Carnegie Mellon

Floating Point

15-213: Introduction to Computer Systems 4th Lecture, Jan 24, 2013

Instructors:

Seth Copen Goldstein, Anthony Rowe, Greg Kesden

Today: Floating Point

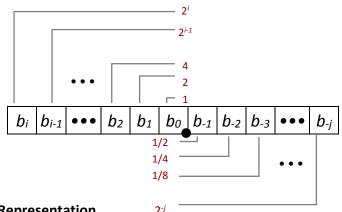
- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- **■** Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Carnegie Mello

Fractional binary numbers

■ What is 1011.101₂?

Fractional Binary Numbers



- Representation
 - Bits to right of "binary point" represent fractional powers of 2
 - Represents rational number:

 $\sum_{k=-j} b_k \times 2^k$

Fractional Binary Numbers: Examples

Value	Representation
5 3/4	101.112
2 7/8	10.1112
1 7/16	1.01112

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.1111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Representable Numbers

■ Limitation #1

- Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations

Value	Representation
1/ 3	0.0101010101[01]2
1/ 5	0.001100110011[0011]2
1/10	0.0001100110011[0011]2

■ Limitation #2

- Just one setting of decimal point within the w bits
 - Limited range of numbers (very small values? very large?)

Carnegie Mellor

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- **■** Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

■ IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

■ Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Carnegie Mel

8

Floating Point Representation

■ Numerical Form:

 $(-1)^{s} M 2^{E}$

- Sign bit s determines whether number is negative or positive
- **Significand M** normally a fractional value in range [1.0,2.0).
- **Exponent** *E* weights value by power of two
- Encoding
 - MSB s is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

s	exp	frac
---	-----	------

Precision options

■ Single precision: 32 bits

■ Double precision: 64 bits

■ Extended precision: 80 bits (Intel only)

s	ехр	frac
1	15-bits	63 or 64-bits

Carnegie Mello

3 cases based on value of exp

- Normalized
 - When exp isn't all 0s or all 1s
 - Most common

Denomalized

- When exp is all 0s
- Different interpretation of E than normalized
- Used for +0 and -0
- (And other numbers close to 0)
- "Special"
 - When exp is all 1s
 - NaN, infinities

"Normalized" Values

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value exp
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: $M = 1.xxx...x_2$
 - xxx...x: bits of frac
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 ($M = 2.0 \varepsilon$)
 - Get extra leading bit for "free"

Normalized Encoding Example

- Value: Float F = 15213.0; ■ 15213₁₀ = 11101101101101₂ = 1.1101101101101₂ x 2¹³
- Significand

M = 1.11011011011012
frac = 1101101101101010000000000000002

Exponent

$$E = 13$$
 $Bias = 127$
 $Exp = 140 = 10001100_{2}$

■ Result:

0 10001100 11011011011010000000000

s exp

frac

13

Carnegie Mellor

Denormalized Values

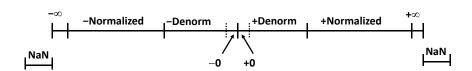
- **Condition:** exp = 000...0
- **Exponent value:** E = 1 Bias
 - (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - *xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, $frac \neq 000...0$
 - Numbers closest to 0.0
 - Equispaced

Carnegie Mello

Special Values

- **Condition:** exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings



Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- **■** Example and properties
- Rounding, addition, multiplication
- **■** Floating point in C
- **■** Summary

Tiny Floating Point Example

s exp frac
1 4-bits 3-bits

■ 8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

■ Same general form as IEEE Format

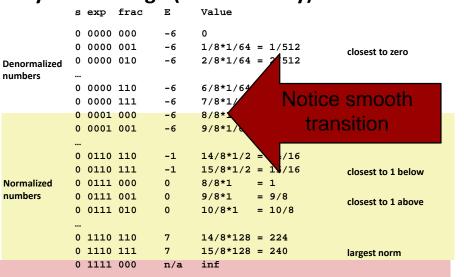
- normalized, denormalized
- representation of 0, NaN, infinity

17

Carnegie Mellor

Carnegie Mello

Dynamic Range (Positive Only)

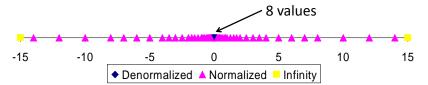


Distribution of Values

■ 6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is $2^{3-1}-1=3$

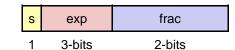
■ Notice how the distribution gets denser toward zero.



