Carnegie Mellon Carnegie Mellon

Today
Exceptional Control Flow: = Exceptional Control Flow
Exceptions and Processes m Processes
15-213 / 18-213: Introduction to Computer Systems
13t Lecture, Feb 26, 2013
Instructors:
Seth Copen Goldstein, Anthony Rowe, and Greg Kesden
Control Flow Altering the Control Flow
m Processors do only one thing: m Up to now: two mechanisms for changing control flow:
® From startup to shutdown, a CPU simply reads and executes = Jumps and branches

(interprets) a sequence of instructions, one at a time = Call and return

= This sequence is the CPU’s control flow (or flow of control) Both react to changes in program state

Physical control flow m Insufficient for a useful system:

Difficult to react to changes in system state
<startup> = data arrives from a disk or a network adapter
inst, = instruction divides by zero

Time inst2 = user hits Ctrl-C at the keyboard
inst, = System timer expires
inst,

. « . ”
<shutdown> m System needs mechanisms for “exceptional control flow

Exceptional Control Flow

m Exists at all levels of a computer system

m Low level mechanisms
= Exceptions

= change in control flow in response to a system event
(i.e., change in system state)

= Combination of hardware and OS software
m Higher level mechanisms
® Process context switch

= Signals What about
= Nonlocal jumps: setjmp()/longjmp() try/catch/throw?

= |mplemented by either:

= OS software (context switch and signals)
= Clanguage runtime library (nonlocal jumps)

ECF Exists at All Levels of a System

m Exceptions)
® Hardware and operating system kernel software

m Process Context Switch > This Lecture
= Hardware timer and kernel software
m Signals
= Kernel software and application software)
m Nonlocal jumps

= Application code } Next Lecture

Carnegie Mellon

‘ o

Exceptions

m An exception is a transfer of control to the OS in response to
some event (i.e., change in processor state)

User Process (LY

event — |_current exception
L= exception processing

by exception handler

e return to |I_current
ereturn to |_next
*abort

m Examples:
div by 0, arithmetic overflow, page fault, I/O request completes, Ctrl-C

Carnegie Mellon

Exception Tables

Exception
numbers
code for m Each type of event has a
exception handler 0 unique exception number k
Exception B
Table 7 exception handler 1 m k=index into exception table
0
1 Cd code for
2 Ll exception handler 2
.
n-1 exception k occurs
code for
exception handler n-1

Carnegie Mellon

Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor
® |ndicated by setting the processor’s interrupt pin
= Handler returns to “next” instruction

m Examples:

= |/O interrupts
= hitting Ctrl-C at the keyboard
= arrival of a packet from a network
= arrival of data from a disk

® Hard reset interrupt
= hitting the reset button

= Soft reset interrupt
= hitting Ctrl-Alt-Delete on a PC

Carnegie Mellon

Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:

" Traps
= Intentional
= Examples: system calls, breakpoint traps, special instructions
= Returns control to “next” instruction

" Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= unintentional and unrecoverable

= Examples: parity error, machine check

= Aborts current program
10

Carnegie Mellon

Trap Example: Opening File

m User calls: open(Ffilename, options)

m Function open executes system call instruction int
0804d070 <__libc_open>:

804d082: cd 80 int $0x80

804d084: 5b pop %ebx
User Process (01
: l exception : o
005 _ Different privilege
'\l open file levels!
returns

m OS must find or create file, get it ready for reading or writing

m Returns integer file descriptor
1

Carnegie Mellon

Fault Example: Page Fault

int a[1000];

m User writes to memory location main O
m That portion (page) of user’s memory a[500] = 13;
is currently on disk ¥
80483b7: c¢7 05 10 9d 04 08 oOd movl $0xd,0x8049d10
User Process os

oul l exception: page fault

Create page and
returns load into memory

m Page handler must load page into physical memory
Different privilege
m Successful on second try levels!

m Returns to faulting instruction

Carnegie Mellon

Fault Example: Invalid Memory Reference

int a[1000];
main O

a[5000] = 13;

‘ 80483b7: c¢7 05 60 e3 04 08 Od movl $0xd,0x804e360

User Process (01

ol l exception: page fault
detect invalid address
— signal process

m Page handler detects invalid address
m Sends SIGSEGV signal to user process Different privilege
m User process exits with “segmentation fault” levels!

