Carnegie Mellon

Bits, Bytes, and Integers

15-213: Introduction to Computer Systems
2" and 3" Lectures, Jan 17 and Jan 22, 2013

Instructors:
Seth Copen Goldstein, Anthony Rowe, Greg Kesden

Carnegie Mellon

MLK recitations

m No recitations after 12:30, so ...

m The TAs have been kind enough to create some
temporary sections:

®" GHC4215:10:30 & 11:30
®" GHC4102: 11:30
=" GHC4101:9:30 & 10:30

Waitlist

m Please be patient.

m If you register for autolab, get the work done = you will
be ready when you get into the class

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Representing information as bits
|

Binary Representations

m Base 2 Number Representation
® Represent 15213,,as11101101101101,
= Represent 1.20,,as 1.0011001100110011[0011]...,
= Represent 1.5213 X 10* as 1.1101101101101, X 23
m Electronic Implementation
= Easy to store with bistable elements
= Reliably transmitted on noisy and inaccurate wires

0

3.3V
2.8V

0.5V
0.0V

Carnegie Mellon

Encoding Byte Values

A\Y
. P
m Byte = 8 bits o
® Binary 000000002 to 11111111,
= Decimal: 010 to 25510

= Hexadecimal 0016 to FFi6

= Base 16 number representation

= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’ 0110
= Write FA1D37Bs6 in C as %cl)é
— OxFA1D37B 1001
— Oxfald37b 1011

I P P
BRI R Bl 5| ©f ool N oo unf & w| N[- o
H
o
=
o

M| 3| O T3| 3>[O] 00| | O U | W N = O

Carnegie Mellon

Data Representations

C Data Type Typical 32-bit Intel IA32 x86-64
1 1 1

char

short 2 2 2
int 4 4 4
long 4 4 8
long long 8 8 8
float 4 4 4
double 8 8 8
long double 8 10/12 10/16
pointer 4 4 8

Carnegie Mellon

Today: Bits, Bytes, and Integers

| |
m Bit-level manipulations

Boolean Algebra
m Developed by George Boole in 19th Century

= Algebraic representation of logic
= Encode “True” as 1 and “False” as 0

And Or
= A&B =1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&|0 1 | [o 1
0[0 0 0[0 1
110 1 111 1
Not Exclusive-Or (Xor)
= “A =1 when A=0 = A7B = 1 when either A=1 or B=1, but not both
.1 A0 1
01 0[O0 1
110 111 0

Carnegie Mellon

General Boolean Algebras

m Operate on Bit Vectors

= Qperations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 ~ 01010101
01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

10

9
Carnegie Mellon

Example: Representing & Manipulating Sets
m Representation
= Width w bit vector represents subsets of {0, ..., w—1}

= a=1ifj €A

= 01101001 {0,3,5,6}
= 76543210

= 01010101 {0,2,4,6}

= 76543210
m Operations
= & Intersection 01000001 {0,6}
= | Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}

1n

Bit-Level Operations in C

m Operations &, |, ~, " Available in C
= Apply to any “integral” data type
= long, int, short, char, unsigned
= View arguments as bit vectors
= Arguments applied bit-wise

m Examples (Char data type)
= ~0x41 — OxBE
= ~010000012 — 101111102
= ~0x00 — OXFF
= ~000000002 — 111111112
= 0x69 & 0x55 — 0x41
= 011010012 & 010101012 — 010000012
= 0x69 | 0x55 — 0x7D
= 011010012 010101012 — 011111012

12

Carnegie Mellon

Contrast: Logic Operations in C

m Contrast to Logical Operators
= &&, ||, !
= View 0 as “False”
= Anything nonzero as “True”
= AlwaysreturnOor 1
= Early termination
m Examples (char data type)
= 10x41 — 0x00

= 10x00 — 0x01
= 110x41 — 0x01

= 0Ox69 && 0x55 — 0x01
= 0x69 || 0x55 — 0x01
= p&&*p (avoids null pointer access)

13

Carnegie Mellon

Contrast: Logic Operations in C

m Contrast to Logical Operators
= &&, ||, !
= View 0 as “Fa
= Anythi

= Alwa \

* vl Watch out for && vs. & (and || vs. |)...

