Carnegie Mellon

Exceptional Control Flow:
Signals and Nonlocal Jumps

15-213 / 18-213: Introduction to Computer Systems
14t Lecture, Feb 28, 2013

Instructors:
Seth Copen Goldstein, Anthony Rowe, and Greg Kesden

Carnegie Mellon

ECF Exists at All Levels of a System

m Exceptions)
® Hardware and operating system kernel software

m Process Context Switch > Previous Lecture
= Hardware timer and kernel software

m Signals /
= Kernel software and application software)

m Nonlocal jumps

= Application code > This Lecture

Today

m Multitasking, shells
m Signals
m Nonlocal jumps

The World of Multitasking

m System runs many processes concurrently

m Process: executing program

= State includes memory image + register values + program counter

m Regularly switches from one process to another
= Suspend process when it needs I/O resource or timer event occurs
= Resume process when 1/0 available or given scheduling priority

m Appears to user(s) as if all processes executing simultaneously
= Even though most systems can only execute one process at a time
= Except possibly with lower performance than if running alone

Carnegie Mellon

Programmer’s Model of Multitasking

m Basic functions
= fork spawns new process
= Called once, returns twice
= exitterminates own process
= Called once, never returns
= Puts it into “zombie” status
= wait and waitpid wait for and reap terminated children
= eXecve runs new program in existing process

= Called once, (normally) never returns

m Programming challenge
= Understanding the nonstandard semantics of the functions
= Avoiding improper use of system resources
= E.g. “Fork bombs” can disable a system

Unix Process Hierarchy

01

Carnegie Mellon

Carnegie Mellon

Shell Programs

m A shell is an application program that runs programs on
behalf of the user.
= sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
= csh BSD Unix Cshell (Ecsh: enhanced csh at CMU and elsewhere)
= bash “‘Bourne-Again” Shell

Execution is a sequence of
read/evaluate steps

int mainQ) {
char cmdline[MAXLINE];

while (1) {
/* read */
printf('> ");
Fgets(cmdline, MAXLINE, stdin);
ifT (feof(stdin))
exit(0);

/* evaluate */
eval(cmdline);

Simple Shell eval Function

Carnegie Mellon

void eval(char *cmdline) {
char *argv[MAXARGS]; /* argv for execve() */
int bg;
pid_t pid; /* process id */

bg = parseline(cmdline, argv);

ifT (Tbuiltin_command(argv)) {

if (execve(argv[0], argv, environ) < 0) {
printf(""%s: Command not found.\n", argv[0]);
exit(0);
3
}

int status;
if (waitpid(pid, &status, 0) < 0)
unix_error("waitfg: waitpid error');
T
else /* otherwise, don’t wait for bg job */
printf('%d %s'™, pid, cmdline);

/* should the job run in bg or fg? */

if ((pid = ForkQ)) == 0) { /* child runs user job */

if (!bg) { /* parent waits for fg job to terminate */

Simple Shell eval Function

void eval(char *cmdline) {
char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or fg? */
pid_t pid; /* process id */

bg = parseline(cmdline, argv);
if (Tbuiltin_command(argv)) {
if ((pid = ForkQ)) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf("*%s: Command not found.\n", argv[0]);
exit(0);
3
}

if (!bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix_error(“'waitfg: waitpid error™);
}
else /* otherwise, don’t wait for bg job */
printf("'%d %s', pid, cmdline);

Carnegie Mellon

Simple Shell eval Function

void eval(char *cmdline) {
char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or fg? */
pid_t pid; /* process id */

bg = parseline(cmdline, argv);
iT (Tbuiltin_command(argv)) {
if ((pid = Fork()) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf("*%s: Command not found.\n", argv[0]);
exit(0);
3
}

if (!bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix_error(“'waitfg: waitpid error™);
}
else /* otherwise, don’t wait for bg job */
printf("'%d %s', pid, cmdline);

Carnegie Mellon

10

Simple Shell eval Function

void eval(char *cmdline) {
char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or fg? */
pid_t pid; /* process id */

bg = parseline(cmdline, argv);
ifT (Tbuiltin_command(argv)) {
if ((pid = ForkQ)) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf(""%s: Command not found.\n", argv[0]);
exit(0);

