Today: Floating Point

m Background: Fractional binary numbers
F|oating Point m |EEE floating point standard: Definition
m Example and properties

15-213: Introduction to Computer Systems = Rounding, addition, multiplication
4t Lecture, Jan 24, 2013 m Floating point in C

m Summary

Instructors:
Seth Copen Goldstein, Anthony Rowe, Greg Kesden

Fractional binary numbers Fractional Binary Numbers
2i
m What is 1011.101,? 9i-

1
bi |bis|eee| b | b bolbq ba|bs|ese| b,
12 —
1/4 J LN N ]
1/8

m Representation 27
= Bits to right of “binary point” represent fractional powers of 2

= Represents rational number: :
P Z b x ok

k=—j




Carnegie Mello

Fractional Binary Numbers: Examples

m Value Representation
53/4 101.11»
2718 10.111>
17/16 1.0111»

m Observations
= Divide by 2 by shifting right (unsigned)
= Multiply by 2 by shifting left
= Numbers of form 0.111111...; are just below 1.0
= 1/2+1/4+1/8+...+1/2'+..=> 1.0
= Use notation 1.0 —¢

Representable Numbers

m Limitation #1
= Can only exactly represent numbers of the form x/2*
= Other rational numbers have repeating bit representations

= Value Representation
= 1/3 0.0101010101]01]...2
= 1/5 0.001100110011[0011]...2
= 1/10 0.0001100110011[0011]...2

m Limitation #2
= Just one setting of decimal point within the w bits
= Limited range of numbers (very small values? very large?)

Today: Floating Point

|
m IEEE floating point standard: Definition

IEEE Floating Point

m IEEE Standard 754
® Established in 1985 as uniform standard for floating point arithmetic
= Before that, many idiosyncratic formats
= Supported by all major CPUs

m Driven by numerical concerns
= Nice standards for rounding, overflow, underflow
® Hard to make fast in hardware

= Numerical analysts predominated over hardware designers in defining
standard




Floating Point Representation

m Numerical Form:
(-1 m 2t
= Sign bit s determines whether number is negative or positive
= Significand M normally a fractional value in range [1.0,2.0).
= Exponent E weights value by power of two

m Encoding
= MSB s is sign bit s
= exp field encodes E (but is not equal to E)
= frac field encodes M (but is not equal to M)

s |exp frac

Precision options

m Single precision: 32 bits

s |exp frac

1 8-bits 23-bits

m Double precision: 64 bits

S |exp frac

1 11-bits 52-bits
m Extended precision: 80 bits (Intel only)

s |exp frac

1 15-bits 63 or 64-bits

3 cases based on value of exp

= Normalized
= When exp isn’t all Os or all 1s
= Most common
m Denomalized
®= When exp is all Os
= Different interpretation of E than normalized
= Used for +0 and -0
= (And other numbers close to 0)
m “Special”
= When exp is all 1s
= NaN, infinities

“Normalized” Values

m When: exp # 000...0 and exp # 111...1

m Exponent coded as a biased value: E = Exp — Bias
= Exp: unsigned value exp
= Bjgs = 21 - 1, where k is number of exponent bits
= Single precision: 127 (Exp: 1...254, E: -126...127)
= Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

m Significand coded with implied leading 1: M = 1.XXX...X2
= XXX...X: bits of frac
= Minimum when frac=000...0 (M = 1.0)
= Maximum when frac=111...1 (M =2.0—¢)
= Get extra leading bit for “free”




Carnegie Mellon

Normalized Encoding Example

m Value: Float F = 15213.0;
= 15213,, =11101101101101,
=1.1101101101101, x 213

m Significand
M = 1.1101101101101,
frac= 11011011011010000000000,
m Exponent
E = 13
Bias = 127
Exp = 140 = 10001100,
= Result:
[0][10001100][11011011011010000000000 |
S exp frac

Denormalized Values

m Condition: exp = 000...0

m Exponent value: E = 1 - Bias
= (instead of E = 0 — Bias)
m Significand coded with implied leading 0: M = 0.xxx...x2

= xxX..X: bits of frac

m Cases
= exp =000...0, frac = 000...0
= Represents zero value
= Note distinct values: +0 and —0 (why?)
= exp =000...0, frac # 000...0
= Numbers closest to 0.0
= Equispaced

Special Values

m Condition: exp=111...1

m Case: exp=111...1, frac =000...0

= Represents value o0 (infinity)

= Qperation that overflows

= Both positive and negative

= E.g.,1.0/0.0=-1.0/-0.0 = +o0, 1.0/-0.0 = -0

m Case: exp=111...1, frac # 000...0
= Not-a-Number (NaN)
= Represents case when no numeric value can be determined
= E.g. sqrt(—1), o -0, 0 x 0

14
Carnegie Mello

Visualization: Floating Point Encodings

=0 . . +00
{1 -Normalized I—Denorm n E+Denorm | +Normalized ]
1 | / I \ | L
NaN
NaN
— -0 40 —




