Carnegie Mellon

Cache Memories

15-213: Introduction to Computer Systems
11t Lecture, Feb. 19, 2013

Instructors:
Seth Copen Goldstein, Anthony Rowe, Greg Kesden

Today

m Cache memory organization and operation

1
Carnegie Mellon

General Cache Concept (Reminder)

Smaller, faster, more expensive
Cache I 4 ” 9 ” 10 II 3 I memory caches a subset of
the blocks

Data is copied in block-sized

transfer units

Larger, slower, cheaper memory

Memory I 0 ” 1 ” 2 ” 3 I viewed as partitioned into “blocks”
[a | ILs I 7 |
[8 || |20 J| 11 |
[12 || 13 || 14 || 15 |
00000000 O0OCGOGFOGEOGNOGONOSINOSINOIOIO

Many types of caches

Examples
= Hardware: L1 and L2 CPU caches, TLBs, ...

= Software: virtual memory, FS buffers, web browser caches, ...

Many common design issues
= each cached item has a “tag” (an ID) plus contents
® need a mechanism to efficiently determine whether given item is cached
= combinations of indices and constraints on valid locations
® on a miss, usually need to pick something to replace with the new item
= called a “replacement policy”
= on writes, need to either propagate change or mark item as “dirty”

= write-through vs. write-back

Different solutions for different caches

= Lets talk about CPU caches as a concrete example...

CPU Cache Memories

m CPU Cache memories are small, fast SRAM-based
memories managed automatically in hardware

= Hold frequently accessed blocks of main memory

m CPU looks first for data in caches (e.g., L1, L2, and L3),
then in main memory

m Typical system structure:

CPU chip

Register file

Cache <::> ALU
memories

ﬁ ﬁ Systembus Memory bus

. | _

Bus interface < B 1o <:> Main

— 17 | bridge memory

Carnegie Mellon

General Cache Organization (S, E, B)

E = 2¢ lines per set
A

- \
([| Jeeee |
| | Joeee] |
S=2ssets< | | [eoee] |
|| | Joeee] |

Cache size:
C =S x E x B data bytes

[J [tag | |o]af2[----[B1]
valid bit ! ~———

B = 2b bytes per cache block (the data)

Carnegie Mellon

Cache Read * Locate set

e Check if any line in set
has matching tag

E = 2¢ lines per set e Yes + line valid: hit

e A ~ * Locate data starting
r at offset
| I Jooed |
Address of word:
| | oo | [thits [sbits | bbits |
S=Zssets< | ” |.ooo| |

tag set block
index offset

data begins at this offset

IIII g | |ofa]2f--- [B1]
valid bit ! | —

B = 2P bytes per cache block (the data)

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

(Address of int:
[v] (e] [o1]2]3]4]5]6]7] [thits [0..01 [100]
ml tg | [o]1]2[3[a]5]6]7] find set
S=Zssets<
[v] [Ctee | [o]2]2]3]a]s]e]7]
00 0000000C0OCOIONOGOOIONONOGNONOGOS
| [0] GLEEEGED

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

alid? + match: assume yes = hit Address of int:
valid? : assu = hi
| Y { thits [0..01 [100]

1
[] Cee] ll:[2[3] <[5 [e]7]
|

block offset

Carnegie Mellon

Example: Direct Mapped Cache (E =1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

alid? + match: assume yes = hit Address of int:
valid? : assu = hi
| Y { thits [0..01 [100]

1
V] [ee] 12312 5]6]7]
1

block offset

int (4 Bytes) is here

If tag doesn’t match: old line is evicted and replaced

10

‘ ©

Carnegie Mellon

Direct-Mapped Cache Simulation

t=1 =2 b=1
Lx [oo | x |

M=16 bytes (4-bit addresses), B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 loﬂ]-z]: miss
8 [1000,], miss
0 [0000,] miss
v Tag Block

Set0 | 1 0 M[0-1]

Set1l

Set 2

set3| 1 | 0 M[6-7]

1n

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

[thits [0..01 [100]