3

if (!bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix_error("waitfg: waitpid error'™);
}
else /* otherwise, don’t wait for bg job */
printf('%d %s'™, pid, cmdline);

Carnegie Mellon

1n

Simple Shell eval Function

void eval(char *cmdline) {
char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or fg? */
pid_t pid; /* process id */

bg = parseline(cmdline, argv);
ifT (Tbuiltin_command(argv)) {
if ((pid = ForkQ)) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf(""%s: Command not found.\n", argv[0]);
exit(0);
3
}

if (bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix_error("waitfg: waitpid error™);
}
else /* otherwise, don’t wait for bg job */
printf('%d %s'™, pid, cmdline);

Carnegie Mellon

12

Carnegie Mellon

Simple Shell eval Function

void eval(char *cmdline) {
char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or fg? */
pid_t pid; /* process id */

bg = parseline(cmdline, argv);
iT (Tbuiltin_command(argv)) {
if ((pid = ForkQ)) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf("*%s: Command not found.\n", argv[0]);
exit(0);
3
}

if (!bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix_error(“'waitfg: waitpid error™);
}
else /* otherwise, don’t wait for bg job */
printf("'%d %s', pid, cmdline);

13

Carnegie Mellon

What Is a “Background Job”?

m Users generally run one command at a time

= Type command, read output, type another command

m Some programs run “for a long time”

= Example: “delete this file in two hours”
unix> sleep 7200; rm /tmp/junk # shell stuck for 2 hours
m A “background” job is a process we don't want to wait for

unix> (sleep 7200 ; rm /tmp/junk) &
[1] 907
unix> # ready for next command

14

Carnegie Mellon

Problem with Simple Shell Example

m Our example shell correctly waits for and reaps foreground
jobs

m But what about background jobs?
= Will become zombies when they terminate
= Will never be reaped because shell (typically) will not terminate
Will create a memory leak that could run the kernel out of memory

Modern Unix: once you exceed your process quota, your shell can't run
any new commands for you: fork() returns -1

unix> limit maxproc
maxproc 202752
unix> ulimit -u
202752

csh syntax

bash syntax

15

Carnegie Mellon

ECF to the Rescue!

m Problem
= The shell doesn't know when a background job will finish
= By nature, it could happen at any time

® The shell's regular control flow can't reap exited background processes in
a timely fashion

= Regular control flow is “wait until running job completes, then reap it”

m Solution: Exceptional control flow

= The kernel will interrupt regular processing to alert us when a background
process completes

® |n Unix, the alert mechanism is called a signal

16

Today

m Multitasking, shells
m Signals

m Nonlocal jumps

17

Carnegie Mellon

Signals

m Asignal is a small message that notifies a process that an
event of some type has occurred in the system
= akin to exceptions and interrupts

= sent from the kernel (sometimes at the request of another process) to a
process

® signal type is identified by small integer ID’s (1-30)
= only information in a signal is its ID and the fact that it arrived

ID Name Default Action
2 SIGINT Terminate
9 SIGKILL Terminate
11 SIGSEGV Terminate & Dump Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore

Corresponding Event
Interrupt (e.g., ctl-c from keyboard)

Kill program (cannot override or ignore)

Child stopped or terminated

18

Carnegie Mellon

Sending a Signal

m Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination process

m Kernel sends a signal for one of the following reasons:

= Kernel has detected a system event such as divide-by-zero (SIGFPE) or
the termination of a child process (SIGCHLD)

= Another process has invoked the Ki Il system call to explicitly request
the kernel to send a signal to the destination process

19

Receiving a Signal

m A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

m Three possible ways to react:
= |gnore the signal (do nothing)
= Terminate the process (with optional core dump)
= Catch the signal by executing a user-level function called signal handler

= Akin to a hardware exception handler being called in response to an
asynchronous interrupt

20

Pending and Blocked Signals

m Asignal is pending if sent but not yet received
®= There can be at most one pending signal of any particular type
® |mportant: Signals are not queued

= |f a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

m A process can block the receipt of certain signals

= Blocked signals can be delivered, but will not be received until the signal
is unblocked

m A pending signal is received at most once

[No Counting!!!]