Today: Floating Point

m Example and properties

Carnegie Mello

Tiny Floating Point Example

S exp frac

1 4-bits 3-bits

m 8-bit Floating Point Representation
= the sign bit is in the most significant bit
= the next four bits are the exponent, with a bias of 7
= the last three bits are the frac

m Same general form as IEEE Format
" normalized, denormalized
= representation of 0, NaN, infinity

| |
| |
| |
17

Dynamic Range (Positive Only)

s exp frac E Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512 closest to zero

0 0000 010 -6 2/8*1/64

Denormalized

numbers

0 0000 110 -6

0 0000 111 -6

0 0001 000 -6

0 0001 001 -6

0 0110 110 -1 14/8*1/2 =

0 0110 111 -1 15/8*1/2 closest to 1 below
Normalized 0 0111 000 0 8/8*1 =1
numbers 0 0111 001 0 9/8*1 = 9/8

closest to 1 above

0 0111 010 0 10/8*1 = 10/8

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240 largest norm

0 1111 000 n/a inf

-
&

Carnegie Mello

Distribution of Values

m 6-bit IEEE-like format
= e =3 exponent bits
= f =2 fraction bits S exp frac

® Biasis 231-1=3 1 3-bits 2-bits

m Notice how the distribution gets denser toward zero.

/8values

-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized Infinity‘




Distribution of Values (close-up view)

m 6-bit IEEE-like format
= e =3 exponent bits
= f =2 fraction bits S eXp frac

= Biasis 3 1 3-bits 2-bits

hA—Ah A A b A A A A 660600660 i ki hhk—Ah—Ah—A—A
-1 -0.5 0 0.5 1
¢ Denormalized A Normalized B Infinity‘

Special Properties of the IEEE Encoding

m FP Zero Same as Integer Zero
= All bits=0

m Can (Almost) Use Unsigned Integer Comparison
= Must first compare sign bits
® Must consider-0=0
= NaNs problematic
= Will be greater than any other values
= What should comparison yield?
= QOtherwise OK
= Denorm vs. normalized
= Normalized vs. infinity

Today: Floating Point

|
|
|
m Rounding, addition, multiplication
|

Carnegie Mello

N
N

Floating Point Operations: Basic Idea

mX +f y = Round(X + y)
BX xf Y = Round(X x y)
m Basic idea

® First compute exact result

= Make it fit into desired precision
= Possibly overflow if exponent too large
= Possibly round to fit into frac




Rounding

m Rounding Modes (illustrate with $ rounding)

] $1.40 $1.60 $1.50 $2.50 -$1.50
= Towards zero $1 s1 s1 $2 51
= Round down (-0) S1 S1 S1 S2 -S2
= Round up (+o0) S2 S2 S2 S3 -S1
= Nearest Even (default) S1 S2 S2 S2 -S2

Carnegie Mello

Closer Look at Round-To-Even

m Default Rounding Mode
® Hard to get any other kind without dropping into assembly
= All others are statistically biased

= Sum of set of positive numbers will consistently be over- or under-
estimated

m Applying to Other Decimal Places / Bit Positions
= When exactly halfway between two possible values
= Round so that least significant digit is even
= E.g., round to nearest hundredth

1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)
1.2450000 1.24 (Half way—round down)

Rounding Binary Numbers
m Binary Fractional Numbers

= “Even” when least significant bit is 0
= “Half way” when bits to right of rounding position = 100...2

m Examples
= Round to nearest 1/4 (2 bits right of binary point)

Value Binary Rounded Action Rounded Value
23/32 10.00011> 10.002 (<1/2—down) 2

23/16 10.00110,  10.01, (>1/2—up) 21/4

27/8 10.11100;  11.00; ( 1/2—up) 3

25/8 10.101002 10.102 ( 1/2—down) 21/2

_27

FP Multiplication

m (-1)* M1 28! x (-1)2 M2 2%2
m Exact Result: (-1)° M 2f

= Sign s: s17s2
= Significand M: M1x M2
= Exponent E: E1+E2

m Fixing

= |[f M 2 2, shift M right, increment E
= |f £ out of range, overflow
= Round M to fit Frac precision

m Implementation
= Biggest chore is multiplying significands




Floating Point Addition

m (1T M1 2E1 + (-1)2 M2 22
®"Assume E1 > E2

® E1-E2 N|

m Exact Result: (-1)° M 2f

=Sign s, significand M: + | (-1)* m2 |
= Result of signed align & add
®Exponent £:  E1 | (-1)m |
m Fixing

=|f M = 2, shift M right, increment E

=if M < 1, shift M left k positions, decrement E by k
=Qverflow if E out of range

=Round M to fit Frac precision

Carnegie Mello

Today: Floating Point

Floating pointin C

N
3

Carnegie Mello

Floating Point in C

m C Guarantees Two Levels
=float single precision
=double double precision

m Conversions/Casting
=Casting between Int, Float, and double changes bit representation
= double/float - int
= Truncates fractional part
= Like rounding toward zero
= Not defined when out of range or NaN: Generally sets to TMin
= int - double
= Exact conversion, as long as int has < 53 bit word size
= int- float