m Example o ¢
. o1 ONE of the more common oopsies in

= 10x00 — C programming
= 110x41 —

J

= 0Ox69 && 0x55 — 0x01
= 0x69 || 0x55 — 0x01
= p&&*p (avoids null pointer access)

14

Carnegie Mellon

Shift Operations

m Left Shift: x <<y Argument x| 01100010

= Shift bit-vector X left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right

m Right Shift: x >>y
= Shift bit-vector X right y positions

Log.>> 2 | 00011000

Arith. >> 2100011000

= Throw away extra bits on right Argument x [10100010

= | ogical shift << 3 00010000
= Fill with 0’s on left

= Arithmetic shift
= Replicate most significant bit on left

Log.>> 2 | 00101000

Arith.>> 2| 11101000

m Undefined Behavior

= Shift amount < 0 or > word size

15

Carnegie Mellon

Today: Bits, Bytes, and Integers

[
[
m Integers
= Representation: unsigned and signed
| |
| |
| |
|}
[
[

16

Carnegie Mellon

Encoding Integers

Unsigned Two’s Complement
w-1 . w-2 .
B2U(X) = Y x-2' B2T(X) = —Xuq 2" 4 3 %-2'
i= i=0
short int x = 15213; \
short int y = -15213; Sign
Bit
m Cshort 2 bytes long
Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
y -15213| C4 93| 11000100 10010011

m Sign Bit
= For 2’s complement, most significant bit indicates sign
= 0 for nonnegative
= 1 for negative

17

Two-complement Encoding Example (Cont.)

X = 15213: 00111011 01101101
y = -15213: 11000100 10010011
Weight 15213 -15213

1 1 1 1 1

2 0 0 1 2

4 1 4 0 0

8 1 8| 0 0

16 0 0 1 16

32 1 32 0 0

64 1 64 0 0

128 0 0 1 128]

256 1 256 0 0

512 1 512 0 0

1024 0 0 1 1024

2048 1 2048 0 0

4096 1 4096 0 0

8192 1 8192 0 0

16384 0 0 1 16384

-32768 0 0 1 -32768|
Sum 15213 -15213 18

Carnegie Mellon

Numeric Ranges

= Unsigned Values m Two’s Complement Values

" UMin—=0 = TMin = -2w
000...0 100..0
] = w_
UMax 2"-1 = TMax = 2%i-1
111..1 011..1
m Other Values
®" Minus 1
111..1
Values for W =16
Decimal Hex Binary
UMax 65535 FF FF| 11111111 11111111
TMax 32767| 7F FF| 01111111 11111111
TMin -32768| 80 00| 10000000 00000000
-1 -1 FF FF| 11112111 11111111
0 0| OO0 00| 00000000 00000000

19

Carnegie Mellon

Values for Different Word Sizes

w
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

m Observations m CProgramming

" |TMin| = TMax+1 = #include <limits.h>
= Asymmetric range = Declares constants, e.g.,
" UMax = 2*TMax+1 = ULONG_MAX
= LONG_MAX
= LONG_MIN

= Values platform specific

20

Carnegie Mellon Carnegie Mellon

Unsigned & Signed Numeric Values Today: Bits, Bytes, and Integers
X B2U(X) | B2T(X) | Equivalence
0000 0 0 = Same encodings for nonnegative u
0001 1 1 values]
0010 2 2 .
0011 3 3 m Uniqueness m Integers
0100 2 2 " Every bit pattern represents a .
0101 5 5 unique integer value = Conversion, casting
0110 6 6 = Each representable integer has a .
0111 7 7 unique bit encoding .
1000 8 -8 m = Can Invert Mappings .
ik ’ — * U2B(x) = B2U?
1010 10 s () = (x) -
1011 11 5 . Eit pattern for unsigned
1100 12 -4 integer
1101 13 -3 = T2B(x) = B2T(x)
1110 14 —2 = Bit pattern for two’s comp
1111 15 -1 integer
21 22
]]] Mapping Signed <> Unsigned
Mapping Between Signed & Unsigned : : :
Bits Signed Unsigned
0000 0 0
Two’s Complement m— Unsigned 0001 1 1
0010 2 2
X [128] X [B2U] ux 0011 3 3
0100 4 2
Maintain Same Bit Pattern 0101 5 _ 5
0110 6 6
Unsigned Uzt Two’s Complement 0111 7 7
1000 -8 8
ux ——>-UZB —>-B2T —t X
X 1001 =7 9
1010 -6 10
Maintain Same Bit Pattern 1011 _5 11
1100 -4 12
.) , 1101 -3 13
m Mappings between unsigned and two’s complement numbers: 1110 —~ T
keep bit representations and reinterpret 1111 = 15

