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ECF Exists at All Levels of a System

m Exceptions )
® Hardware and operating system kernel software

m Process Context Switch > Previous Lecture
= Hardware timer and kernel software

m Signals /
= Kernel software and application software )

m Nonlocal jumps

= Application code > This Lecture

Today

m Multitasking, shells
m Signals
m Nonlocal jumps

The World of Multitasking

m System runs many processes concurrently

m Process: executing program

= State includes memory image + register values + program counter

m Regularly switches from one process to another
= Suspend process when it needs I/O resource or timer event occurs
= Resume process when 1/0 available or given scheduling priority

m Appears to user(s) as if all processes executing simultaneously
= Even though most systems can only execute one process at a time
= Except possibly with lower performance than if running alone
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Programmer’s Model of Multitasking

m Basic functions
= fork spawns new process
= Called once, returns twice
= exitterminates own process
= Called once, never returns
= Puts it into “zombie” status
= wait and waitpid wait for and reap terminated children
= eXecve runs new program in existing process

= Called once, (normally) never returns

m Programming challenge
= Understanding the nonstandard semantics of the functions
= Avoiding improper use of system resources
= E.g. “Fork bombs” can disable a system

Unix Process Hierarchy
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Shell Programs

m A shell is an application program that runs programs on
behalf of the user.
= sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
= csh  BSD Unix Cshell (Ecsh: enhanced csh at CMU and elsewhere)
= bash “‘Bourne-Again” Shell

Execution is a sequence of
read/evaluate steps

int mainQ) {
char cmdline[MAXLINE];

while (1) {
/* read */
printf('> ");
Fgets(cmdline, MAXLINE, stdin);
ifT (feof(stdin))
exit(0);

/* evaluate */
eval(cmdline);

Simple Shell eval Function
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void eval(char *cmdline) {
char *argv[MAXARGS]; /* argv for execve() */
int bg;
pid_t pid; /* process id */

bg = parseline(cmdline, argv);

ifT (Tbuiltin_command(argv)) {

if (execve(argv[0], argv, environ) < 0) {
printf(""%s: Command not found.\n", argv[0]);
exit(0);
3
}

int status;
if (waitpid(pid, &status, 0) < 0)
unix_error("waitfg: waitpid error');
T
else /* otherwise, don’t wait for bg job */
printf('%d %s'™, pid, cmdline);

/* should the job run in bg or fg? */

if ((pid = ForkQ)) == 0) { /* child runs user job */

if (!bg) { /* parent waits for fg job to terminate */




Simple Shell eval Function

void eval(char *cmdline) {
char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or fg? */
pid_t pid; /* process id */

bg = parseline(cmdline, argv);
if (Tbuiltin_command(argv)) {
if ((pid = ForkQ)) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf("*%s: Command not found.\n", argv[0]);
exit(0);
3
}

if (!bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix_error(“'waitfg: waitpid error™);
}
else /* otherwise, don’t wait for bg job */
printf("'%d %s', pid, cmdline);
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Simple Shell eval Function

void eval(char *cmdline) {
char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or fg? */
pid_t pid; /* process id */

bg = parseline(cmdline, argv);
iT (Tbuiltin_command(argv)) {
if ((pid = Fork()) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf("*%s: Command not found.\n", argv[0]);
exit(0);
3
}

if (!bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix_error(“'waitfg: waitpid error™);
}
else /* otherwise, don’t wait for bg job */
printf("'%d %s', pid, cmdline);
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Simple Shell eval Function

void eval(char *cmdline) {
char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or fg? */
pid_t pid; /* process id */

bg = parseline(cmdline, argv);
ifT (Tbuiltin_command(argv)) {
if ((pid = ForkQ)) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf(""%s: Command not found.\n", argv[0]);
exit(0);

