Recitation 9
Shell Lab

Grant Skudlarek

News

e Welcome back

e Shell lab due next Thursday, at 11:59 PM

Agenda

* Problem1and>5

* Processes and Signals
* Shell lab

Problem 1

A.Consider the C function below:
int func(int x)
{

inty;

y=(x<<31)>>31;

returny;

}

When “func(7)” is called (i.e.x=7) on IA32, what is the return value? __ -1

Problem 1

B. The expression x*x >= 0 holds uniformly for

(a) both signed and unsigned integers

(b) signed integers, but not for unsigned integers
(c) unsigned integers, but not for signed integers
(d) neither signed nor unsigned integers

C.What is the evaluation result of expression 1110,71010,?
(a) 1111,
(b) 1010,
(c) 0100,
(d) 0110,

Problem 1

D. Assume that you are working on a machine with 8-bit ints and arithmetic right shifts. Further

assume that variable x is a signed integer represented in two’s complement. Match each of the descriptions on the
left with 0, 1, or more snippets of code on the right. Write the letter of each matching

snippet in the blank under the description. Some code snippets may not match any of the descriptions.

(1) 13*x (F) (a) x & (x - 1)

(2) Absolute value of x. (H) (b) -((x | MAX_INT) >>7)

(3) Round x down to nearest power of 2. (NONE) (c) (("x & MIN_INT) ==

(4) Round x to a multiple of 16 (E) (d) (x << 4) | ((x >>4) & OxOF)

(e) (x>>4)<< 4
(5)x<0(B)(C)_ - o (f) (x << 3) + (x << 2) + x
(6) Swap most significant and least significant (g) (0x80 >> 4) & x

four bits of x. (D) (h)x*(1 | (x>>7))

Structure layout.

struct a {
float *f;
char c;
int x;
char z[4];
double d;
short s;

I

struct b {
struct a al;
inty;
struct a a2;

%

Problem 5

Problem 5

0x0

Ox8

d
S

Ox10
0Ox18
0x20

28 bytes

0x0
Ox8

V4

0x10
Ox18
0x20

d

40 bytes

#

#

Problem 5

C

Struct al: 28 bytes
Int: 4 bytes

Struct a2: 28 bytes
60 bytes

B

Struct al: 40 bytes

Int: 4 bytes

4 bytes padding (struct a needs 8 byte alignment)
Struct a2: 40 bytes

88 bytes

Agenda

* Problem 1 and?5

* Processes and Signals
* Shell lab

Processes

* Whatis a program?

— Written according to a specification that tells users
what it is supposed to do

— A bunch of data and instructions stored in an
executable binary file

— Stateless since binary file is static

Processes

* Whatis a process?
— A running instance of a program in execution
— One of the most profound ideas in CS

A fundamental abstraction provided by the OS
— Single thread of execution (linear control flow)
— ... until you create more threads (later in the course)
— Stateful:
* Full set of private address space and registers
e Other state like open file descriptors and etc.

Processes

* Four basic process control functions
— fork()

— exec*() and other variants such as execve()
* But they all fundamentally do the same thing

— exit()

— wait()

Standard on all UNIX-based systems

Don’t be confused:

Fork(), Exit(), Wait() are all wrappers provided by
CSAPP

Processes

e fork()

— Creates or spawns a child process
— OS creates an exact duplicate of parent’s state:

 Virtual address space (memory), including heap and
stack

* Registers, except for the return value (%eax/%rax)
* File descriptors but files are shared

— Result 2 Equal but separate state

— Returns O for child process but child’s PID for parent

Processes

e exec*()
— Replaces the current process’s state and context

— Provides a way to load and run another program

* Replaces the current running memory image with that of
new program

* Set up stack with arguments and environment variables
» Start execution at the entry point

— The newly loaded program’s perspective: as if the
previous program has not been run before

— It is actually a family of functions
°* man 3 exec

Processes

e exit()
— Terminates the current process

— OS frees resources such as heap memory
and open file descriptors and so on...