[v] [tag] [o]a[2[3]a]s[e]7]| | [v] [tag] [o]2][2]3]4]5]6]7]

[v] [tag | [o]2[23[4]s[e[7]| | [v] [tag] [o2][2]3T4]5]6]7] find set

[v] [tag | [o[2[2[3]a]s[e[7]| | [v] [tag] [o]2[2]3]4]5]6]7]

[v] [tae] [o]a[2[3]a]s[e]7]| | [v] [tag] [o]2][2]3]4]5]6]7]

12

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

{ tbits [0..01 [100 |

compare both

valid? + | match: yes = hit

[v] Cee] [o[2[2[3[a]5617]| |[v] Cee] o[i2[3]4]5]6]7]

block offset

13

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

{ tbits [0..01 [100 |

compare both

valid? + | match: yes = hit

[v] (e | [o]1[23[a]5]6]7]| |[v] [tee] [o[1]2]3]a]5]6]7]
I

block offset

short int (2 Bytes) is here

No match:
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

14

Carnegie Mellon

2-Way Set Associative Cache Simulation

t=2 s=1 b=1
[xx | x | x | M=16 byte addresses, B=2 bytes/block,

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
(] [0000,] hit
v Tag Block

seto | L_[00 [M[0-1]
1 J10 ™89

Set1 01 | M[6-7]

ol

15

Carnegie Mellon

What about writes?

m Multiple copies of data exist:
= |1, L2, Main Memory, Disk
= What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Need a dirty bit (line different from memory or not)
m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow
= No-write-allocate (writes straight to memory, does not load into cache)
m Typical
= Write-through + No-write-allocate
= Write-back + Write-allocate

16

Carnegie Mellon

Intel Core i7 Cache Hierarchy

Processor package

Core 0 Core 3 L1 i-cache and d-cache:
32 KB, 8-way,
Regs Regs Access: 4 cycles
L1 L1 L1 L1 L2 unified cache:
d-cache| |i-cache d-cache| |i-cache 256 KB, 8-way,

Access: 11 cycles

L2 unified cache L2 unified cache

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

L3 unified cache
(shared by all cores)

Block size: 64 bytes for
all caches.

| e | R

Main memory

17

Carnegie Mellon

Cache Performance Metrics

m Miss Rate
= Fraction of memory references not found in cache (misses / accesses)
=1-hitrate
= Typical numbers (in percentages):
= 3-10% for L1
= can be quite small (e.g., < 1%) for L2, depending on size, etc.
m Hit Time
= Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 1-2 clock cycle for L1
= 5-20 clock cycles for L2
m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

18

Carnegie Mellon

Lets think about those numbers

m Huge difference between a hit and a miss
= Could be 100, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

19

Writing Cache Friendly Code

m Make the common case go fast

= Focus on the inner loops of the core functions
m Minimize the misses in the inner loops

= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

20

Carnegie Mellon

Back to Observations

m Programmer can optimize for cache performance
= How data structures are organized
®= How data are accessed (examples follow)
= Nested loop structure
= Blocking is a general technique
m All systems favor “cache friendly code”
= Getting absolute optimum performance is very platform specific
= Cache sizes, line sizes, associativities, etc.
® Can get most of the advantage with generic code
= Keep working set reasonably small (temporal locality)
= Use small strides (spatial locality)

21

Carnegie Mellon

Today

m Performance impact of caches

®= The memory mountain

22

The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.
= Compact way to characterize memory system performance.

23

Carnegie Mellon

Memory Mountain Test Function

/* The test function */

void test(int elems, int stride) {
int i, result = 0;
volatile int sink;

for (i = 0; i1 < elems; i += stride)
result += data[i];
sink = result; /* So compiler doesn"t optimize away the loop */

}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
{

double cycles;

int elems = size / sizeof(int);

test(elems, stride); /* warm up the cache */
cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */

24

Carnegie Mellon

Intel Core i7

32 KB L1 i-cache

32 KB L1 d-cache

256 KB unified L2 cache

The Memory Mountain

— 8M unified L3 cache
) 7000 |-
2] |
=3 | All caches on-chip
= 6000 -+
=1 |
o |
= |
= 5000 -
e II
ey |
i 4000 -
e] T
®©
[J]
14 3000 -
2000 |
1000+

Working set size (bytes)

25

Carnegie Mellon

Intel Core i7

32 KB L1 i-cache

32 KB L1 d-cache

256 KB unified L2 cache
8M unified L3 cache

The Memory Mountain

% 7000 *i‘- =

=3 | All caches on-chip

- 6000 +

=] |

Q.