3

if (!bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix_error("waitfg: waitpid error'™);
}
else /* otherwise, don’t wait for bg job */
printf('%d %s'™, pid, cmdline);
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Simple Shell eval Function

void eval(char *cmdline) {
char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or fg? */
pid_t pid; /* process id */

bg = parseline(cmdline, argv);
ifT (Tbuiltin_command(argv)) {
if ((pid = ForkQ)) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf(""%s: Command not found.\n", argv[0]);
exit(0);
3
}

if (bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix_error("waitfg: waitpid error™);
}
else /* otherwise, don’t wait for bg job */
printf('%d %s'™, pid, cmdline);
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Simple Shell eval Function

void eval(char *cmdline) {
char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or fg? */
pid_t pid; /* process id */

bg = parseline(cmdline, argv);
iT (Tbuiltin_command(argv)) {
if ((pid = ForkQ)) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf("*%s: Command not found.\n", argv[0]);
exit(0);
3
}

if (!bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix_error(“'waitfg: waitpid error™);
}
else /* otherwise, don’t wait for bg job */
printf("'%d %s', pid, cmdline);
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What Is a “Background Job”?

m Users generally run one command at a time

= Type command, read output, type another command

m Some programs run “for a long time”

= Example: “delete this file in two hours”
unix> sleep 7200; rm /tmp/junk # shell stuck for 2 hours
m A “background” job is a process we don't want to wait for

unix> (sleep 7200 ; rm /tmp/junk) &
[1] 907
unix> # ready for next command

14

Carnegie Mellon

Problem with Simple Shell Example

m Our example shell correctly waits for and reaps foreground
jobs

m But what about background jobs?
= Will become zombies when they terminate
= Will never be reaped because shell (typically) will not terminate
Will create a memory leak that could run the kernel out of memory

Modern Unix: once you exceed your process quota, your shell can't run
any new commands for you: fork() returns -1

unix> limit maxproc
maxproc 202752
unix> ulimit -u
202752

# csh syntax

# bash syntax
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ECF to the Rescue!

m Problem
= The shell doesn't know when a background job will finish
= By nature, it could happen at any time

® The shell's regular control flow can't reap exited background processes in
a timely fashion

= Regular control flow is “wait until running job completes, then reap it”

m Solution: Exceptional control flow

= The kernel will interrupt regular processing to alert us when a background
process completes

® |n Unix, the alert mechanism is called a signal

16




Today

m Multitasking, shells
m Signals

m Nonlocal jumps
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Signals

m Asignal is a small message that notifies a process that an
event of some type has occurred in the system
= akin to exceptions and interrupts

= sent from the kernel (sometimes at the request of another process) to a
process

® signal type is identified by small integer ID’s (1-30)
= only information in a signal is its ID and the fact that it arrived

ID Name Default Action
2 SIGINT Terminate
9 SIGKILL Terminate
11 SIGSEGV  Terminate & Dump Segmentation violation
14 SIGALRM  Terminate Timer signal
17 SIGCHLD Ignore

Corresponding Event
Interrupt (e.g., ctl-c from keyboard)

Kill program (cannot override or ignore)

Child stopped or terminated
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Sending a Signal

m Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination process

m Kernel sends a signal for one of the following reasons:

= Kernel has detected a system event such as divide-by-zero (SIGFPE) or
the termination of a child process (SIGCHLD)

= Another process has invoked the Ki Il system call to explicitly request
the kernel to send a signal to the destination process
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Receiving a Signal

m A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

m Three possible ways to react:
= |gnore the signal (do nothing)
= Terminate the process (with optional core dump)
= Catch the signal by executing a user-level function called signal handler

= Akin to a hardware exception handler being called in response to an
asynchronous interrupt

20




Pending and Blocked Signals

m Asignal is pending if sent but not yet received
®= There can be at most one pending signal of any particular type
® |mportant: Signals are not queued

= |f a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

m A process can block the receipt of certain signals

= Blocked signals can be delivered, but will not be received until the signal
is unblocked

m A pending signal is received at most once

[ No Counting!!! ]
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Signal Concepts

m Kernel maintains pending and blocked bit vectors in the
context of each process
= pending: represents the set of pending signals
= Kernel sets bit k in pending when a signal of type k is delivered
= Kernel clears bit k in pending when a signal of type k is received

