Bits, Bytes, and Integers

15-213: Introduction to Computer Systems 2nd and 3rd Lectures, Jan 17 and Jan 22, 2013

Instructors:

Seth Copen Goldstein, Anthony Rowe, Greg Kesden

MLK recitations

- No recitations after 12:30, so ...
- The TAs have been kind enough to create some temporary sections:

■ GHC 4215: 10:30 & 11:30

GHC 4102: 11:30

■ GHC 4101: 9:30 & 10:30

Carnegie Mellon

Waitlist

- Please be patient.
- If you register for autolab, get the work done → you will be ready when you get into the class

Today: Bits, Bytes, and Integers

- Representing information as bits
- **Bit-level manipulations**
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

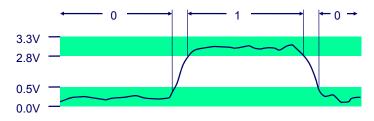
Binary Representations

■ Base 2 Number Representation

- Represent 15213₁₀ as 11101101101101₂
- Represent 1.20₁₀ as 1.001100110011[0011]...₂
- Represent 1.5213 X 10⁴ as 1.1101101101101₂ X 2¹³

■ Electronic Implementation

- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires



Encoding Byte Values

- Byte = 8 bits
 - Binary 000000002 to 111111112
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

He	+ 0e	zimal Binary
0	0	0000
0 1 2 3 4	0 1 2 3 4 5 6	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6 7	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
C	12	1100
D	13	1101
Е	14	1110
F	15	1111

Carnegie Mellon

Data Representations

C Data Type	Typical 32-bit	Intel IA32	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	4	8
long long	8	8	8
float	4	4	4
double	8	8	8
long double	8	10/12	10/16
pointer	4	4	8

Today: Bits, Bytes, and Integers

- Representing information as bits
- **Bit-level manipulations**
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

Or

Not

Exclusive-Or (Xor)

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

All of the Properties of Boolean Algebra Apply

Carnegie Mellon

11

Example: Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w-1}
- $a_i = 1$ if $j \in A$
 - 01101001 { 0, 3, 5, 6 }
 - **76543210**
 - 01010101 { 0, 2, 4, 6 }
 - **76543210**

Operations

. &	Intersection	01000001	{ 0, 6 }
•	Union	01111101	{ 0, 2, 3, 4, 5, 6 }
■ ^	Symmetric difference	00111100	{ 2, 3, 4, 5 }
■ ~	Complement	10101010	{ 1, 3, 5, 7 }

Bit-Level Operations in C

- Operations &, |, ~, ^ Available in C
- Apply to any "integral" data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

■ Examples (Char data type)

- ~0x41 → 0xBE
 - \bullet ~01000001₂ → 10111110₂
- $\sim 0x00 \rightarrow 0xFF$
 - $\sim 00000000_2 \rightarrow 11111111_2$
- $0x69 \& 0x55 \rightarrow 0x41$
 - $01101001_2 \& 01010101_2 \rightarrow 01000001_2$
- 0x69 | 0x55 → 0x7D
 - $01101001_2 \mid 01010101_2 \rightarrow 01111101_2$

Contrast: Logic Operations in C

- Contrast to Logical Operators
 - **&** &&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination
- Examples (char data type)
 - !0x41 → 0x00
 - $!0x00 \rightarrow 0x01$
 - $!!0x41 \rightarrow 0x01$
 - $0x69 \&\& 0x55 \rightarrow 0x01$
 - 0x69 || 0x55 → 0x01
 - p && *p (avoids null pointer access)

Contrast: Logic Operations in C

- **Contrast to Logical Operators**
- **&** &&, ||, !
 - View 0 as "Fal
 - Anything ponze
 - Alway
 - Early Watch out for && vs. & (and || vs. |)...
- Example one of the more common oopsies in ■ !0x41 -
 - **C** programming

• !0x00

!!0x41

- $0x69 \&\& 0x55 \rightarrow 0x01$ ■ 0x69 || 0x55 → 0x01
- p && *p (avoids null pointer access)

13

Carnegie Mellon

Carnegie Mello

Shift Operations

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- **Undefined Behavior**
 - Shift amount < 0 or ≥ word size</p>

Argument x	01100010	
<< 3	00010 <i>000</i>	
Log. >> 2	00011000	
Arith. >> 2	00011000	