21

Carnegie Mellon

Signal Concepts

m Kernel maintains pending and blocked bit vectors in the
context of each process
= pending: represents the set of pending signals
= Kernel sets bit k in pending when a signal of type k is delivered
= Kernel clears bit k in pending when a signal of type k is received

= blocked: represents the set of blocked signals
= Can be set and cleared by using the sigprocmask function

22

Carnegie Mellon

Process Groups

m Every process belongs to exactly one process group

pid=20

pgid=20 [POEAD

pgid=40

Background Background

process group 40

@ process group 32

pid=21 pid=22 getpgrpQ
pgid=20 pgid=20 Return process group of current process

Foreground setpg id ()
process group 20 Change process group of a process

23

Carnegie Mellon

Sending Signals with /bin/ki 1 | Program

m /bin/Kill program

sends arbitrary signaltoa linux> ./forks 16
Childl: pid=24818 pgrp=24817
PrOCESS OF Process grouP chirgz: pid=24819 pgrp=24817

linux> ps
m Examples PID TTY TIME CMD
= /bin/kill -9 24818 24788 pts/2 00:00:00 tcsh

24818 pts/2 00:00:02 forks
Send SIGKILL to process 24818 24810 pts/? 00-00-07 Forks

24820 pts/2 00:00:00 ps
. /bin/kill _9 _24817 I!nux> /bin/kill -9 -24817
Iinux> ps
Send SIGKILL to every process PID TTY TIME CMD
in process group 24817 24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
lLinux>

24

Sending Signals from the Keyboard

m Typing ctrl-c (ctrl-z) sends a SIGINT (SIGTSTP) to every job in the
foreground process group.
® SIGINT — default action is to terminate each process
= SIGTSTP — default action is to stop (suspend) each process

pid=20

pgid=20 OE=D

pgid=40

Background Background

process group 32 process group 40

pid=21 pid=22
pgid=20 pgid=20
Foreground

process group 20

Carnegie Mellon

25

Carnegie Mellon

Example of ctrl-c and ctrl-z

bluefish> _/forks 17
Child: pid=28108 pgrp=28107

Parent: pid=28107 pgrp=28107 First letter:
<types ctrl-z> S: sleeping
Suspended T: stopped
bluefish> ps w R: running
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17 Second letter:
28108 pts/8 T 0:01 _/forks 17 s: session leader
28109 pts/8 R+ 0:00 ps w +: foreground proc group
bluefish> fg
-/forks 17 See “man ps” for more
<types ctrl-c> details
bluefish> ps w
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

STAT (process state) Legend:

26

Sending Signals with ki 1l Function

void fork12()
{

pid_t pid[N];
int i, child_status;
for (i = 0; i < N; i++)
if ((pid[i] = fork(Q)) == 0)
while(1); /* Child infinite loop */

/* Parent terminates the child processes */
for (i = 0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

/* Parent reaps terminated children */
for (i = 0; i <N; i++) {
pid_t wpid = wait(&child_status);
1T (WIFEXITED(child_status))
printf("'Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf(""Child %d terminated abnormally\n", wpid);

Carnegie Mellon

27

Carnegie Mellon

Sending Signals with ki 1l Function

void forki12()
{

pid_t pid[N];
int i, child_status;
for (i = 0; i < N; i++)
if ((pid[i] = fork(Q)) == 0)
while(1); /* Child infinite loop */

/* Parent terminates the child processes */
for (i = 0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

/* Parent reaps terminated children */
for (i = 0; i <N; i++) {
pid_t wpid = wait(&child_status);
1T (WIFEXITED(child_status))
printf("'Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf(""Child %d terminated abnormally\n", wpid);

28

Carnegie Mellon

Sending Signals with K1 1 | Function

void forkl12()
{
pid_t pid[N];
int i, child_status;
for (i = 0; i < N; i++)
it ((pid[i] = fork()) == 0)
while(1); /* Child infinite loop */
/* Parent terminates the child processes */
for (i = 0; i <N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i]., SIGINT);
3
/* Parent reaps terminated children */
for (i =0; 1 <N; i++) {
pid_t wpid = wait(&child_status);
i (WIFEXITED(child_status))
printf(""Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf(""Child %d terminated abnormally\n™, wpid);
}
3