23 24

Mapping Signed <> Unsigned

Bits Signed Unsigned
0000 0
0001 1 1
0010 2 2
0011 3 - 3
0100 2 <4+—> 2
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 -7 9
1010 -6 10
1011 5 < +/- 16» 11
1100 4 12
1101 3 13
1110 2 14
1111 = 15

Carnegie Mellon

Relation between Signed & Unsigned

Two’s Complement — Unsigned

X || T2B || X || B2U || ux

Maintain Same Bit Pattern

w-1 0
UX [+]+]4] eoe [+][+]4]

X [eee [+[+[+]

I

Large negative weight
becomes
Large positive weight

26

Carnegie Mellon

Conversion Visualized

m 2’s Comp. — Unsigned

= Ordering Inversion UMax 1
= Negative — Big Positive UMax -

B TMax + 1 | unsigned

TMax TMax Range
2’s Complement 0 0
Range 1 B
-2
| TMin

Carnegie Mellon

Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers

= Unsigned if have “U” as suffix
0U, 4294967259U

m Casting
= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

® |mplicit casting also occurs via assignments and procedure calls
tX = ux;
uy = ty;

28

Casting Surprises

m Expression Evaluation

= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

Summary
Casting Signed €= Unsigned: Basic Rules

® Including comparison operations <, >, ==, <=, >= = Bit patternis maintained
= Examples for W=32: TMIN =-2,147,483,648, TMAX = 2,147,483,647 m But reinterpreted
= Constant, Constant, Relation Evaluation m Can have unexpected effects: adding or subtracting 2%
0 ou == unsigned
-1 0 < signed m Expression containing signed and unsigned int
-1 ouU > unsigned = intis cast to unsigned!!
2147483647 -2147483647-1 > signed
2147483647V -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed
29 30
Today: Bits, Bytes, and Integers Sign Extension
. m Task:
= Given w-bit signed integer x
" = Convert it to w+k-bit integer with same value
m Integers

= Rule:
= Make k copies of sign bit:

. . B X = Xpyq peees X1 s Xt s Xz 100 Xg
= Expanding, truncating

—
| |
k copies of MSB w i
|}
X LIl eee JT1T1]
|
X' I TTTTTT eee TTT7

k >< w

31 32

Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

X 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213(FF FF C4 93 111121111 11111121 11000100 10010011

m Converting from smaller to larger integer data type
m C automatically performs sign extension

33

Carnegie Mellon

Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added
= Signed: sign extension
= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
= Unsigned: mod operation
= Signed: similar to mod
= For small numbers yields expected behavior

34

Carnegie Mellon

Fake real world example

m Acme, Inc. has developed a state of the art voltmeter they
are connecting to a pc. Itis precise to the millivolt and
does not drain the unit under test.

m Your job is to develop the driver software.

Carnegie Mellon

Fake real world example

m Acme, Inc. has developed a state of the art voltmeter they
are connecting to a pc. It is precise to the millivolt and
does not drain the unit under test.

[joh.is to develop the driver software.

printf(*“%d\n”’, getValue());

35

printf(*“%d\n”’, getValue());

36

Carnegie Mellon

Lets run some tests
printf(“%d\n”, getValue());

50652
1500
9692

26076

17884

42460

34268

50652

37

Carnegie Mellon

Lets run some tests
int x=getValue(Q); printf(“%d %08x\n”’,x, X);

50652
1500
9692

26076

17884

42460

34268

50652

0000c5dc
000005dc
000025dc
000065dc
000045dc
0000a5dc
000085dc
0000c5dc

Those darn
engineers!