<

g,’ 5000

£ Ridges of
N

k) temporal

& locality

N4
©
re]
3

Working set size (bytes)

26

Carnegie Mellon

A Ridge of Temporal Locality (s=16)

7000

6000

5000

4000

3000

Read throughput (MB/s)

2000

1000

Main memory
region

L3 cache
region

L2 cache
region

L1 cache region

i

64M 32M 16M BM 4M 2M 1M 512K 256K 128K 64K 32K 16K 8K 4K
Working set size (bytes)

2K

27

Carnegie Mellon

Intel Core i7

32 KB L1 i-cache

32 KB L1 d-cache

256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

Read throughput (MB/s)

Slopes of
spatial
locality

Working set size (bytes) %

Carnegie Mellon

A Slope of Spatial Locality (size=4MB)

5000

4500 1 —

4000 &l

3500 H —

3000 H — 1 |

One access per cache line
2500 HH— 1

B B O m = TN

o0 HH—4 HHHHHHHHHHH— HHHH o

Read throughput (MB/s)

1500 HH—

1000 {0

500

0

s1 s2 s3 s4 s5 sBb s7T s8 s9 s10 s11 s12 s13 s14 s15 s16 s32 s6d

Stride (x8 bytes) 2

Carnegie Mellon

Intel Core i7

32 KB L1 i-cache

32 KB L1 d-cache

256 KB unified L2 cache
8M unified L3 cache

The Memory Mountain

All caches on-chip

Ridges of
> temporal
locality

Read throughput (MB/s)

Slopes of
spatial
locality

N4
©
re]
3

Working set size (bytes) ©

Carnegie Mellon

Today

= Rearranging loops to improve spatial locality

31

Carnegie Mellon

Miss Rate Analysis for Matrix Multiply

m Assume:
® Line size = 32B (big enough for four 64-bit words)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
® Cache is not even big enough to hold multiple rows
m Analysis Method:

= |ook at access pattern of inner loop

-
—
-

X |

32

Carnegie Mellon

Matrix Multiplication Example

Variable sum
7= gk =7 held in register
for (i=0; i<n; i++) ¢ /

m Description:

= Multiply N x N matrices
for (3J=0; j<n; j++) {

sum = 0.0; «—-—-——

= O(N3) total operations

= N reads per source

element for (k=0; k<n; k++)

sum += a[i][k] * b[K1[i1:
c[illJ] = sum;

= N values summed per
destination

}
= but may be able to }

hold in register

33

Carnegie Mellon

Layout of C Arrays in Memory (review)

m C arrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
= for (i = 0; ¥ < N; i++)
sum += a[O0][i];
= accesses successive elements
= if block size (B) > 4 bytes, exploit spatial locality
= miss rate =4 bytes /B
m Stepping through rows in one column:
= for (i = 0; ¥ < n; i++)
sum += a[i][0];
= accesses distant elements
® no spatial locality!
= miss rate =1 (i.e. 100%)

34

Carnegie Mellon

Matrix Multiplication (ijk)

7 UI_(7 . i, Inner loop:
for (i=0; i<n; i++) {
for (J=0; j<n; j++) { (*.)
sum = 0.0; . (ij)
for (k=0; k<n; k++) (%)
sum += a[i][k] * b[KILil; A B C
c[illJ] = sum; | | |
T
b Row-wise Column- Fixed
wise
Misses per inner loop iteration:
A B c
0.25 1.0 0.0

35

Carnegie Mellon

Matrix Multiplication (jik)