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	00101000
Arith. >> 2	11 101000

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
- Summary

Encoding Integers

Unsigned

Two's Complement

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

short int x = 15213; short int y = -15213;

Sign Bit

■ C short 2 bytes long

1		Decimal	Hex	Binary
	x	15213	3B 6D	00111011 01101101
	У	-15213	C4 93	11000100 10010011

- Sign Bit
 - For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

17

Carnegie Mellon

Two-complement Encoding Example (Cont.)

x = 15213: 00111011 01101101y = -15213: 11000100 10010011

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768
Sum	•	15213		-15213

Carnegie Mellor

Numeric Ranges

Unsigned Values

•
$$UMax = 2^w - 1$$
111...1

■ Two's Complement Values

■
$$TMin = -2^{w-1}$$

$$TMax = 2^{w-1} - 1$$

Other Values

Minus 1

111...1

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Values for Different Word Sizes

	W				
	8	16	32	64	
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615	
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807	
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808	

Observations

- |*TMin* | = *TMax* + 1
 - Asymmetric range
- UMax = 2 * TMax + 1

C Programming

- #include limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG MAX
 - LONG_MIN
- Values platform specific

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(X)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Equivalence

 Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents a unique integer value
- Each representable integer has a unique bit encoding

■ ⇒ Can Invert Mappings

- U2B(x) = B2U⁻¹(x)
 - Bit pattern for unsigned integer
- T2B(x) = B2T $^{-1}$ (x)
 - Bit pattern for two's comp integer

Today: Bits, Bytes, and Integers

- Representing information as bits
- **Bit-level manipulations**

Integers

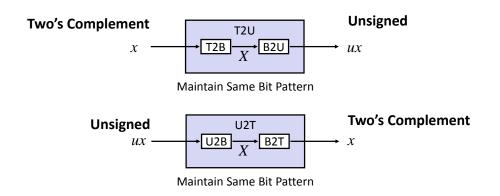
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summarv
- Representations in memory, pointers, strings

21

23

Carnegie Mellon

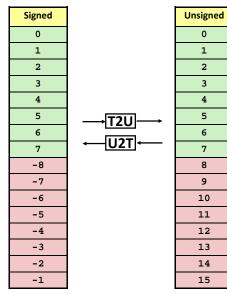
Mapping Between Signed & Unsigned



■ Mappings between unsigned and two's complement numbers: keep bit representations and reinterpret

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111



Carnegie Mello

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Unsigned 0

1

2

3

6

10 11 12

13

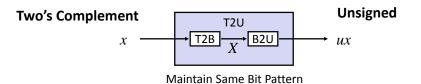
14

15

Mapping Signed ↔ Unsigned

Bits	Signed	
0000	0	
0001	1	
0010	2	
0011	3	. = .
0100	4	\leftarrow
0101	5	
0110	6	
0111	7	
1000	-8	
1001	-7	
1010	-6	. / 46
1011	-5	+/- 16
1100	-4	
1101	-3	
1110	-2	
1111	-1	