38

Only care about least significant 12 bits

int x=getValue();
x=(X & OxXOFffF);
printf(“%d\n”,x);

Carnegie Mellon

39

Carnegie Mellon

Only care about least significant 12 bits

int x=getValue();
X=X(&OxX0FFF);
printf(““%d\n”’,x);

printf(*“%x\n”’, x);

40

Carnegie Mellon

Must sign extend

int x=getValue();

X=(X&OX00FFF) | (x&0x0800?0xFFFFF000:0);
printf(**%d\n”,x);

There is a better way.

41

Carnegie Mellon

Because you graduated from 213

int x=getValue();

X=(X&OX00FFF) | (x&0x0800?0xFFFFF000:0);
printf(**%d\n”,x);

42

Carnegie Mellon

Lets be really thorough

int x=getValue();
X=(X&O0xX00FFF) | (x&0x080070xH
printf(“%d\n”,x);

43

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Integers

= Addition, negation, multiplication, shifting

Carnegie Mellon

Unsigned Addition

Operands: w bits U [IT1T eee J]T]
+Vv [JTT eee TTT]

True Sum: w+1 bits uU+vETTT]d — 1T

Discard Carry: wbits ~ UAdd,(u,Vv) [TTT eee TTT7]

m Standard Addition Function
" |gnores carry output

m Implements Modular Arithmetic

s = UAdd,(u,v) = u+v mod?2¥

45

Visualizing (Mathematical) Integer Addition

m Integer Addition Add,(u,v)

= 4-bit integers u, v Integer Addition

= Compute true sum
Add,(u, v)

= Values increase linearly
withuandv

® Forms planar surface

46

Carnegie Mellon

Visualizing Unsigned Addition

= Wraps Around Overflow
= [f true sum > 2% \
" At most once UAdd,(u, v)

True Sum
2w+1
Overflow 12

2 KI

Modular Sum

47

Carnegie Mellon

Two’s Complement Addition

Operands: w bits u LILITT eee TTT]

+ v LLIT eee TTT1
True Sum: w+1 bits U+v OO — T
Discard Carry: w bits TAdd,(u,v) [T TT eee TTT]

m TAdd and UAdd have Identical Bit-Level Behavior
= Signed vs. unsigned addition in C:
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t=u+v
= Willgive s == t

48

Carnegie Mellon

TAdd Overflow

m Functionality True Sum
" True sum requires w+l ~ 0111.1 2v-1 1
bits P20 TAdd Result
= Drop off MSB 0100..0 2w-l-q T 011..1
= Treat remaining bits as
2’s comp. integer 0000..0 0 T 000...0
1011..1 —w-1 4 100..0
1000...0 —gw L NegOver

49

Carnegie Mellon

Visualizing 2’s Complement Addition

NegOver

m Values \
= 4-bit two’s comp.

TAdd,(u, v)
®= Range from -8 to +7
m Wraps Around
= |fsum>2w1
= Becomes negative
= At most once
= |f sum <21

5 » b oN » @

= Becomes positive
= At most once ® s

u 6 ’ PosOver

50

Carnegie Mellon

Multiplication

m Goal: Computing Product of w-bit numbers x, y
= Either signed or unsigned
m But, exact results can be bigger than w bits
= Unsigned: up to 2w bits
= Resultrange:0<x*y<(2w—1)2 = 22w—2w+l+ 1
= Two’s complement min (negative): Up to 2w-1 bits
= Resultrange: x *y > (-271)*(2w1-1) = —22w-24 w1
= Two’s complement max (positive): Up to 2w bits, but only for (TMin,,)?
= Result range: x * y < (-2w-1) 2 = 22w=2
m So, maintaining exact results...
= would need to keep expanding word size with each product computed
® js done in software, if needed
= e.g., by “arbitrary precision” arithmetic packages

51

Carnegie Mellon

Unsigned Multiplication in C

u LLI11 X [111

Operands: w bits
* oy L1 X [111
True Product: 2*w bits U - V[| | | X LI T 1111 X [111
UMult,(u,v) [ITTT eee TTT1

Discard w bits: w bits

m Standard Multiplication Function

= |gnores high order w bits

m Implements Modular Arithmetic
UMult,(u,v)= u -v mod 2%

52

Carnegie Mellon

Signed Multiplication in C

u LLI11 X [111

Operands: w bits
* oy L1 00 [T 1]
True Product: 2*w bits U - V[| | | X LI T 1111 X [111
TMult,(u,v) [TTT _eee TTT]