7" JII_(4 _ _ Inner loop:
for (3J=0; j<n; j++) {
for (i=0; i<n; i++) { (*,j)
sum = 0.0; (i‘j)
for (k=0; k<n; k++) (i,*)
sum += a[i][k] * b[KILil; A B C
c[i1[j] = sum | | |
}
3 Row-wise Column- Fixed
wise

Misses per inner loop iteration:
A B C
0.25 1.0 0.0

36

Carnegie Mellon

Matrix Multiplication (kij)

7~ klj_*{ B Inner loop:
for (k=0; k<n; k++) {
for (i=0; i<n; i++) { (i,k) (k,*)
r = ali][k]; u (i,*)
for (J=0; j<n; j++) A B C
clilfil += r * b[KI[i];
}
} Fixed Row-wise Row-wise

Misses per inner loop iteration:
A B C
0.0 0.25 0.25

37

Carnegie Mellon

Matrix Multiplication (ikj)

/* 1ky */
for (i=0: i<n: i++) { Inner loop:
for (k=0; k<n; k++) { (i,k) (k,*)
r = a[il[k]; " (i,*)
for (3=0; j<n; j++) A B C
cliliyl += r > bIKILi];
) I
¥ Fixed Row-wise Row-wise

Misses per inner loop iteration:
A B C
0.0 0.25 0.25

38

Carnegie Mellon

Matrix Multiplication (jki)

7= jKi %7 Inner loop:
for (g=0; j<n; j++) { (*.k) (*.j)
for (k=0; k<n; k++) { (k,j)
r = b[KILil: w
for (i=0; i<n; i++) A B C
clillil += alil[k] * r;
}
} Column- Fixed Column-

wise wise

Misses per inner loop iteration:
A B C
1.0 0.0 1.0

39

Carnegie Mellon

Matrix Multiplication (kji)

7 kKji */
for (k=0: k<n: k++) { Inner loop:
for (3J=0; j<n; j++) { (*,k) (*4)
r = b[KIL]1; (k.j)
for (i=0; i<n; i++) =
c[illil += a[il[K] * r; A B ¢
} I
T
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C
1.0 0.0 1.0

40

Carnegie Mellon

Summary of Matrix Multiplication

for (1=0; i<n; 1++) {
for (J=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[K1Lil;
c[ilj] = sum;
}
¥

for (k=0; k<n; k++) {
for (1=0; i<n; i++) {
r = a[i][k];
for (J=0; j<n; j++)
clilhil += r * bIk10]1;
}
3

for (3=0; j<n; j++) {
for (k=0; k<n; k++) {
r = b[KILil;
for (i=0; i<n; i++)
c[ilhil += a[illk] * r;
}
3

ijk (& jik):
e 2 |oads, O stores
* misses/iter = 1.25

kij (& ikj):
¢ 2 |oads, 1 store
* misses/iter = 0.5

jki (& kiji):
¢ 2 |oads, 1 store
¢ misses/iter = 2.0

41

Cycles per inner loop iteration

Carnegie Mellon

Core i7 Matrix Multiply Performance

60
jki / kji
50
40
- jki
ki
>-ijk
% ik
S —+kij
ijk / jik ~iki
20
10
kij / ikj
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Array size (n) °

Carnegie Mellon

Core i7 Matrix Multiply Performance

60

ki / ki

R

Pay attention to spatial locality!

Miss rate more important than # of mem refs

Pay particular attention to inner loops

(Amdahl’s law)

Its not that hard to do the analysis

~

r_.:: AN AN =

/

kij / ikj
T ALY ALY ALY
50 100 150 200 250 300 350 400 500 550 600 650 700 750

Array size (n)

43

Carnegie Mellon

= Using blocking to improve temporal locality

Carnegie Mellon

Example: Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; 1 < n; i++)
for (0 = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n+j] += a[i*n + kK]*b[k*n + j];

—

45

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)

n
m First iteration: /T
" n/8+n=9n/8 misses
- *
= Afterwards in cache:
(schematic) . T
= ¥