— Reduce to a zombie state

* Must wait to be reaped by the parent
process (or the init process if the parent
died)

* Reaper can inspect the exit status

Processes

e wait()
— Waits for a child process to change state

— If a child terminated, the parent “reaps” the child,
freeing all resources and getting the exit status

— Child fully “gone”
— For details: man 2 wait

Processes (Concurrency)

pid t child pid = fork();

if (child pid == 0){ What are the possible
/* only child comes here */ .
output (assuming fork
printf (“Child!\n”); Succeeds) ?
exit (0); — Child!, Parent!

}

else{
printf (“Parent!\n”) ;

— Parent!, Child!

} How to get the child to

always print first?

Processes (Concurrency)

int status;
pid t child pid = fork():;

e \Waits til the child has

if (child pid == 0) { '
/* only child comes here */ termlnated' .]
Parent can InSDECt exlit
printf (“Child!\n”) ; status of
. . {)
it (0) child using ‘status
} — WEXITSTATUS(status)

else(
wailtpid(child pid, &status, 0);

printf (“Parent!\n”);

e Qutput always: Child!, Parent!

Processes (Concurrency)

int status;
pid t child pid = fork():;

Char* argV[] — {“lS” “_l”, NULL};
char* env[] = {.., NULL}3 °
1f (child pid == 0){

/* only child comes here */
execve (“/bin/1ls”, argv, env);
/* will child reach here? */<—
}
else(°

wailtpid(child pid, &status, 0);

.. parent continue execution..

An example of
something useful.

Why is the first arg
llISH?

Will child reach here?

Processes

* Four basic States
— Running
e Executing instructions on the CPU
* Number bounded by number of CPU cores
— Runnable
* Waiting to be running
— Blocked
* Waiting for an event, maybe input from STDIN
* Not runnable
— Zombie
* Terminated, not yet reaped

Signals

Primitive form of interprocess communication
Notify a process of an event

Asynchronous with normal execution

Come in several types

— man 7 signal

Sent in various ways
— Ctrl+C, Ctrl+Z

— kill()

— kill utility

Signals

Handling signals

— Ignore

— Catch and run signal handler

— Terminate, and optionally dump core

Blocking signals

— sigprocmask()

Waiting for signals

— sigsuspend()

Can’t modify behavior of SIGKILL and
SIGSTOP

Non-queuing

Signals

* Signal handlers

— Can be installed to run when a signal is received
— The formis void handler(int signum){ }

— Separate flow of control in the same process

— Resumes normal flow of control upon returning

— Can be called anytime when the appropriate signal is
fired

Signals (Concurrency)

...install sigchld handler.. void sigchld handler (int signum)

{
pid t child pid = fork();

int status;

if (child pid == 0) {

pid t child pid =
/* child comes here */ N 1

waitpid (-1, &status, WNOHANG) ;

execve (....) ; if (WIFEXITED (status))
}

remove Jjob (child pid);
else{ B N
add job(child pid);

} How to solve this issue?

Block off SIGCHLD signal at the appropriate
What could happen here? places. You’d have to think of it yourself.

Agenda

* Problem 1 and?5

* Processes and Signals
* Shell lab

Shell lab

* Read the code we’ve given you

— There’s a lot of stuff you don’t need to write
yourself

— It’s a good example of the code we expect from
you

Shell lab

* Do not use sleep() to avoid race conditions.
This is incorrect, we will dock performance
points for it.

* Only use sleep() for performance to avoid
executing useless instructions (like sitting in a
while loop) Your code should still work if sleep
calls are removed

Shell lab

e Hazards

— Race conditions

* Hard to debug so start early
— Reaping zombies

* Race conditions

* Fiddling with signals
— Waiting for foreground job

* One of the only places where sleep is acceptable,
though not really needed

Q&A

 Thank you