29

Carnegie Mellon

Sending Signals with K1 1 | Function

void forkl12()
{
pid_t pid[N];
int i, child_status;
for (i = 0; i < N; i++)
it ((pid[i] = fork()) == 0)
while(1); /* Child infinite loop */
/* Parent terminates the child processes */
for (i = 0; i <Nj; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i]., SIGINT);
}
/* Parent reaps terminated children */
for (i =0; i <N; i++) {
pid_t wpid = wait(&child_status);
i (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf(""Child %d terminated abnormally\n", wpid);
}
¥

30

Carnegie Mellon

Sending Signals with ki 1l Function

void fork12()
{

pid_t pid[N];
int i, child_status;
for (i = 0; i < N; i++)
if ((pid[i] = fork(Q)) == 0)
while(1); /* Child infinite loop */

/* Parent terminates the child processes */
for (i = 0; i1 < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

/* Parent reaps terminated children */
for (i = 0; 1 < N; i++) {
pid_t wpid = wait(&child_status);
it (WIFEXITED(child_status))
printf("'Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf(""Child %d terminated abnormally\n", wpid);

31

Carnegie Mellon

Sending Signals with ki 1l Function

void forki12()
{

pid_t pid[N];
int i, child_status;
for (i = 0; i < N; i++)
if ((pid[i] = fork(Q)) == 0)
while(1); /* Child infinite loop */

/* Parent terminates the child processes */
for (i = 0; i < N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

/* Parent reaps terminated children */
for (i = 0; i <N; i++) {
pid_t wpid = wait(&child_status);
1T (WIFEXITED(child_status))
printf("'Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf(""Child %d terminated abnormally\n", wpid);

32

Carnegie Mellon

Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

Process A

user code
kernel code } context switch
Time user code

kernel code } context switch

user code

Important: All context switches are initiated by calling
some exceptional hander.

33

Carnegie Mellon

Receiving Signals

m Suppose kernel is returning from an exception handler
and is ready to pass control to process p

m Kernel computes pnb = pending & ~blocked
= The set of pending nonblocked signals for process p

m If (pnb == 0)
® Pass control to next instruction in the logical flow for p

m Else
= Choose least nonzero bit k in pnb and force process p to receive
signal k
= The receipt of the signal triggers some action by p
= Repeat for all nonzero k in pnb

= Pass control to next instruction in logical flow for p
34

Carnegie Mellon

Default Actions

m Each signal type has a predefined default action, which is
one of:
® The process terminates
® The process terminates and dumps core
= The process stops until restarted by a SIGCONT signal
= The process ignores the signal

35

Carnegie Mellon

Installing Signal Handlers

m The signal function modifies the default action associated
with the receipt of signal signum:
= handler_t *signal(int signum, handler_t *handler)

m Different values for handler:
= SIG_IGN: ignore signals of type signum
= SIG_DFL: revert to the default action on receipt of signals of type Signum
= Otherwise, handler is the address of a signal handler
= Called when process receives signal of type signum
= Referred to as “installing” the handler
= Executing handler is called “catching” or “handling” the signal

= When the handler executes its return statement, control passes back
to instruction in the control flow of the process that was interrupted
by receipt of the signal

36

Carnegie Mellon

Signal Handling Example

void int_handler(int sig) {
safe_printf('Process %d received signal %d\n", getpid(), sig);
exit(0);

void fork13(Q) {

pid_t pid[N];

int i, child_status;

signal (SIGINT, int_handler);

for (i = 0; i <N; i++)
if ((pid[i] = fork(Q)) == 0

while(1); 7* child inf K

} K

for (i = 0; i <Nj; i++) { Teet
printf('Killing process %d Killing process 25421
Kill(pid[i]. SIGINT); Process 25417 received signal 2
3} Process 25418 received signal 2
for (i = 0; i <N; i++) { Process 25420 received signal 2
pid_t wpid = wait(&child_s Process 25421 received signal 2
if (WIFEXITED(child_status Process 25419 received signal 2
printfC'Child %d termi Child 25417 terminated with exit
wpid, WEXITSTAT Child 25418 terminated with exit
Child 25420 terminated with exit
printf('Child %d termi Child 25419 terminated with exit
! Child 25421 terminated with exit
3 linux>

linux> ./forks 13

process 25417
process 25418
process 25419
Killing process 25420

else

status
status
status
status
status

ooooo

37

Carnegie Mellon

Signal Handling Example

void int_handler(int sig) {

exit(0);
3

void fork13(Q) {
pid_t pid[N];
int i, child_status;
signal (SIGINT, int_handler);
for (i = 0; 1 < N; i++)
if ((pid[i] = forkQ)) ==0) {
while(1); /* child infinite loop