= blocked: represents the set of blocked signals
= Can be set and cleared by using the sigprocmask function

22
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Process Groups

m Every process belongs to exactly one process group

pid=20

pgid=20 [POEAD

pgid=40

Background Background

process group 40

@ process group 32

pid=21 pid=22 getpgrpQ
pgid=20 pgid=20 Return process group of current process

Foreground setpg id ()
process group 20 Change process group of a process
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Sending Signals with /bin/ki 1 | Program

m /bin/Kill program

sends arbitrary signaltoa linux> ./forks 16
Childl: pid=24818 pgrp=24817
PrOCESS OF Process grouP  chirgz: pid=24819 pgrp=24817

linux> ps
m Examples PID TTY TIME CMD
= /bin/kill -9 24818 24788 pts/2 00:00:00 tcsh

24818 pts/2 00:00:02 forks
Send SIGKILL to process 24818 24810 pts/? 00-00-07 Forks

24820 pts/2 00:00:00 ps
. /bin/kill _9 _24817 I!nux> /bin/kill -9 -24817
Iinux> ps
Send SIGKILL to every process PID TTY TIME CMD
in process group 24817 24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
lLinux>
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Sending Signals from the Keyboard

m Typing ctrl-c (ctrl-z) sends a SIGINT (SIGTSTP) to every job in the
foreground process group.
® SIGINT — default action is to terminate each process
= SIGTSTP — default action is to stop (suspend) each process

pid=20

pgid=20 OE=D

pgid=40

Background Background

process group 32 process group 40

pid=21 pid=22
pgid=20 pgid=20
Foreground

process group 20

Carnegie Mellon
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Example of ctrl-c and ctrl-z

bluefish> _/forks 17
Child: pid=28108 pgrp=28107

Parent: pid=28107 pgrp=28107 First letter:
<types ctrl-z> S: sleeping
Suspended T: stopped
bluefish> ps w R: running
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17 Second letter:
28108 pts/8 T 0:01 _/forks 17 s: session leader
28109 pts/8 R+ 0:00 ps w +: foreground proc group
bluefish> fg
-/forks 17 See “man ps” for more
<types ctrl-c> details
bluefish> ps w
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

STAT (process state) Legend:
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Sending Signals with ki 1l Function

void fork12()
{

pid_t pid[N];
int i, child_status;
for (i = 0; i < N; i++)
if ((pid[i] = fork(Q)) == 0)
while(1); /* Child infinite loop */

/* Parent terminates the child processes */
for (i = 0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

/* Parent reaps terminated children */
for (i = 0; i <N; i++) {
pid_t wpid = wait(&child_status);
1T (WIFEXITED(child_status))
printf("'Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf(""Child %d terminated abnormally\n", wpid);

Carnegie Mellon
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Sending Signals with ki 1l Function

void forki12()
{

pid_t pid[N];
int i, child_status;
for (i = 0; i < N; i++)
if ((pid[i] = fork(Q)) == 0)
while(1); /* Child infinite loop */

/* Parent terminates the child processes */
for (i = 0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

/* Parent reaps terminated children */
for (i = 0; i <N; i++) {
pid_t wpid = wait(&child_status);
1T (WIFEXITED(child_status))
printf("'Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf(""Child %d terminated abnormally\n", wpid);
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Sending Signals with K1 1 | Function

void forkl12()
{
pid_t pid[N];
int i, child_status;
for (i = 0; i < N; i++)
it ((pid[i] = fork()) == 0)
while(1); /* Child infinite loop */
/* Parent terminates the child processes */
for (i = 0; i <N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i]., SIGINT);
3
/* Parent reaps terminated children */
for (i =0; 1 <N; i++) {
pid_t wpid = wait(&child_status);
i (WIFEXITED(child_status))
printf(""Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf(""Child %d terminated abnormally\n™, wpid);
}
3
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Sending Signals with K1 1 | Function