Carnegie Mellon

Exception Table IA32 (Excerpt)

Exception Number Description

0 Divide error

13 General protection fault
14 Page fault

18 Machine check

32-127 0S-defined

128 (0x80) System call

129-255 0OS-defined

Check Table 6-1:

Exception Class
Fault

Fault

Fault

Abort

Interrupt or trap
Trap

Interrupt or trap

http://download.intel.com/design/processor/manuals/253665.pdf

14

h
&

Carnegie Mellon

Altering the Control Flow (revisited)

m Up to now: two mechanisms for changing control flow:

Ju .
. ¢y 'S there an alternative?
- For general purpose processors?
Both r
- For embedded processors?

m Insufficient for a useful system:
Difficult to react to changes in system state
= data arrives from a disk or a network adapter
® jnstruction divides by zero
= user hits Ctrl-C at the keyboard
= System timer expires

m System needs mechanisms for “exceptional control flow”

15

Carnegie Mellon

Today

m Exceptional Control Flow
m Processes

16

Processes

m Definition: A process is an instance of a running program.
® One of the most profound ideas in computer science
= Not the same as “program” or “processor”

m Process provides each program with two key abstractions:
= |ogical control flow
= Each program seems to have exclusive use of the CPU
® Private virtual address space
= Each program seems to have exclusive use of main memory

m How are these lllusions maintained?
® Process executions interleaved (multitasking) or run on separate cores
= Address spaces managed by virtual memory system

= we’ll talk about this in a couple of weeks
17

Carnegie Mellon

Concurrent Processes

m Two processes run concurrently (are concurrent) if their
flows overlap in time

m Otherwise, they are sequential

m Examples (running on single core):
= Concurrent: A&B,A&C
= Sequential: B& C

Process A Process B Process C

Time |

18

Carnegie Mellon

User View of Concurrent Processes

m Control flows for concurrent processes are physically
disjoint in time

m However, we can think of concurrent processes as
running in parallel with each other

Process A Process B Process C

Time

19

Carnegie Mellon

Context Switching

m Processes are managed by a shared chunk of OS code
called the kernel
= |mportant: the kernel is not a separate process, but rather runs as part
of some user process

m Control flow passes from one process to another via a

context switch
Process A : Process B
|
: user code
: kernel code } context switch
Time user code

kernel code } context switch

user code

20

Carnegie Mellon

Tork: Creating New Processes

m Iint fork(void)
= creates a new process (child process) that is identical to the calling
process (parent process)
= returns O to the child process
= returns child’s pid (process id) to the parent process

pid_t pid = fork(Q):
if (pid == 0) {

printf(*hello from child\n™);
} else {

printf(*hello from parent\n™);
}

m Fork is interesting (and often confusing) because
it is called once but returns twice

21

Carnegie Mellon

Understanding fork

Process n Child Process m
pid_t pid = fork(Q; pid_t pid = fork(Q;
if (pid == 0) { it (pid = 0) {
printf("'hello from child\n™); printf("'hello from child\n™);
} else { } else {
printf("hello from parent\n™); printf("hello from parent\n™);
3 }
. pid_t pid = fork(Q; . pid_t pid = fork(Q;
if (pid == 0) { if (pid == 0) {
pid =m printf(Chello from child\n™); pid =0 printfC’hello from child\n™);
5 else { 5 else {
printf(“'hello from parent\n™); printf("'hello from parent\n™);
pid_t pid = forkQ; pid_t pid = forkQ;
if (pid == 0) { if (pid == 0) {
printf("'hello from child\n™); printf("'hello from child\n™);
T} else { T else {
printf(""hello from parent\n™); printf("'hello from parent\n™);

hello from parent Which one is first? hello from child
22

Carnegie Mellon

Fork Example #1

m Parent and child both run same code
= Distinguish parent from child by return value from fork
m Start with same state, but each has private copy