3

for (i = 0; i <N; i++) {
printf("Killing process %d\n",
kill(pid[i], SIGINT);

pid[il);

for (i = 0; 1 <N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

wpid, WEXITSTATUS(child_status));
else
printf('Child %d terminated abnormally\n'", wpid);

safe_printf("'Process %d received signal %d\n", getpid(), sig);

printf('Child %d terminated with exit status %d\n",

38

Carnegie Mellon

Signal Handling Example

void int_handler(int sig) {
safe_printf("'Process %d received signal %d\n", getpid(), sig);
exit(0);

}

void fork13(Q) {
pid_t pid[N];
int i, child_status;
signal (SIGINT, int_handler);
for (i = 0; 1 < N; i++)
it ((pid[i] = fork(Q)) == 0) {
while(1); /* child infinite loop

3

for (i = 0; i <N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

for (i = 0; i <Nj; i++) {
pid_t wpid = wait(&child_status);
it (WIFEXITED(child_status))
printf('Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf('Child %d terminated abnormally\n", wpid);

39

Carnegie Mellon

Signal Handling Example

void int_handler(int sig) {
safe_printf("'Process %d received signal %d\n", getpid(),
exit(0);

¥

void fork13(Q) {
pid_t pid[N];
int i, child_status;
signal (SIGINT, int_handler);
for (i = 0; 1 <N; i++)
it ((pid[i] = fork(Q)) == 0) {
while(1); /* child infinite loop

by

for (i = 0; i <N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

for (i = 0; i <Nj; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

wpid, WEXITSTATUS(child_status));
else
printf('Child %d terminated abnormally\n'", wpid);

sig);

printf('Child %d terminated with exit status %d\n",

40

Signal Handling Example

void int_handler(int sig) {
safe_printf('Process %d received signal %d\n", getpid(), sig);
exit(0);

void fork13(Q) {

pid_t pid[N];

int i, child_status;

signal (SIGINT, int_handler);

for (i = 0; 1 <N; i++)
if ((pid[i] = fork(Q)) == 0) {

while(1); /* child infinite loop

3

for (i = 0; i <Nj; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

for (i = 0; 1 <N; i++) {
pid_t wpid = wait(&child_status);
it (WIFEXITED(child_status))
printf('Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf('Child %d terminated abnormally\n'", wpid);

41

Signal Handling Example

void int_handler(int sig) {
safe_printf('Process %d received signal %d\n", getpid(), sig);
exit(0);

¥

void fork13(Q) {
1d_t pid[N];
i, child_status;
signal (SIGINT, int_handler);
for (i = 0; 1 < N; i++)
if ((pid[i] = forkQ)) == 0) {
while(1); /* child infinite loop

3

for (i = 0; i <N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

for (i = 0; 1 <N; i++) {
pid_t wpid = wait(&child_status);
it (WIFEXITED(child_status))
printf('Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf('Child %d terminated abnormally\n", wpid);

42

Signal Handling Example

void int_handler(int sig) {
safe_printf("'Process %d received signal %d\n", getpid(), sig);
exit(0);

¥

void fork13(Q) {
pid_t pid[N];
int i, child_status;
signal (SIGINT, int_handler); =
for (i = 0; i < N; i++) I!nu¥> ./forks 13
if ((pid[i] = forkQ)) == 0 K!Il!ng process 25417
while(1l); /* child inf K preeess 254l
process 25419

for %i =050 <N; i+) { ilti process 25420
printf("Killing process %d Killing process 25421
Kill(pid[i], SIGINT); Process 25417 rece!ved s!gnal 2
3} Process 25418 received signal 2
for (i =0; i <N; i++) { Process 25420 received signal 2
pid_t wpid = wait(&child_s Process 25421 rece!ved s!gnal 2
if ZWIFEXITED(chiId status Process 25419 received signal 2
printf(child %d termi Child 25417 terminated with exit status 0
wpid, WEXITSTAT Child 25418 terminated with exit status O
else Child 25420 terminated with exit status O
printf("Child %d termi Child 25419 terminated with exit status O
} Child 25421 terminated with exit status O
} linux>