void forkl12()
{
pid_t pid[N];
int i, child_status;
for (i = 0; i < N; i++)
it ((pid[i] = fork()) == 0)
while(1); /* Child infinite loop */
/* Parent terminates the child processes */
for (i = 0; i <Nj; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i]., SIGINT);
}
/* Parent reaps terminated children */
for (i =0; i <N; i++) {
pid_t wpid = wait(&child_status);
i (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf(""Child %d terminated abnormally\n", wpid);
}
¥
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Sending Signals with ki 1l Function

void fork12()
{

pid_t pid[N];
int i, child_status;
for (i = 0; i < N; i++)
if ((pid[i] = fork(Q)) == 0)
while(1); /* Child infinite loop */

/* Parent terminates the child processes */
for (i = 0; i1 < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

/* Parent reaps terminated children */
for (i = 0; 1 < N; i++) {
pid_t wpid = wait(&child_status);
it (WIFEXITED(child_status))
printf("'Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf(""Child %d terminated abnormally\n", wpid);
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Sending Signals with ki 1l Function

void forki12()
{

pid_t pid[N];
int i, child_status;
for (i = 0; i < N; i++)
if ((pid[i] = fork(Q)) == 0)
while(1); /* Child infinite loop */

/* Parent terminates the child processes */
for (i = 0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

/* Parent reaps terminated children */
for (i = 0; i <N; i++) {
pid_t wpid = wait(&child_status);
1T (WIFEXITED(child_status))
printf("'Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf(""Child %d terminated abnormally\n", wpid);
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Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

Process A

user code
kernel code } context switch
Time user code

kernel code } context switch

user code

Important: All context switches are initiated by calling
some exceptional hander.

33
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Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

m Kernel computes pnb = pending & ~blocked
= The set of pending nonblocked signals for process p

m If (pnb == 0)
® Pass control to next instruction in the logical flow for p

m Else
= Choose least nonzero bit k in pnb and force process p to receive
signal k
= The receipt of the signal triggers some action by p
= Repeat for all nonzero k in pnb

= Pass control to next instruction in logical flow for p
34
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Default Actions

m Each signal type has a predefined default action, which is
one of:
® The process terminates
® The process terminates and dumps core
= The process stops until restarted by a SIGCONT signal
= The process ignores the signal

35
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Installing Signal Handlers

m The signal function modifies the default action associated
with the receipt of signal signum:
= handler_t *signal(int signum, handler_t *handler)

m Different values for handler:
= SIG_IGN: ignore signals of type signum
= SIG_DFL: revert to the default action on receipt of signals of type Signum
= Otherwise, handler is the address of a signal handler
= Called when process receives signal of type signum
= Referred to as “installing” the handler
= Executing handler is called “catching” or “handling” the signal

= When the handler executes its return statement, control passes back
to instruction in the control flow of the process that was interrupted
by receipt of the signal

36
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Signal Handling Example

void int_handler(int sig) {
safe_printf('Process %d received signal %d\n", getpid(), sig);
exit(0);

void fork13(Q) {

pid_t pid[N];

int i, child_status;

signal (SIGINT, int_handler);

for (i = 0; i <N; i++)
if ((pid[i] = fork(Q)) == 0

while(1); 7* child inf K

} K

for (i = 0; i <Nj; i++) { Teet
printf('Killing process %d Killing process 25421
Kill(pid[i]. SIGINT); Process 25417 received signal 2
3} Process 25418 received signal 2
for (i = 0; i <N; i++) { Process 25420 received signal 2
pid_t wpid = wait(&child_s Process 25421 received signal 2
if (WIFEXITED(child_status Process 25419 received signal 2
printfC'Child %d termi Child 25417 terminated with exit
wpid, WEXITSTAT Child 25418 terminated with exit
Child 25420 terminated with exit
printf('Child %d termi Child 25419 terminated with exit
! Child 25421 terminated with exit
3 linux>

linux> ./forks 13

process 25417
process 25418
process 25419
Killing process 25420

else

status
status
status
status
status

ooooo
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Signal Handling Example

void int_handler(int sig) {

exit(0);
3

void fork13(Q) {
pid_t pid[N];
int i, child_status;
signal (SIGINT, int_handler);
for (i = 0; 1 < N; i++)
if ((pid[i] = forkQ)) ==0) {
while(1); /* child infinite loop