Relation between Signed & Unsigned



Large negative weight becomes

Large positive weight

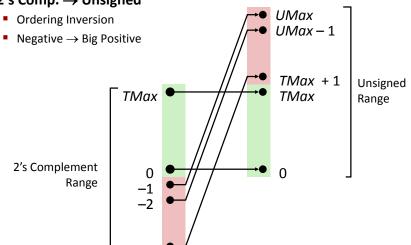
26

Carnegie Mello

Carnegie Mellon

Conversion Visualized

■ 2's Comp. → Unsigned



Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix

OU, 4294967259U

Casting

Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;
uy = ty;
```

27

Casting Surprises

■ Expression Evaluation

- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for W = 32: TMIN = -2,147,483,648, TMAX = 2,147,483,647

■ Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Summary Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

30

Carnegie Mellon

29

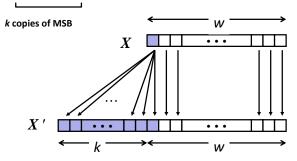
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Carnegie Mellon

Sign Extension

- Task:
 - Given w-bit signed integer x
 - Convert it to *w*+*k*-bit integer with same value
- Rule:
 - Make k copies of sign bit:
 - $X' = X_{w-1}, ..., X_{w-1}, X_{w-1}, X_{w-2}, ..., X_0$



Sign Extension Example

short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	1111111 11111111 11000100 10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

33

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behavior

Carnegie Mello

Carnegie Mellon

Fake real world example

- Acme, Inc. has developed a state of the art voltmeter they are connecting to a pc. It is precise to the millivolt and does not drain the unit under test.
- Your job is to develop the driver software.

printf("%d\n", getValue());

Fake real world example

- Acme, Inc. has developed a state of the art voltmeter they are connecting to a pc. It is precise to the millivolt and does not drain the unit under test.
- Your job is to develop the driver software.

printf("%d\n", getValue());

Lets run some tests

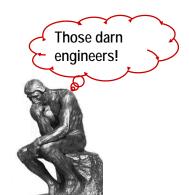
printf("%d\n", getValue());

- **50652**
- 1500
- 9692
- **26076**
- **17884**
- **42460**
- **34268**
- **50652**

Lets run some tests

int x=getValue(); printf("%d %08x\n",x, x);

- 0000c5dc **50652**
- 1500 000005dc
- 9692 000025dc
- 26076 000065dc
- 17884 000045dc
- **42460** 0000a5dc
- 34268 000085dc
- 50652 0000c5dc



Carnegie Mellon

Carnegie Mellon

Only care about least significant 12 bits

```
int x=getValue();
x=(x & 0x0fff);
printf("%d\n",x);
```


Only care about least significant 12 bits

```
int x=getValue();
x=x(\&0x0fff);
printf("%d\n",x);
```


printf("%x\n", x);

Must sign extend