8 wide
46

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)

n
m Second iteration: T
= Again: -
n/8 + n =9n/8 misses - *

8 wide

m Total misses:
® 9n/8 * n2=(9/8) * n3

47

Carnegie Mellon

Blocked Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);
/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; 1 <n; iI+=B)
for (J = 0; J < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = i; i1l < i+B; i++)
for (J1 = j; J1 < j+B; j++)
for (k1 = k; k1 < k+B; k++)
c[il*n+j1] += a[il*n + k1]*b[kl*n + j1];
}
j1
c a b c
= * +
[] 1NN

Block size B x B
48

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
= Three blocks M fit into cache: 3B2< C

B block
m First (block) iteration: /8 blocks

= B2/8 misses for each block M
= 2n/B * B%/8 =nB/4
(omitting matrix c)

:
=

i Block size B x B
= Afterwards in cache | ock size B x
(schematic)

= *

49

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
= Three blocks M fit into cache: 3B2< C

. . n/B blocks
m Second (block) iteration: A

= Same as first iteration | [T[]

* 2n/B * BY/8 = nB/4 _ N

m Total misses:
= nB/4 * (n/B)? = n3/(4B)

Block size Bx B

50

Carnegie Mellon

Summary

m No blocking: (9/8) * n3
m Blocking: 1/(4B) * n3

m Suggest largest possible block size B, but limit 3B2 < C!

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= Input data: 3n%, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly

51

Carnegie Mellon

Pay Attention to the Cache!

Ridges of
temporal
locality

Slopes of
spatial
locality

52

A Higher Level Example

int sum_array_rows(double a[16][16])
{
int i, j;
double sum = O;
for (i = 0; 1 < 16; i++)
for g = 0; j < 16; j++)
sum += a[illj]l;

return sum;

int sum_array_cols(double a[16][16]1)

int i, j;
double sum = 0;
for (J = 0; 1 < 16; i++)
for (i = 0; j < 16; j++)
sum += a[illj]l;

return sum;

Carnegie Mellon

Ignore the variables sum, i, j

assume: cold (empty) cache,
a[0][0] goes here

32 B =4 doubles

blackboard

53

Carnegie Mellon

A Higher Level Example Ignore the variables sum, i, j

assume: cold (empty) cache,
int sum_array_rows(double a[16][16]) a[0][0] goes here

‘.
int i, j;
double sum = 0; I_l ”

for (i = 0; 1 < 16; i++) | ”

for g = 0; J < 16; j++) | ”
sum += a[illj]l;

I |

return sum;

32 B =4 doubles

int sum_array_rows(double a[16][16]1)

t
int 1, j;
double sum = 0;
for (J = 0; i < 16; i++)
for (i = 0; j < 165 j++)
sum += a[il[j];
. return sum; blackboard

54

Carnegie Mellon

The Memory Mountain

Read throughput (MB/s)

Intel Core i7

32 KB L1 i-cache

32 KB L1 d-cache

256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

55

Carnegie Mellon

Intel Core i7
H 32 KB L1 i-cache
The Memory Mountain S e
256 KB unified L2 cache
8M unified L3 cache

0 7000

@ l L[]

% 6000 | l"i. ' I 7 X All caches on-chip
: ' et
S 5000 - S o \
=il
£ 4000 | f

=] | f i '

8 3000 ! ”"!‘ ﬁ;‘?g"!‘!

¢ ¢’\g"l'.,{‘l'

(4 ‘-—’{;‘;“"l"'

Slopes of2 0 B e D

spatial 1660 — S

locality

56

Carnegie Mellon

Intel Core i7
1 32 KB L1 i-cach
The Memory Mountain 32XEL1 ieache
256 KB unified L2 cache
8M unified L3 cache

g 7000

5 oh

ot 6000 All caches on-chip

=}

o

=) 5000

=}

S 4000

Ny

o Ridges of

&ﬂj 3000 Temporal
locality

Slopes of2

spatial 16

4
@
N
—

LY Working set size (bytes)

57