3

for (i = 0; i <N; i++) {
printf("Killing process %d\n",
kill(pid[i], SIGINT);

pid[il);

for (i = 0; 1 <N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

wpid, WEXITSTATUS(child_status));
else
printf('Child %d terminated abnormally\n'", wpid);

safe_printf("'Process %d received signal %d\n", getpid(), sig);

printf('Child %d terminated with exit status %d\n",

38
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Signal Handling Example

void int_handler(int sig) {
safe_printf("'Process %d received signal %d\n", getpid(), sig);
exit(0);

}

void fork13(Q) {
pid_t pid[N];
int i, child_status;
signal (SIGINT, int_handler);
for (i = 0; 1 < N; i++)
it ((pid[i] = fork(Q)) == 0) {
while(1); /* child infinite loop

3

for (i = 0; i <N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

for (i = 0; i <Nj; i++) {
pid_t wpid = wait(&child_status);
it (WIFEXITED(child_status))
printf('Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf('Child %d terminated abnormally\n", wpid);
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Signal Handling Example

void int_handler(int sig) {
safe_printf("'Process %d received signal %d\n", getpid(),
exit(0);

¥

void fork13(Q) {
pid_t pid[N];
int i, child_status;
signal (SIGINT, int_handler);
for (i = 0; 1 <N; i++)
it ((pid[i] = fork(Q)) == 0) {
while(1); /* child infinite loop

by

for (i = 0; i <N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

for (i = 0; i <Nj; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

wpid, WEXITSTATUS(child_status));
else
printf('Child %d terminated abnormally\n'", wpid);

sig);

printf('Child %d terminated with exit status %d\n",
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Signal Handling Example

void int_handler(int sig) {
safe_printf('Process %d received signal %d\n", getpid(), sig);
exit(0);

void fork13(Q) {

pid_t pid[N];

int i, child_status;

signal (SIGINT, int_handler);

for (i = 0; 1 <N; i++)
if ((pid[i] = fork(Q)) == 0) {

while(1); /* child infinite loop

3

for (i = 0; i <Nj; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

for (i = 0; 1 <N; i++) {
pid_t wpid = wait(&child_status);
it (WIFEXITED(child_status))
printf('Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf('Child %d terminated abnormally\n'", wpid);
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Signal Handling Example

void int_handler(int sig) {
safe_printf('Process %d received signal %d\n", getpid(), sig);
exit(0);

¥

void fork13(Q) {
1d_t pid[N];
i, child_status;
signal (SIGINT, int_handler);
for (i = 0; 1 < N; i++)
if ((pid[i] = forkQ)) == 0) {
while(1); /* child infinite loop

3

for (i = 0; i <N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

for (i = 0; 1 <N; i++) {
pid_t wpid = wait(&child_status);
it (WIFEXITED(child_status))
printf('Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf('Child %d terminated abnormally\n", wpid);
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Signal Handling Example

void int_handler(int sig) {
safe_printf("'Process %d received signal %d\n", getpid(), sig);
exit(0);

¥

void fork13(Q) {
pid_t pid[N];
int i, child_status;
signal (SIGINT, int_handler); =
for (i = 0; i < N; i++) I!nu¥> ./forks 13
if ((pid[i] = forkQ)) == 0 K!Il!ng process 25417
while(1l); /* child inf K preeess 254l
process 25419

for %i =050 <N; i+) { ilti process 25420
printf("Killing process %d Killing process 25421
Kill(pid[i], SIGINT); Process 25417 rece!ved s!gnal 2
3} Process 25418 received signal 2
for (i =0; i <N; i++) { Process 25420 received signal 2
pid_t wpid = wait(&child_s Process 25421 rece!ved s!gnal 2
if ZWIFEXITED(chiId status Process 25419 received signal 2
printf(child %d termi Child 25417 terminated with exit status 0
wpid, WEXITSTAT Child 25418 terminated with exit status O
else Child 25420 terminated with exit status O
printf("Child %d termi Child 25419 terminated with exit status O
} Child 25421 terminated with exit status O
} linux>
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Signals Handlers as Concurrent Flows

m Asignal handler is a separate logical flow (not process) that
runs concurrently with the main program

|H

= “concurrently” in the “not sequential” sense

Process A Process A Process B

while (1) handler(Q{

Time |

}
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Another View of Signal Handlers as
Concurrent Flows