```
int x=getValue();
x=(x&0x00fff) | (x&0x0800?0xfffff000:0);
printf("%d\n",x);
```


There is a better way.

41

Because you graduated from 213

int x=getValue();
x=(x&0x00fff) | (x&0x0800?0xfffff000:0);
printf("%d\n",x);

Carnegie Mellon

Lets be really thorough

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

 $UAdd_{w}(u, v)$

Standard Addition Function

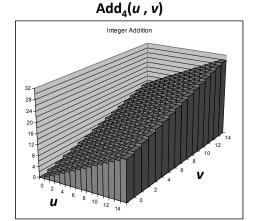
- Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

Visualizing (Mathematical) Integer Addition

■ Integer Addition

- 4-bit integers u, v
- Compute true sum Add₄(u, v)
- Values increase linearly with u and v
- Forms planar surface



45

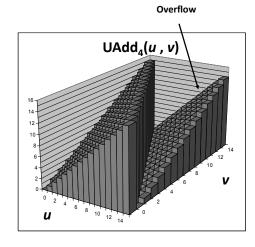
Carnegie Mellon

Visualizing Unsigned Addition

Wraps Around

- If true sum $\ge 2^w$
- At most once

True Sum $\begin{array}{ccc} 2^{w+1} & & & \\ 2^{w} & & & & \\ 0 & & & & \\ \end{array}$ Modular Sum



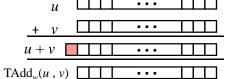
Two's Complement Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

ts



TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

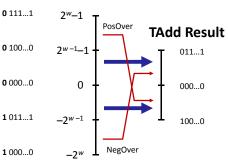
Will give s == t

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

True Sum



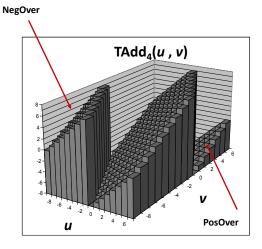
Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once



Carnegie Mello

Carnegie Mellon

Multiplication

- Goal: Computing Product of w-bit numbers x, y
 - Either signed or unsigned
- But, exact results can be bigger than w bits
 - Unsigned: up to 2w bits
 - Result range: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Two's complement min (negative): Up to 2w-1 bits
 - Result range: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$

1 011...1

- Two's complement max (positive): Up to 2w bits, but only for (TMin,,,)2
 - Result range: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
- So, maintaining exact results...
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by "arbitrary precision" arithmetic packages

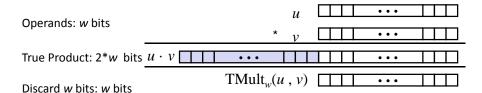
Unsigned Multiplication in C

Operands: w bits True Product: 2^*w bits $u \cdot v$ $UMult_{w}(u, v)$ Discard w bits: w bits

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_{w}(u, v) = u \cdot v \mod 2^{w}$$

Signed Multiplication in C

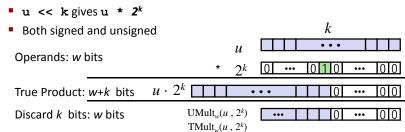


Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

Power-of-2 Multiply with Shift

Operation



Examples

- u << 3 == u * 8
- u << 5 u << 3 == u * 2</pre>
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

53

J4

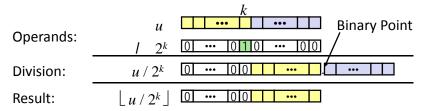
Carnegie Mello

Carnegie Mellon

Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

- $\mathbf{u} >> \mathbf{k}$ gives $\left[\mathbf{u} / \mathbf{2}^{k}\right]$
- Uses logical shift

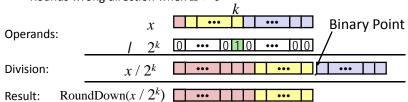


	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Signed Power-of-2 Divide with Shift

Quotient of Signed by Power of 2

- $x \gg k$ gives $\lfloor x / 2^k \rfloor$
- Uses arithmetic shift
- Rounds wrong direction when x< 0



	Division	Computed	Hex	Binary
Y	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	11100010 01001001
y >> 4	-950.8125	-951	FC 49	1111 1100 01001001
y >> 8	-59.4257813	-60	FF C4	1111111 11000100

Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2

- Want $\lceil \mathbf{x} / 2^k \rceil$ (Round Toward 0)
- Compute as $\lfloor (x+2^k-1)/2^k \rfloor$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0

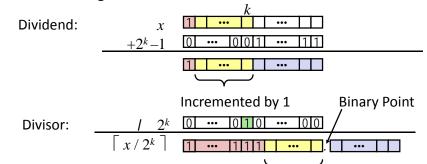
Case 1: No rounding

Biasing has no effect

57

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding



Incremented by 1

Biasing adds 1 to final result

Carnegie Mellon

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Why Should I Use Unsigned?

- Don't Use Just Because Number Nonnegative
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

. . .

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension

61

Integer C Puzzles

- Assume 32-bit word size, two's complement integers
- For each of the following C expressions: true or false? Why?
 - x < 0
- \Rightarrow ((x*2) < 0)
- ux >= 0
- x & 7 == 7
- \Rightarrow (x<<30) < 0
- ux > -1
- X > Y
- \Rightarrow -x < -y

Initialization

unsigned uy = y;

- x * x >= 0
- x > 0 & y > 0
- $\Rightarrow x + y > 0$
- x >= 0x <= 0
- $\Rightarrow -x <= 0$ $\Rightarrow -x >= 0$
- (x|-x)>>31==-1
- ux >> 3 == ux/8
- x >> 3 == x/8
- x & (x-1) != 0

Carnegie Mello

Carnegie Mellon

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Byte-Oriented Memory Organization

00.0

- Programs refer to data by address
 - Conceptually, envision it as a very large array of bytes
 - In reality, it's not, but can think of it that way
 - An address is like an index into that array
 - and, a pointer variable stores an address
- Note: system provides private address spaces to each "process"
- Think of a process as a program being executed
- So, a program can clobber its own data, but not that of others

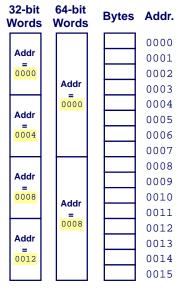
Machine Words

- Any given computer has a "Word Size"
 - Nominal size of integer-valued data
 - and of addresses
 - Most current machines use 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2³² bytes)
 - Becoming too small for memory-intensive applications
 - leading to emergence of computers with 64-bit word size
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

65

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)



Carnegie Mellon

For other data representations too ...

C Data Type	Typical 32-bit	Intel IA32	x86-64	
char	1	1	1	
short	2	2	2	
int	4	4	4	
long	4	4	8	
long long	8	8	8	
float	4	4	4	
double	8	8	8	
long double	8	10/12	10/16	
pointer	4	4	8	

Carnegie Mellor

Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86
 - Least significant byte has lowest address

Byte Ordering Example

Example

- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

Big Endian	l	0x100	0x101	0x102	0x103	
		01	23	45	67	
Little Endia	an	0x100	0x101	0x102	0x103	
		67	45	23	01	

69

Representing Integers

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

Carnegie Mellon