Discard w bits: w bits

m Standard Multiplication Function
= Ignores high order w bits

= Some of which are different for signed
vs. unsigned multiplication

= Lower bits are the same

53

Carnegie Mellon

Power-of-2 Multiply with Shift

m Operation
= u << kgivesu * 2k

= Both signed and unsigned k
u LLI11 see [111
Operands: w bits
* 2k [0 e [OJ1]0] e]0]0]
True Product: w+k bits U - 2K[TTT _wes TTTT0[« I0[0]
Discard k bits: w bits UMult,(u,2) [“ee T T T O] e [0]0]
TMult,(u, 2%
m Examples
" u<<3 = u*38
" y<<5-u=<<3 == u=* 24

® Most machines shift and add faster than multiply
= Compiler generates this code automatically

54

Carnegie Mellon

Unsigned Power-of-2 Divide with Shift

= Quotient of Unsigned by Power of 2
" u >> kgives Lu /7 2¢]
= Uses logical shift

Carnegie Mellon

Signed Power-of-2 Divide with Shift

m Quotient of Signed by Power of 2
= x >> kagives Lx / 2¢]
= Uses arithmetic shift
= Rounds wrong direction when X< 0

Kk
U L[LL ee TTT ee TT] BinaryPoint

Operands:

P | ok [om0 [/

/
Division: u/2k [0 e TOIOT T T oo T[T e TT1
Result: | u/2k] O TOTOT TT w17
Division Computed Hex Binary

X 15213 15213 3B 6D| 00111011 01101101

X >>1 7606.5 7606| 1D B6| 00011101 10110110

X >> 4 950.8125 950 03 B6| 00000011 10110110

X >> 8 | 59.4257813 59 00 3B| 00000000 00111011

55

k
X LIl ee J]] e [T] BinaryPoint

Operands:

| 2k [0] eee JO[1]0] eee]0OIO]

7
Division: x/2k [l eee [[[[[oo JI[] oo |[]]
Result: RoundDown(x / 2€) [T see TTT 1T e []
Division Computed Hex Binary

y -15213 -15213 C4 93| 11000100 10010011
y > 1 -7606.5 -7607 E2 49| 11100010 01001001
y >> 4 -950.8125 -951 FC 49(11111100 01001001
y >> 8 [-59.4257813 -60 FF C4| 11111111 11000100

56

Carnegie Mellon

Correct Power-of-2 Divide

m Quotient of Negative Number by Power of 2
= Want [x / 2¥] (Round Toward 0)
= Computeas | (x+2k-1)/ 2k]
= InC: (X + (1<<k)-1) >> k
= Biases dividend toward O

Case 1: No rounding K
Dividend: u [T e TTO[<. T0I0]
+2k_1 [0 e TOTOTIT e T1l1]

Ill I X0 I |1| X0 |1|1| Binary Point
Divisor: | 2k [0 e [0[210] - [0]0]
/

[u/2x | Mo T T e T A TI01]

Biasing has no effect

57

Carnegie Mellon

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: X LT e Ikl [e« TT1
4+2k_1 [0 e TOTOTIT e T1T1]
[T e TTT e TT71
H_J
Incremented by 1 Binary Point
Divisor: | 2k [0] e JOJ2[0] e [0I0]
[x/2¢] M ArErT 1 I.'III e TT1
H_J

Incremented by 1

Biasing adds 1 to final result

58

Carnegie Mellon

Today: Bits, Bytes, and Integers

[
[
m Integers

.

.

=

=

= Summary
[

59

Carnegie Mellon

Arithmetic: Basic Rules

m Addition:

= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

= Unsigned: addition mod 2%
= Mathematical addition + possible subtraction of 2%
= Signed: modified addition mod 2% (result in proper range)
= Mathematical addition + possible addition or subtraction of 2%

m Multiplication:

= Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level

= Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2" (result in proper range)

60

Carnegie Mellon

Why Should | Use Unsigned?

m Don’t Use Just Because Number Nonnegative

= Easy to make mistakes
unsigned i;
for (i = cnt-2; i1 >= 0; 1--)
a[i] += a[i+1];
® Can be very subtle
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)

m Do Use When Performing Modular Arithmetic
= Multiprecision arithmetic

m Do Use When Using Bits to Represent Sets
= |ogical right shift, no sign extension

61

Integer C Puzzles

= Assume 32-bit word size, two’s complement integers
= For each of the following C expressions: true or false? Why?