= Will round according to rounding mode

Some implications

m Order of operations is important
= 3.14+(1e20-1e20) versus (3.14+1e20)-1e20
= 1e20*(1e20-1e20) versus (1e20*1e20)-(1e20*1e20)
m Compiler optimizations impeded
= E.g., Common sub-expression elimination
double x=atb+c;
double y=b+c+d;

May not equal
double temp=b+c;

double x=a+temp;
double y=temp+d;




Carnegie Mello

Floating Point Puzzles
m For each of the following C expressions, either:

= Argue that it is true for all argument values

= Explain why not true

intx=...;
floatf=...;
doubled = ...;

Assume neither
d nor fis NaN

* x == (int)(float) x

* X == (int)(double) x
» f == (float)(double) f
d == (float) d

f==-(f);
2/3 == 2/3.0

2.0/3==2/3.0

d<0.0
d>f
d*d>=0.0
(d+f)-d ==

= ((d*2) < 0.0)

=

-f>-d

33

Carnegie Mello

Summary

m |IEEE Floating Point has clear mathematical properties
m Represents numbers of form M x 2F
m One can reason about operations independent of
implementation
= As if computed with perfect precision and then rounded
m Not the same as real arithmetic

= Violates associativity/distributivity

= Makes life difficult for compilers & serious numerical applications
programmers

Carnegie Mello

More Slides

35

34
Carnegie Mello

Today: Floating Point

Summary




Carnegie Mello

Interesting Numbers {single,double}

Description exp frac Numeric Value
m Zero 00...00 00...00 0.0
m Smallest Pos. Denorm. 00..00 00..01 2712352} x - {126,102}

= Single = 1.4 x 107>
= Double = 4.9 x 10324
m Largest Denormalized 00..00 11..11 (1.0 — £) x 2~ {126,102}
= Single~1.18 x 1073
= Double = 2.2 x 107308
m Smallest Pos. Normalized 00..01 00...00 1.0 x 2 {126,102}
= Just larger than largest denormalized
m One 01..11 00..00 1.0
m Largest Normalized 11..10 11..11 (2.0 — g) x 211271023}
= Single = 3.4 x 1038
= Double = 1.8 x 103%8

37

Mathematical Properties of FP Add

m Compare to those of Abelian Group
® Closed under addition?
= But may generate infinity or NaN
= Commutative?
= Associative?
= Overflow and inexactness of rounding
= 0 is additive identity?
= Every element has additive inverse
= Except for infinities & NaNs
= Monotonicity
" a>b = a+c2b+c?

= Except for infinities & NaNs

Carnegie Mello

Mathematical Properties of FP Mult

m Compare to Commutative Ring
® Closed under multiplication?
= But may generate infinity or NaN
= Multiplication Commutative?
® Multiplication is Associative?
= Possibility of overflow, inexactness of rounding
= 1 is multiplicative identity?
= Multiplication distributes over addition?
= Possibility of overflow, inexactness of rounding

m Monotonicity
"ag>2b &c20 =>a*c2b*c?
= Except for infinities & NaNs

Carnegie Mello

Creating Floating Point Number

m Steps s exp frac
= Normalize to have leading 1

1 4-bits 3-bits
= Round to fit within fraction

= Postnormalize to deal with effects of rounding

m Case Study
= Convert 8-bit unsigned numbers to tiny floating point format
Example Numbers

128 10000000
14 00001101
33 00010001
35 00010011

138 10001010

63 00111111

40




Carnegie Mello Carnegie Mello

Normalize s|  exp frac Rounding 1 BBGRXXX
1 4-bits 3-bits ./
m Requirement Guard bit: LSB of result
= Set binary point so that numbers of form 1.xxxxx Sticky bit: OR of remaining bits
= Adjust all to have leading one Round bit: 1t bit removed
= Decrement exponent as shift left
Value Binary Fraction Exponent = Round up conditions
128 10000000 1.0000000 7 " Round =1, Sticky =1 - >0.5
14 00001101 1.1010000 3 ® Guard =1, Round =1, Sticky = 0 = Round to even
17 00010001 1.0001000 4 Value Fraction GRS  Incr? Rounded
19 00010011 1.0011000 4 128 1.0000000 000 N 1.000
138 10001010 1.0001010 7 14 1.1010000 100 N 1101
63 00111111  1.1111100 5 1 1.0001000 010 N 1.000
19 1.0011000 110 Y 1.010
138 1.0001010 011 Y 1.001
63 1.1111100 111 Y 10.000

41 42

Carnegie Mello

Postnormalize

m Issue
= Rounding may have caused overflow
= Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result
128 1.000 7 128
14 1.101 3 14
17 1.000 4 16
19 1.010 4 20

138 1.001 7 134
63 10.000 5 1.000/6 64