```
int A = 15213;
                               long int C = 15213;
   IA32, x86-64
                   Sun
                                  IA32
                                               x86-64
                                                               Sun
                                                                00
                                    6D
                                                  6D
                    00
      3B
                                    3B
                                                  3B
                                                                00
                                    00
                                                  00
                                                                3B
      00
                                    00
int B = -15213:
                                                  00
                                                  00
   IA32, x86-64
                   Sun
                                                  00
                    FF
                    FF
      C4
                    C4
                            Two's complement representation
      FF
                    93
```

Carnegie Mellon

Carnegie Mellon

Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * allows treatment as a byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, int len){
  int i;
  for (i = 0; i < len; i++)
     printf("%p\t0x%.2x\n",start+i, start[i]);
  printf("\n");
}</pre>
```

Printf directives:

%p: Print pointer %x: Print Hexadecimal

show_bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```
int a = 15213;
0x11ffffcb8 0x6d
0x11ffffcb9 0x3b
0x11ffffcba 0x00
0x11ffffcbb 0x00
```

Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

■ Example Fragment

Address	Instruction Code	Assembly Rendition
8048365:	5b	pop %ebx
8048366:	81 c3 ab 12 00 00	add \$0x12ab,%ebx
804836c:	83 bb 28 00 00 00 00	cmpl \$0x0,0x28(%ebx)

Deciphering Numbers

- Value:
- Pad to 32 bits:
- Split into bytes:
- Reverse:

0x12ab

0x000012ab

00 00 12 ab

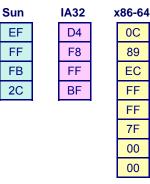
ab 12 00 00

73

Representing Pointers

int
$$B = -15213;$$

int *P = &B



Different compilers & machines assign different locations to objects

74

Carnegie Mello

Carnegie Mellon

Representing Strings

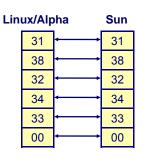
char S[6] = "18243";

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit i has code 0x30+i
- String should be null-terminated
 - Final character = 0

Compatibility

Byte ordering not an issue

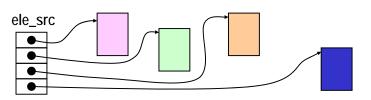


Code Security Example

SUN XDR library

Widely used library for transferring data between machines

void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);



malloc(ele_cnt * ele_size)

Carnegie Mellor

arnegie Mellon

Carnegie Mello

XDR Code

```
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
    /*
        * Allocate buffer for ele_cnt objects, each of ele_size bytes
        * and copy from locations designated by ele_src
        */
        void *result = malloc(ele_cnt * ele_size);
    if (result == NULL)
        /* malloc failed */
        return NULL;
    void *next = result;
    int i;
    for (i = 0; i < ele_cnt; i++) {
            /* Copy object i to destination */
            memcpy(next, ele_src[i], ele_size);
            /* Move pointer to next memory region */
            next += ele_size;
        }
        return result;
}</pre>
```

XDR Vulnerability

malloc(ele_cnt * ele_size)

- What if:
 - ele_cnt = 2²⁰ + 1
 - ele_size = 4096 = 2¹²
 - Allocation = ??
- How can I make this function secure?

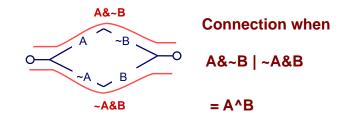
77

Carnegie Mellon

Bonus extras

Application of Boolean Algebra

- Applied to Digital Systems by Claude Shannon
 - 1937 MIT Master's Thesis
 - Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0



79

Code Security Example

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

- Similar to code found in FreeBSD's implementation of getpeername
- There are legions of smart people trying to find vulnerabilities in programs

Typical Usage

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```

Carnegie Mellon

Malicious Usage /* Declaration of library function memcpy */

```
/* Declaration of library function memcpy */
void *memcpy(void *dest, void *src, size_t n);
```

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, -MSIZE);
    . . .
}
```

Mathematical Properties

- Modular Addition Forms an Abelian Group
 - Closed under addition

```
0 \leq \mathsf{UAdd}_{w}(u, v) \leq 2^{w} - 1
```