Distribution of Values (close-up view)

■ 6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3



21

Special Properties of the IEEE Encoding

■ FP Zero Same as Integer Zero

All bits = 0

■ Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Carnegie Mellon

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- **■** Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

- $\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$
- $\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Carnegie Mello

Rounding

■ Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
Round down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round up (+∞)	\$2	\$2	\$2	\$3	-\$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

Closer Look at Round-To-Even

■ Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

■ Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half way—round down)

25

Carnegie Mellon

Carnegie Mellor

Rounding Binary Numbers

■ Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

■ Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00110_2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11100_2	11.002	(1/2—up)	3
2 5/8	10.10100_2	10.102	(1/2—down)	2 1/2

int->fp

FP Multiplication

- \blacksquare (-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}
- Exact Result: (-1)^s M 2^E

Sign s: s1 ^ s2
 Significand M: M1 x M2
 Exponent E: E1 + E2

Fixing

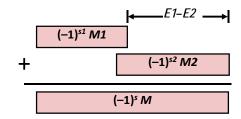
- If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

■ Implementation

Biggest chore is multiplying significands

Floating Point Addition

- \blacksquare (-1)⁵¹ M1 2^{E1} + (-1)⁵² M2 2^{E2}
 - **A**ssume *E1* > *E2*
- Exact Result: (-1)^s M 2^E
 - ■Sign *s*, significand *M*:
 - Result of signed align & add
 - ■Exponent *E*: *E1*



Fixing

- ■If $M \ge 2$, shift M right, increment E
- •if M < 1, shift M left k positions, decrement E by k
- ■Overflow if *E* out of range
- Round M to fit frac precision

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- **■** Example and properties
- Rounding, addition, multiplication
- **■** Floating point in C
- Summary

30

Carnegie Mellor

29

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - double double precision
- Conversions/Casting
 - •Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - int → float
 - Will round according to rounding mode

Some implications

- Order of operations is important
 - **3.14+(1e20-1e20)** versus (3.14+1e20)-1e20
 - 1e20*(1e20-1e20) versus (1e20*1e20)-(1e20*1e20)
- **■** Compiler optimizations impeded
 - E.g., Common sub-expression elimination

```
double x=a+b+c;
double y=b+c+d;
```

May not equal

```
double temp=b+c;
double x=a+temp;
double y=temp+d;
```

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

int x = ...:

float f = ...;

double d = ...;

Assume neither

d nor f is NaN

- x == (int)(float) x
- x == (int)(double) x
- f == (float)(double) f
- d == (float) d
- f == -(-f);
- 2/3 == 2/3.0
- 2.0/3==2/3.0
- d < 0.0
- \Rightarrow ((d*2) < 0.0)
- $d > f \Rightarrow -f > -d$
- d * d >= 0.0
- (d+f)-d == f

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Carnegie Mellon

33

More Slides

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- **■** Example and properties
- Rounding, addition, multiplication
- **■** Floating point in C
- Summary

Interesting Numbers

{single,double}

			(2211920,000020)
Description	ехр	frac	Numeric Value
■ Zero	0000	0000	0.0
Smallest Pos. Denorm.	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
■ Single $\approx 1.4 \times 10^{-45}$			
■ Double $\approx 4.9 \times 10^{-324}$			
Largest Denormalized	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
■ Single $\approx 1.18 \times 10^{-38}$			
■ Double $\approx 2.2 \times 10^{-308}$			
Smallest Pos. Normalized	0001	0000	1.0 x 2 ^{-{126,1022}}
Just larger than largest deno	rmalized		
One	0111	0000	1.0
Largest Normalized	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$
Single ≈ 3.4 x 10 ³⁸			

Mathematical Properties of FP Add

■ Compare to those of Abelian Group

- Closed under addition?
 - But may generate infinity or NaN
- Commutative?
- Associative?
 - Overflow and inexactness of rounding
- 0 is additive identity?
- Every element has additive inverse
 - Except for infinities & NaNs

Monotonicity

- $a \ge b \Rightarrow a+c \ge b+c$?
 - Except for infinities & NaNs

37

Carnegie Mellon

Carnegie Mellor

Mathematical Properties of FP Mult

■ Compare to Commutative Ring

Closed under multiplication?

■ Double $\approx 1.8 \times 10^{308}$

- But may generate infinity or NaN
- Multiplication Commutative?
- Multiplication is Associative?
 - Possibility of overflow, inexactness of rounding
- 1 is multiplicative identity?
- Multiplication distributes over addition?
 - Possibility of overflow, inexactness of rounding

Monotonicity

- $a \ge b \& c \ge 0 \Rightarrow a * c \ge b *c$?
 - Except for infinities & NaNs

Creating Floating Point Number

Steps

Normalize to have leading 1

s exp frac
1 4-bits 3-bits

Round to fit within fraction

Postnormalize to deal with effects of rounding

■ Case Study

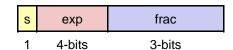
Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128	10000000
14	00001101
33	00010001
35	00010011
138	10001010
63	00111111

39

Normalize



■ Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	10000000	1.0000000	7
14	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result -

Sticky bit: OR of remaining bits

Round bit: 1st bit removed

■ Round up conditions

- Round = 1, Sticky = 1 → > 0.5
- Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
14	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Υ	1.010
138	1.0001010	011	Υ	1.001
63	1.1111100	111	Υ	10.000

41

Carnegie Mellon

Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Ехр	Adjusted	Result
128	1.000	7		128
14	1.101	3		14
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

back

42