® |ncluding shared output file descriptor
= Relative ordering of their print statements undefined

void fork1()
{
int x = 1;
pid_t pid = fork(Q);
if (pid == 0) {
printf(*"Child has x = %d\n", ++x);
} else {
printf("'Parent has x = %d\n", --Xx);

b
printf("'Bye from process %d with x = %d\n", getpid(), X);

23

Fork Example #2

m Two consecutive forks

void fork2()
{
printf('LO\N""); Bye
fork(Q; L1 | Bye
grl EE;("Ll\n") ; Bye
or ;
printf(*'Bye\n"); Lojil | Bye
}

24

Carnegie Mellon Carnegie Mellon

Fork Example #3 Fork Example #4
m Three consecutive forks m Nested forks in parent
void fork3() Bye void fork4()
{ {
= T ¢
or ; ye i or 1= 0
printf('L1\n"™"); L1 |L2 | Bye printf(C'LI\n""); ___ Bye
fon_’k(); Bye if (fon_’k() 1=0) {
printf('L2\n"); ﬂ printf("L2\n"); Bye
fork(Q); fork(Q); B
. - — Bye ye
. printf('Bye\n'); ot |2 t_Bye } by Lo L1 |2 Bye
printf('Bye\n™);
3
Fork Example #5 ex1t: Ending a process

m void exit(int status)

" exits a process

m Nested forks in children

\{/OId O = Normally return with status 0
printf('LO\n"); = atexit() registers functions to be executed upon exit
if (forkQ) == 0) {

printf('L1\n"); Bye : ;
if (forkQ ==0) { void (_:Ieanup(von_j) {
printf('L2\n"); printf(‘cleaning up\n™);
forkQ); s
) } void fork6() {
printf('Bye\n*); atexit(cleanup);
} forkQ);
exit(0);
}

27 28

Carnegie Mellon Carnegie Mellon

Zombies Zombie vold fork70
d E | if (forkQ == 0) {
m ldea /* Child */
. . xamp e printf("'Terminating Child, PID = %d\n",
= When process terminates, still consumes system resources getpid());
. L exit(0);
= Various tables maintained by OS } else {
- “) printf("'Running Parent, PID = %d\n",
Ca”efi? zombie ' linux> ./forks 7 & getpidQ);
= Living corpse, half alive and half dead [1] 6639 while (1)
. Running Parent, PID = 6639 ; /* Infinite loop */
= Reaping Terminating Child, PID = 6640 ¥
= Performed by parent on terminated child (using wait or waitpid) linux> ps
L . . . PID TTY TIME CMD
® Parent is given exit status information 6585 ttyp9 00:00:00 tcsh h hild
e m PS shows child process as
® Kernel discards process e P . P
. 6640 ttyp9 00:00:00 forks <defunct> defunct
m What if parent doesn’t reap? 6641 ttyp9 00:00:00 ps
. li >
= |f any parent terminates without reaping a child, then child will be rnux
reaped by Init process (pid == 1)
= So, only need explicit reaping in long-running processes
= e.g., shells and servers
29 30

void fork8()

H void fork7(Q) . - {
Zombie _ Nonterminating) =)
E I if (f/ork(h) I:d: o/) { /* Child */
L i rintf("Running Child, PID = %d\n",
xamp e printf("'Terminating Child, PID = %d\n", Chlld Example P (getpid(g); ’
_ getpidO); while (1)
exit(0); ; /* Infinite loop */
b else { - } else {

B printf("Running Parent, PID = %d\n", printf("Terminating Parent, PID = %d\n",
linux> ./forks 7 & getpidQ); getpid():
[1] 6639 while (1) exit(0)s
Running Parent, PID = 6639 ; /* Infinite loop */ }
Terminating Child, PID = 6640 b B T
linux> ps } linux> ./forks 8 S

PID TTY TIME CMD Terminating Parent, PID = 6675

6585 ttyp9 00:00:00 tcsh . Running Child, PID = 6676 m Child process still active even

6639 ttyp9 00:00:03 Forks = Ps shows child process as linux> ps though parent has terminated
6640 ttyp9 00:00:00 forks <defunct> “defunct” PID TTY TIME CMD