Commutative

```
UAdd_{u}(u, v) = UAdd_{u}(v, u)
```

Associative

```
UAdd_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UAdd_{w}(t, u), v)
```

0 is additive identity

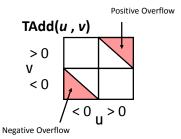
```
UAdd_{u}(u,0) = u
```

- Every element has additive inverse
 - Let $UComp_w(u) = 2^w u$ $UAdd_w(u, UComp_w(u)) = 0$

Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer



$$TAdd_{w}(u,v) \quad = \quad \begin{cases} u+v+2^{w} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \leq u+v \leq TMax_{w} \\ u+v-2^{w} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

Mathematical Properties of TAdd

- Isomorphic Group to unsigneds with UAdd
 - TAdd_w(u , v) = U2T(UAdd_w(T2U(u), T2U(v)))
 - Since both have identical bit patterns
- Two's Complement Under TAdd Forms a Group
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse

$$TComp_w(u) = \begin{cases} -u & u \neq TMin_w \\ TMin_w & u = TMin_w \end{cases}$$

Carnegie Mello

Carnegie Mellon

Compiled Multiplication Code

C Function

```
int mul12(int x)
{
   return x*12;
}
```

Compiled Arithmetic Operations

Explanation

■ C compiler automatically generates shift/add code when multiplying by constant

Compiled Unsigned Division Code

C Function

```
unsigned udiv8(unsigned x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

Explanation

Logical shift
return x >> 3;

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>

Compiled Signed Division Code

C Function

```
int idiv8(int x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
test1 %eax, %eax
js L4
L3:
  sarl $3, %eax
  ret
L4:
  add1 $7, %eax
  jmp L3
```

Explanation

```
if x < 0
   x += 7;
# Arithmetic shift
return x >> 3;
```

- Uses arithmetic shift for int
- For Java Users
 - Arith. shift written as >>

89

Arithmetic: Basic Rules

- Unsigned ints, 2's complement ints are isomorphic rings: isomorphism = casting
- Left shift
 - Unsigned/signed: multiplication by 2^k
 - Always logical shift
- Right shift
 - Unsigned: logical shift, div (division + round to zero) by 2^k
 - Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix

Carnegie Mellon

Negation: Complement & Increment

■ Claim: Following Holds for 2's Complement

$$\sim x + 1 == -x$$

- Complement
- **■** Complete Proof?

Complement & Increment Examples

x = 15213

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
~x	-15214	C4 92	11000100 10010010
~x+1	-15213	C4 93	11000100 10010011
У	-15213	C4 93	11000100 10010011

x = 0

	Decimal	Hex	Binary
0	0	00 00	00000000 00000000
~0	-1	FF FF	11111111 11111111
~0+1	0	00 00	00000000 00000000

Properties of Unsigned Arithmetic

- Unsigned Multiplication with Addition Forms Commutative Ring
 - Addition is commutative group
 - Closed under multiplication

$$0 \leq \mathsf{UMult}_w(u, v) \leq 2^w - 1$$

Multiplication Commutative

$$UMult_w(u, v) = UMult_w(v, u)$$

Multiplication is Associative

$$UMult_w(t, UMult_w(u, v)) = UMult_w(UMult_w(t, u), v)$$

1 is multiplicative identity

$$UMult_w(u, 1) = u$$

Multiplication distributes over addtion

$$UMult_w(t, UAdd_w(u, v)) = UAdd_w(UMult_w(t, u), UMult_w(t, v))$$

Properties of Two's Comp. Arithmetic

- Isomorphic Algebras
 - Unsigned multiplication and addition
 - Truncating to w bits
 - Two's complement multiplication and addition
 - Truncating to w bits
- **■** Both Form Rings
 - Isomorphic to ring of integers mod 2^w
- Comparison to (Mathematical) Integer Arithmetic
 - Both are rings
 - Integers obey ordering properties, e.g.,

$$u > 0$$
 $\Rightarrow u + v > v$
 $u > 0, v > 0$ $\Rightarrow u \cdot v > 0$

• These properties are not obeyed by two's comp. arithmetic

```
TMax + 1 == TMin
15213 * 30426 == -10030 (16-bit words)
```