can be stored in different physical pages at different times
m Sharing code and data among processes
= Map multiple virtual pages to the same physical page (here: PP 6)

Address .
Virtual 0 lati 0 Physical
Address VP 1 transiation Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
PP 6 (e.g., read-only library code)
) 0
Virtual > pps
Address VP 1
Space for VP 2
Process 2:

N-1 M-1 25

Simplifying Linking and Loading

Memory
. invisible to
Kernel virtual memory
. 1. 0xc0000000 user code
| Llnklng User stack
= Each program has similar virtual (created af runtime) «—%esp
address space (stack
= Code, stack, and shared libraries 1 pointer)
always start at the same address Memory-mapped region for
shared libraries
0x40000000
m Loading T
= execve () allocates virtual pages <— brk
for .text and .data sections Run-time heap
= creates PTEs marked as invalid (created by malloc)
\
are copied, page by page, on (.data, .bss) from
demand by the virtual memory the
t Read-only segment executable
System (.init, .text, .rodata) file
0x08048000 ’
Unused

0 26

Carnegie Mellon

Today

m VM Motivation and Address spaces

m (1) VM as a tool for caching

m (2) VM as a tool for memory management
m (3) VM as a tool for memory protection

m Address translation

27

VM as a Tool for Memory Protection

m Extend PTEs with permission bits
m Page fault handler checks these before remapping

= |f violated, send process SIGSEGV (segmentation fault)

Process i:

VP O:
VP 1:
VP 2:

Process j:

VP O:
VP 1:
VP 2:

Carnegie Mellon

Physical
Address Space

PP 2

PP 4

PP 6

PP 8

SUP READ WRITE Address
No Yes No PP 6
No Yes Yes PP4
Yes Yes Yes PP 2

[]

[]

[]
SUP READ WRITE Address
No Yes No PP9
Yes Yes Yes PP 6
No Yes Yes PP 11

{

PP 9

PP 11

28

Carnegie Mellon

Today

m VM Motivation and Address spaces

m (1) VM as a tool for caching

m (2) VM as a tool for memory management
m (3) VM as a tool for memory protection

m Address translation

29

Carnegie Mellon

VM Address Translation

m Virtual Address Space
= v={0 1, .. N-1}
m Physical Address Space
= P={0,1,.. M-1}
m Address Translation
" MAP: V— P U {O}
= For virtual address a:
= MAP(a) = a’ if data at virtual address a is at physical address a’in P
= MAP(a) = Jif data at virtual address a is not in physical memory
— Either invalid or stored on disk

30

Carnegie Mellon

Summary of Address Translation Symbols

m Basic Parameters
"= N =2": Number of addresses in virtual address space
= M=2": Number of addresses in physical address space
= P=2P :Pagesize (bytes)
m Components of the virtual address (VA)
= VPO: Virtual page offset
= VPN: Virtual page number
= TLBI
" TLBT

m Components of the physical address (PA)
= PPO: Physical page offset (same as VPO)
"= PPN: Physical page number
= CO
= Cl:
" CT

3

Carnegie Mellon

Address Translation With a Page Table

Virtual address
Page table n p P °
base register Virtual page number (VPN) Virtual page offset (VPO)
(PTBR)
Page table address Page table
for process >Valid Physical page number (PPN)
>
Valid bit = 0:
page not in memory €
(page fault)

m-1 v p p-1 v 0

Physical page number (PPN) Physical page offset (PPO)

Physical address

32

Carnegie Mellon

Address Translation: Page Hit
2

CPU Chip PTEA .
2 A PTE
>
CPU MMU © Cache/
PA 5| Memory

Data

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

33

Carnegie Mellon

Address Translation: Page Fault

Exception
j—— === ===== > Page fault handler
|
|
|
|
CPU Chip 1 .
PTEA 5 Victim page |
CPU Y2 > mmu —FTF Cache/ .
Disk
Memory
< New page

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction
34

Carnegie Mellon

Views of virtual memory

m Programmer’s view of virtual memory
= Each process has its own private linear address space

= Cannot be corrupted by other processes

m System view of virtual memory
= Uses memory efficiently by caching virtual memory pages
= Efficient only because of locality
= Simplifies memory management and programming
= Simplifies protection by providing a convenient interpositioning point
to check permissions

35

Carnegie Mellon

Integrating VM and Cache

PTE
CPU Chip ¥ TEA PTE
hit
PTEA prea| PTEA
—> miss
cpuU VA | Mmu Memory
i PA PA PA
miss|
PA . Data
hit
L1
Data cache

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

36

Carnegie Mellon

Speeding up Translation with a TLB

m Page table entries (PTEs) are cached in L1 like any other
memory word

" PTEs may be evicted by other data references

= PTE hit still requires a small L1 delay
m Solution: Translation Lookaside Buffer (TLB)

= Small hardware cache in MMU
" Maps virtual page numbers to physical page numbers
= Contains complete page table entries for small number of pages

37

Carnegie Mellon

TLB Hit
CPU Chip TLB
Q PTE
VPN 9
@
VA PA
CPU > MMU 0 > Cache/
] Memory
Data
@

A TLB hit eliminates a memory access

38

Carnegie Mellon

TLB Miss
CPU Chip
TLB
4
9 PTE
VPN
w (3
VA PTEA
CPU > MMU > Cache/
PA >| Memory
o
Data
6/

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?

39

Conclusions

(1) VM allows efficient use of limited main memory (RAM)
= Use RAM as a cache for the parts of a virtual address space
= some non-cached parts stored on disk
= some (unallocated) non-cached parts stored nowhere

= Keep only active areas of virtual address space in memory
= transfer data back and forth as needed

(2) VM simplifies memory management for programmers
= Each process gets a full, private linear address space

(3) VM isolates address spaces
" One process can’t interfere with another’s memory

= because they operate in different address spaces
= User process cannot access privileged information

= different sections of address spaces have different permissions

40