¢ x<0 = ((x*2)<0)

« ux>=0

e X&T== = (Xx<<30)<0

e ux>-1

° X>y = X<-y

Initialization * X*x>=0

* x>0&&Yy>0 = Xx+y>0
int x = foo(); B a

© x>=0 = x<=0
inty = bar(); + x<=0 = x>=0
unsigned ux = x; o (X]-x)>>31 ==-
unsigned uy = y; e Ux>>3==ux/8

e X>>3==x/8
e x&(x-1)!1=0

62

Carnegie Mellon

Today: Bits, Bytes, and Integers

Integers

Representations in memory, pointers, strings

63

Carnegie Mellon

Byte-Oriented Memory Organization

m Programs refer to data by address
= Conceptually, envision it as a very large array of bytes
= In reality, it’s not, but can think of it that way
® An address is like an index into that array
= and, a pointer variable stores an address

m Note: system provides private address spaces to each “process”
= Think of a process as a program being executed
= So, a program can clobber its own data, but not that of others

64

Machine Words

m Any given computer has a “Word Size”
= Nominal size of integer-valued data
= and of addresses

= Most current machines use 32 bits (4 bytes) as word size
= Limits addresses to 4GB (232 bytes)
= Becoming too small for memory-intensive applications
— leading to emergence of computers with 64-bit word size

= Machines still support multiple data formats

= Fractions or multiples of word size
= Always integral number of bytes

65

Carnegie Mellon

Word-Oriented Memory Organization
32-bit 64-bit

m Addresses Specify Byte Words Words BYtes Addr

Locations 0000
Add

= Address of first byte in word - 0001

= Addresses of successive words differ 0000 Addr 8885

by 4 (32-bit) or 8 (64-bit) =

0000 0004

Addr 0005

0004 0006

0007

0008

Addr 0009

0008 Addr 0010

= 0011

0008 0012

Addr 0013

0012 0014

0015

66

Carnegie Mellon

For other data representations too ...

C Data Type Typical 32-bit Intel IA32 x86-64
1 1 1

char

short 2 2 2
int 4 4 4
long 4 4 8
long long 8 8 8
float 4 4 4
double 8 8 8
long double 8 10/12 10/16
pointer 4 4 8

67

Byte Ordering

m So, how are the bytes within a multi-byte word ordered in
memory?
m Conventions
= Big Endian: Sun, PPC Mac, Internet
= Least significant byte has highest address
= Little Endian: x86
= Least significant byte has lowest address

68

Carnegie Mellon Carnegie Mellon

Decimal: 15213
Byte Ordering Example Representing Integers |sinary: 0011 1011 0110 1101
Hex: 3 B 6 D
m Example :
intA=15213; : _)
® Variable x has 4-byte value of 001234567 long int C = 15213;
= Address given by &x is 0x100 IA32, x86-64 Sun IA32 X86-64 sun
6D 00
3B 00 6D 6D 00
_) 00 3B 3B 3B 00
Big Endian 0x100 0x101 0x102 0x103 00) 00 00 3B
| | [o1 |23] 45 | 67 | | | 00 00 6D
. . 00
Little Endian 0x100 0x101 O0x102 0x103 int B=-15213; 00
67 45 23 01
| | l I l l I | | 1A32, x86-64 Sun 88

93 FF

C4 FF |

FF >< c4 \

FF 93 Two’s complement representation

69 70

Garregie elon
Examining Data Representations show_bytes Execution Example
m Code to Print Byte Representation of Data int a = 15213;
= Casting pointer to unsigned char * allows treatment as a byte array printf("int a = 15213;\n");

show_bytes((pointer) &a, sizeof(int));
typedef unsigned char *pointer;

void show_bytes(pointer start, int len){
int i;

for (i = 0; i < len; i++) Result (Linux):
printfC’%p\tOx%.2x\n"" ,start+i, start[i]); = _ R
printfC'\n"); int a = 15213;
} Ox11ffffcb8 0x6d