43

Carnegie Mellon

Signals Handlers as Concurrent Flows

m Asignal handler is a separate logical flow (not process) that
runs concurrently with the main program

|H

= “concurrently” in the “not sequential” sense

Process A Process A Process B

while (1) handler(Q{

Time |

}

Carnegie Mellon

Another View of Signal Handlers as
Concurrent Flows

Process A Process B

Signal delivered —> | user code (main)

curr

kernel code } context switch

user code (main)

kernel code } context switch

Signal received —>
user code (handler)
kernel code

next

user code (main)

45

Signal Handler Funkiness

int ccount = 0; m Pending signals are not
void child_handler(int sig) queued
{
int child_status; " For each signal type, just
pid_t pid = wait(&child_status); have single bit indicating
ccount--; : :
safe printf(whether or not signal is
"Received signal %d from process %d\n", pending
sig, pid);
3 . .
= Even if multiple processes
void fork14(Q) have sent this signal
{
pid_t pid[N];
int i, child_status;
ccount = N;
signal (SIGCHLD, child handler);
for (i = 0; i <N; I+ linux> ./forks 14
if ((IIJId[a): ;2' Received SIGCHLD signal 17 for process 21344
sleep H = _
exit(0): /* Received SIGCHLD signal 17 for process 21345
while (ccount > 0)
pause(); /* Suspend until signal occurs */
3

46

Carnegie Mellon

Living With Nonqueuing Signals

m Must check for all terminated jobs
= Typically loop with waitpid

void child_handler2(int sig)
{
int child_status;
pid_t pid;
while ((pid = waitpid(-1, &child_status, WNOHANG)) > 0) {
ccount--;
safe_printf("'Received signal %d from process %d\n",
sig, pid);
¥
}

greatwhite> forks 15
void forkl5() Received signal 17 from process 27476
{ Received signal 17 from process 27477
- - - Received signal 17 from process 27478
signal (SIGC Received signal 17 from process 27479
- Received signal 17 from process 27480
} greatwhite>

47

Carnegie Mellon

More Signal Handler Funkiness

m Signal arrival during long system calls (say a read)

m Signal handler interrupts read call

= Linux: upon return from signal handler, the read call is restarted
automatically

= Some other flavors of Unix can cause the read call to fail with an
EINTR error number (errno)
in this case, the application program can restart the slow system call

m Subtle differences like these complicate the writing of
portable code that uses signals
= Consult your textbook for details

48

Carnegie Mellon

A Program That Reacts to
Externally Generated Events (Ctrl-c)

#include <stdlib.h>
#include <stdio.h>
#include <signal .h>
void handler(int sig) {
safe_printf(*'You think hitting ctrl-c will stop the bomb?\n");
sleep(2);
safe_prl?tf(HRLLICCSD)5 linux> ./external
sleep(1); <ctrl-c>
printf('OK\n""); N - -
exit(0); You think hitting ctrl-c will stop
} the bomb?
Well...OK
main() { Linux>
signal (SIGINT, handler); /* installs ctl-c handler */
while(1) {
¥
}
external.c

49

Carnegie Mellon

A Program That Reacts to Internally
Generated Events

#include <stdio.h> main() {

#include <signal .h> signal (SIGALRM, handler);
alarm(1); /* send SIGALRM in
int beeps = 0; 1 second */
/* SIGALRM handler */
void handler(int sig) {

while (1) {
/* handler returns here */

safe_printf("'BEEP\n"); 3}
bs
if (++beeps < 5)
alarm(l); linux> _/internal
else { BEEP
safe_printf(*'BOOMI\Nn™); BEEP
exit(0); BEEP
¥ BEEP
3 BEEP
internal.c BOOM!

bass>

50

Async-Signal-Safety

m Function is async-signal-safe if either reentrant (all variables
stored on stack frame, CS:APP2e 12.7.2) or non-interruptible
by signals.