Process A Process B

Signal delivered —> | user code (main)

curr

kernel code } context switch

user code (main)

kernel code } context switch

Signal received —>
user code (handler)
kernel code

next

user code (main)
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Signal Handler Funkiness

int ccount = 0; m Pending signals are not
void child_handler(int sig) queued
{
int child_status; " For each signal type, just
pid_t pid = wait(&child_status); have single bit indicating
ccount--; : :
safe printf( whether or not signal is
"Received signal %d from process %d\n", pending
sig, pid);
3 . .
= Even if multiple processes
void fork14(Q) have sent this signal
{
pid_t pid[N];
int i, child_status;
ccount = N;
signal (SIGCHLD, child handler);
for (i = 0; i <N; I+ linux> ./forks 14
if ((IIJId[a): ;2' Received SIGCHLD signal 17 for process 21344
sleep H = _
exit(0): /* Received SIGCHLD signal 17 for process 21345
while (ccount > 0)
pause(); /* Suspend until signal occurs */
3
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Living With Nonqueuing Signals

m Must check for all terminated jobs
= Typically loop with waitpid

void child_handler2(int sig)
{
int child_status;
pid_t pid;
while ((pid = waitpid(-1, &child_status, WNOHANG)) > 0) {
ccount--;
safe_printf("'Received signal %d from process %d\n",
sig, pid);
¥
}

greatwhite> forks 15
void forkl5() Received signal 17 from process 27476
{ Received signal 17 from process 27477
- - - Received signal 17 from process 27478
signal (SIGC Received signal 17 from process 27479
- Received signal 17 from process 27480
} greatwhite>
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More Signal Handler Funkiness

m Signal arrival during long system calls (say a read)

m Signal handler interrupts read call

= Linux: upon return from signal handler, the read call is restarted
automatically

= Some other flavors of Unix can cause the read call to fail with an
EINTR error number (errno)
in this case, the application program can restart the slow system call

m Subtle differences like these complicate the writing of
portable code that uses signals
= Consult your textbook for details
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A Program That Reacts to
Externally Generated Events (Ctrl-c)

#include <stdlib.h>
#include <stdio.h>
#include <signal .h>
void handler(int sig) {
safe_printf(*'You think hitting ctrl-c will stop the bomb?\n");
sleep(2);
safe_prl?tf( HRLLICCSD)5 linux> ./external
sleep(1); <ctrl-c>
printf('OK\n""); N - -
exit(0); You think hitting ctrl-c will stop
} the bomb?
Well...OK
main() { Linux>
signal (SIGINT, handler); /* installs ctl-c handler */
while(1) {
¥
}
external.c
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A Program That Reacts to Internally
Generated Events

#include <stdio.h> main() {

#include <signal .h> signal (SIGALRM, handler);
alarm(1); /* send SIGALRM in
int beeps = 0; 1 second */
/* SIGALRM handler */
void handler(int sig) {

while (1) {
/* handler returns here */

safe_printf("'BEEP\n"); 3}
bs
if (++beeps < 5)
alarm(l); linux> _/internal
else { BEEP
safe_printf(*'BOOMI\Nn™); BEEP
exit(0); BEEP
¥ BEEP
3 BEEP
internal.c BOOM!

bass>

50

Async-Signal-Safety

m Function is async-signal-safe if either reentrant (all variables
stored on stack frame, CS:APP2e 12.7.2) or non-interruptible
by signals.