Ox11ffFffcbh9 0x3b
Ox11ffffcba 0x00
Ox11ffffcbb 0x00

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

n 2

Carnegie Mellon Carnegie Mellon

Reading Byte-Reversed Listings Representing Pointers

m Disassembly

nt B = -15213;
nt
= Text representation of binary machine code

*P = &B;

= Generated by program that reads the machine code Sun IA32 x86-64
m Example Fragment EF D4 0C

Address Instruction Code Assembly Rendition £ h8 89

8048365: 5b pop %ebx FB FF EC

8048366: 81 c3 ab 12 00 00 add $0x12ab , %ebx 2C BF FF

804836¢: 83 bb 28 00 vQO 00 00 cmpl §6x0,0x28(%ebx)

FF

m Deciphering Numbers / 7F

= Value: 0x12ab 00

= Pad to 32 bits: 0x000012ab 00

= Split into bytes: 000012 ab

= Reverse: ab 12 00 00

Different compilers & machines assign different locations to objects

73 74

Carnegie Mellon

Carnegie Mellon

Representing Strings Code Security Example
‘ char S[6] = '"'18243";

m SUN XDR library

= Widely used library for transferring data between machines

m StringsinC
= Represented by array of characters

" Each character encoded in ASCII format Linux/Alpha Sun | void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size); |

= Standard 7-bit encoding of character set 31 31

= Character “0” has code 0x30 38 38 ele src
— Digit i has code 0x30+i 32 32

= String should be null-terminated 34 34 \J
33 33

fltlel

= Final character=0

m Compatibility 00 00
= Byte ordering not an issue

malloc(ele_cnt * ele_size)

75 76

Carnegie Mellon Carnegie Mellon

XDR Code XDR Vulnerability

void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) { maIIoc(eIe cnt * ele size)
/* - -
* Allocate buffer for ele_cnt objects, each of ele_size bytes
* and copy from locations designated by ele_src m What if:
*/
void *result = malloc(ele_cnt * ele_size): = ele_cnt =220+1
if (result == NULL) = ele size = 4096 =12
/* malloc failed */ T
return NULL: = Allocation="7??
void *next = result;
int i;
il (1= 05 1 = DO @S [hE9) o m How can | make this function secure?
/* Copy object i1 to destination */
memcpy(next, ele _src[i], ele_size);
/* Move pointer to next memory region */
next += ele_size;
3
return result;
3
7 78
Bonus extras Application of Boolean Algebra

m Applied to Digital Systems by Claude Shannon
= 1937 MIT Master’s Thesis
= Reason about networks of relay switches
= Encode closed switch as 1, open switch as 0

A&~B .
— Connection when
A -~B
0—< >0 Ag-B|~A&B
~A _ B

~A&B =A"B

79 80

Carnegie Mellon

Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

m Similar to code found in FreeBSD’s implementation of
getpeername

m There are legions of smart people trying to find
vulnerabilities in programs

81

Carnegie Mellon

Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

¥

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel (mybuf, MSIZE);
printf(“%s\n”, mybuf);

82

Carnegie Mellon

Ma|ICIOUS Usage /* Declaration of library function memcpy */

void *memcpy(void *dest, void *src, size_t n);

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528
void getstuff() {

char mybuf[MSIZE];
copy_from_kernel (mybuf, -MSIZE);

83

Carnegie Mellon

Mathematical Properties

m Modular Addition Forms an Abelian Group
® Closed under addition
0 <UAdd,(u,v) <2¥-1
= Commutative
UAdd,(u,v) = UAdd,(v, u)
= Associative
UAdd,(t, UAdd,(u, v)) = UAdd,(UAdd,(t, u), v)
0 is additive identity
UAdd,(u,0) = u
= Every element has additive inverse
= Let UComp,, (u) =2¥—-u
UAdd,(u, UComp,(u)) = 0

84

Carnegie Mellon

Characterizing TAdd
Positive Overflow
m Functionality TAdd(u, v) |
= True sum requires w+1 bits >0]
= Drop off MSB Vv
® Treat remaining bits as 2’s <0
comp. integer /
<0 >
[<0,>0
Negative Overflow
Ju+v+ 2w u+Vv <TMin,, (NegOver)
TAdd,, (u,v) = qu+v TMin,, <u+v<TMax,,