m Posix guarantees 117 functions to be async-signal-safe

= writeisonthelist, printf isnot

m One solution: async-signal-safe wrapper for printf:

void safe_printf(const char *format, ...) {
char buf[MAXS];
va_list args;

va_start(args, format); /* reentrant */
vsnprintf(buf, sizeof(buf), format, args); /* reentrant */
va_end(args); /* reentrant */
write(l, buf, strlen(buf)); /* async-signal-safe */

}

safe_printf.c

51

Today

m Multitasking, shells
m Signals
m Nonlocal jumps

52

Nonlocal Jumps: setymp/longjmp

m Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location

= Controlled to way to break the procedure call / return discipline
= Useful for error recovery and signal handling

m Int setymp@mp_buf j)
" Must be called before longjmp
= |dentifies a return site for a subsequent longjmp
" Called once, returns one or more times

m Implementation:

= Remember where you are by storing the current register context,
stack pointer, and PC value in jmp_buf

= ReturnO

53

setjymp/longjmp (cont)

m void longjmp(@mp_buf j, Int i)
" Meaning:
= return from the setjmp remembered by jump buffer j again ...
= ... this time returning 1 instead of 0
= Called after setjmp
= Called once, but never returns

= longjmp Implementation:

= Restore register context (stack pointer, base pointer, PC value) from
jump buffer j

= Set %eax (the return value) to i
= Jump to the location indicated by the PC stored in jump buf j

54

Carnegie Mellon

setjymp/longjmp Example

#include <setjmp.h>
Jmp_buf buf;

main() {
if (setjmp(buf) 1= 0) {
printf("'back in main due to an error\n');
else
printf(""first time through\n™);
p1(Q); /* pl calls p2, which calls p3 */
3
P30 {
<error checking code>
if (error)
longjmp(buf, 1)

55

Carnegie Mellon

Limitations of Nonlocal Jumps

m Works within stack discipline

= Can only long jump to environment of function that has been called

but not yet completed
y P Before longjmp After longjmp

Jmp_buf env; env
......... » Pl Pl
P10
{
if (setjmp(env)) { P2
/* Long Jump to here */
} else {
P20); i
b
3 P2
P20
{ - . .P20; - . . P30; } P3
P3O
longjmp(env, 1);

56

Carnegie Mellon

Limitations of Long Jumps (cont.)

m Works within stack discipline

= Can only long jump to environment of function that has been called
but not yet completed

Jjmp_buf env; P1
S L — o P2
{ env

P20); P3Q; At setjmp
P20 P1
{

if (setjmp(env)) { env

/* Long Jump to here */ | =) o P2

1 4 P2 returns P1
P3O
; o sl P3

longjmp(env, 1);

At longjmp
57

Carnegie Mellon

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d

#include <stdio.h>
#include <signal.h>
#include <setjmp.h> =
greatwhite> _/restart
sigjmp_buf buf; starting
processing. . .
void handler(int sig) { processing__ .
siglongjmp(buf, 1); processing. . .
restartin
1ng - —Ctrl-c
mainQ { prOCeSS!ng. 5o
signal (SIGINT, handler); processing. . -
restarting
if (Isigsetjmp(buf, 1)) processing. H
Z " N " Ctrl-c
printf(*'starting\n"); processing. . .
else A
rocessing. . -
printf(‘'restarting\n'); P 9
while(1) {
sleep(1);
printf('processing...\n");
} restart.c

58

Carnegie Mellon

Summary

m Signals provide process-level exception handling
® Can generate from user programs
= Can define effect by declaring signal handler
m Some caveats
= Very high overhead
= >10,000 clock cycles
= Only use for exceptional conditions
®= Don’t have queues
= Just one bit for each pending signal type
m Nonlocal jumps provide exceptional control flow within
process
= Within constraints of stack discipline

59

Carnegie Mellon

Midterm Exam info

m Midterm on 3/5 at 6:30 for everyone
m Lastname starts with
= A-J->Wh 7500
= K-Z ->Rashid
m Covers all material through today
m Review on Sunday at 3pm at Dh2315 and Dh2210
m Recitation will also do midterm review on Monday

60