6641 ttyp9 00:00:00 ps 6585 ttyp9 00:00:00 tcsh
linux> kill 6639 6676 ttyp9 00:00:06 forks
[11 Terminated m Killing parent allows child to be 6677 ttyp9 00:00:00 ps
linux> ps reaped by init Tinux>

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

31

32

void fork8(Q)

Nonterminating
Child Example

if (fork(Q) == 0) {
/* Child */
printf("Running Child, PID = %d\n",
getpid());
while (1)
; /* Infinite loop */
} else {
printf(""Terminating Parent, PID = %d\n",
getpid());
exit(0);

¥
linux> ./forks 8

Terminating Parent, PID = 6675
Running Child, PID = 6676 m Child process still active even
linux> ps though parent has terminated
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 forks
6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

m Must kill explicitly, or else will keep
running indefinitely

33

wait: Synchronizing with Children

m Parent reaps child by calling the wait function

m Int wait(int *child_status)
= suspends current process until one of its children terminates
= return value is the pid of the child process that terminated

= ifchild_status = NULL, then the object it points to will be set
to astatus indicating why the child process terminated

34

Carnegie Mellon

wali t: Synchronizing with Children

void fork9() {
int child_status;

if (forkQQ == 0) {
printf(""HC: hello from child\n™);
by

else {
printf("HP: hello from parent\n™); HP CT Bye
wait(&child_status);
printf(""'CT: child has terminated\n™);

HC Bye

3
printf(*'Bye\n");
exit(Q);

35

Carnegie Mellon

wait() Example

m If multiple children completed, will take in arbitrary order

m Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void fork10Q)
{
pid_t pid[N];
int i;
int child_status;
for (i = 0; 1 < Nj; i++)
it ((pid[i] = fork(Q)) == 0)
exit(100+i); /* Child */
for (i = 0; 1 <N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n*,
wpid, WEXITSTATUS(child_status));
else
printf("'Child %d terminate abnormally\n", wpid);

36

wailtpid(): Waiting for a Specific Process

m waitpid(pid, &status, options)
= suspends current process until specific process terminates
= various options (see textbook)

void fork11()
{

pid_t pid[N];
int i;
int child_status;
for (i = 0; 1 < N; i++)
it ((pid[i] = forkQ)) == 0)
exit(100+i1); /* Child */
for (i = N-1; 1 >=0; i--) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))
printf(*Child %d terminated with exit status %d\n*,
wpid, WEXITSTATUS(child_status));
else
printf('Child %d terminated abnormally\n", wpid);

37

Carnegie Mellon

execve: Loading and Running Programs

m int execve(
char *filename,
char *argv[],
char *envp[]
)
m Loads and runs in current process:
= Executable Fi lename
= With argument list argv
= And environment variable list envp

Does not return (unless error)

Overwrites code, data, and stack

= keeps pid, open files and signal context

m Environment variables:
= “name=value” strings
= getenv and putenv

Null-terminated
env var strings

Stack bottom

Null-terminated
cmd line arg strings

unused

envp[n] == NULL

envp[n-1]

envp[0]

argv[argc] == NULL

environ

argv[argc-1]

argv[0]

Linker vars

envp

argv

argc

Stack frame for
main

Stack top 3

Carnegie Mellon

execve Example

if ((pid = Fork()) == 0) { /7* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf(""%s: Command not found.\n", argv[0]);

exit(0);
b
3

argv[argc] = NULL
argv[argc-1] ———> “/usr/include”
— “-1t”
argv[0] ——o> “Is”’

argv >

envp[n] = NULL

envp[n-1] ——> “PWD=/usr/droh”
————> “PRINTER=1ron”
envp[0] ——> “USER=droh”

environ >
39

Carnegie Mellon

Summary

m Exceptions

= Events that require nonstandard control flow

= Generated externally (interrupts) or internally (traps and faults)

m Processes

= At any given time, system has multiple active processes

®= Only one can execute at a time on a single core, though

= Each process appears to have total control of

processor + private memory space

40

Carnegie Mellon

Summary (cont.)

m Spawning processes
= Call fork
® QOne call, two returns
m Process completion
= Callexit
® One call, no return
m Reaping and waiting for processes
= Callwaitorwaitpid
m Loading and running programs
= Call execve (or variant)

= One call, (normally) no return

41