[u +v— 2w TMaxW <U+V (PosOver)

85

Carnegie Mellon

Mathematical Properties of TAdd

m Isomorphic Group to unsigneds with UAdd
* TAdd,(u,v)= U2T(UAdd,(T2U(u), T2U(v)))
= Since both have identical bit patterns

m Two’s Complement Under TAdd Forms a Group
" Closed, Commutative, Associative, 0 is additive identity
= Every element has additive inverse

-u u=TMin,,

TCompy (W) = {TMinW u=TMin,,

86

Carnegie Mellon

Compiled Multiplication Code

C Function

int mull2(int x)
{

return x*12;

}

Compiled Arithmetic Operations Explanation

leal (%eax,%eax,2), %eax
sall $2, %eax

T <- xX+x*2
return t << 2;

m C compiler automatically generates shift/add code when
multiplying by constant

87

Carnegie Mellon

Compiled Unsigned Division Code

C Function

unsigned udiv8(unsigned Xx)

{

return x/8;

}

Compiled Arithmetic Operations
‘ shrl $3, %eax ‘

Explanation

Logical shift
return x >> 3;

m Uses logical shift for unsigned

m For Java Users
= |ogical shift written as >>>

88

Carnegie Mellon

Compiled Signed Division Code

C Function
int 1div8(int x)
{
return x/8;
b
Compiled Arithmetic Operations Explanation
testl %eax, %eax ifx<O
Js L4 X += 7;
L3: # Arithmetic shift
sarl $3, %eax return x >> 3;
ret
L4:
addl $7, %eax m Uses arithmetic shift for int
jmp L3

m ForJava Users
= Arith. shift written as >>

89

Arithmetic: Basic Rules

m Unsigned ints, 2’s complement ints are isomorphic rings:
isomorphism = casting

m Left shift
= Unsigned/signed: multiplication by 2k
= Always logical shift

m Right shift
= Unsigned: logical shift, div (division + round to zero) by 2%
= Signed: arithmetic shift
= Positive numbers: div (division + round to zero) by 2¥

= Negative numbers: div (division + round away from zero) by 2k
Use biasing to fix

90

Carnegie Mellon

Negation: Complement & Increment

m Claim: Following Holds for 2’s Complement
~X + 1 == -X

m Complement
® Qbservation: ~x + x == 1111..111 == -1

x [1]ofo[1]1[1]of1]
o[1[1]ofolo]1]0

AARARARA

+
2
x

|
(BN

m Complete Proof?

91

Carnegie Mellon

Complement & Increment Examples

x =15213
Decimal| Hex Binary

X 15213| 3B 6D| 00111011 01101101

~X -15214| C4 92| 11000100 10010010

~x+1 | -15213| C4 93| 11000100 10010011

y -15213| C4 93| 11000100 10010011
x=0

Decimal Hex Binary

0 0| OO0 00| 00000000 00000000

~0 -1 FF FF| 11111111 12111111

~0+1 0| OO0 00| 00000000 00000000

92

Carnegie Mellon

Properties of Unsigned Arithmetic

m Unsigned Multiplication with Addition Forms
Commutative Ring
= Addition is commutative group
= Closed under multiplication
0 <UMult,(u,v) < 2¥-1
= Multiplication Commutative
UMult,(u,v) = UMult,(v, u)
= Multiplication is Associative
UMult,(t, UMult,(u, v)) = UMult,(UMult,(t, u), v)
= 1is multiplicative identity
UMult,(u,1) = u
= Multiplication distributes over addtion
UMult,(t, UAdd, (u, v)) = UAdd,(UMult,(t, u), UMult,[t, v))

93

Properties of Two’s Comp. Arithmetic

m Isomorphic Algebras
= Unsigned multiplication and addition
= Truncating to w bits
= Two’s complement multiplication and addition
= Truncating to w bits

m Both Form Rings

= |somorphic to ring of integers mod 2%

m Comparison to (Mathematical) Integer Arithmetic
= Both are rings
" |ntegers obey ordering properties, e.g.,
u>0 = u+v>v
u>0,v>0 = u-v>0
= These properties are not obeyed by two’s comp. arithmetic
TMax + 1 == TMin

15213 * 30426 == -10030 (16-bit words)

94