m Posix guarantees 117 functions to be async-signal-safe

= writeisonthelist, printf isnot

m One solution: async-signal-safe wrapper for printf:

void safe_printf(const char *format, ...) {
char buf[MAXS];
va_list args;

va_start(args, format); /* reentrant */
vsnprintf(buf, sizeof(buf), format, args); /* reentrant */
va_end(args); /* reentrant */
write(l, buf, strlen(buf)); /* async-signal-safe */

}

safe_printf.c
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Today

m Multitasking, shells
m Signals
m Nonlocal jumps
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Nonlocal Jumps: setymp/longjmp

m Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location

= Controlled to way to break the procedure call / return discipline
= Useful for error recovery and signal handling

m Int setymp@mp_buf j)
" Must be called before longjmp
= |dentifies a return site for a subsequent longjmp
" Called once, returns one or more times

m Implementation:

= Remember where you are by storing the current register context,
stack pointer, and PC value in jmp_buf

= ReturnO
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setjymp/longjmp (cont)

m void longjmp(@mp_buf j, Int i)
" Meaning:
= return from the setjmp remembered by jump buffer j again ...
= ... this time returning 1 instead of 0
= Called after setjmp
= Called once, but never returns

= longjmp Implementation:

= Restore register context (stack pointer, base pointer, PC value) from
jump buffer j

= Set %eax (the return value) to i
= Jump to the location indicated by the PC stored in jump buf j
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setjymp/longjmp Example

#include <setjmp.h>
Jmp_buf buf;

main() {
if (setjmp(buf) 1= 0) {
printf("'back in main due to an error\n');
else
printf(""first time through\n™);
p1(Q); /* pl calls p2, which calls p3 */
3
P30 {
<error checking code>
if (error)
longjmp(buf, 1)
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Limitations of Nonlocal Jumps

m Works within stack discipline

= Can only long jump to environment of function that has been called

but not yet completed
y P Before longjmp  After longjmp

Jmp_buf env; env
......... » Pl Pl
P10
{
if (setjmp(env)) { P2
/* Long Jump to here */
} else {
P20); i
b
3 P2
P20
{ - . .P20; - . . P30; } P3
P3O
longjmp(env, 1);
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Limitations of Long Jumps (cont.)

m Works within stack discipline

= Can only long jump to environment of function that has been called
but not yet completed

Jjmp_buf env; P1
S L — o P2
{ env

P20); P3Q; At setjmp
P20 P1
{

if (setjmp(env)) { env

/* Long Jump to here */ | = ) o P2

1 4 P2 returns P1
P3O
; o sl P3

longjmp(env, 1);

At longjmp
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Putting It All Together: A Program
That Restarts Itself When ctrl-c’d

#include <stdio.h>
#include <signal.h>
#include <setjmp.h> =
greatwhite> _/restart
sigjmp_buf buf; starting
processing. . .
void handler(int sig) { processing__ .
siglongjmp(buf, 1); processing. . .
restartin
1ng - —Ctrl-c
mainQ { prOCeSS!ng. 5o
signal (SIGINT, handler); processing. . -
restarting
if (Isigsetjmp(buf, 1)) processing. H
Z " N " Ctrl-c
printf(*'starting\n"); processing. . .
else A
rocessing. . -
printf(‘'restarting\n'); P 9
while(1) {
sleep(1);
printf('processing...\n");
} restart.c

58

Carnegie Mellon

Summary

m Signals provide process-level exception handling
® Can generate from user programs
= Can define effect by declaring signal handler
m Some caveats
= Very high overhead
= >10,000 clock cycles
= Only use for exceptional conditions
®= Don’t have queues
= Just one bit for each pending signal type
m Nonlocal jumps provide exceptional control flow within
process
= Within constraints of stack discipline
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Midterm Exam info

m Midterm on 3/5 at 6:30 for everyone
m Lastname starts with
= A-J->Wh 7500
= K-Z ->Rashid
m Covers all material through today
m Review on Sunday at 3pm at Dh2315 and Dh2210
m Recitation will also do midterm review on Monday
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