
Recitation 9
Shell LabShell Lab

Grant Skudlarek

News

• Welcome back

• Shell lab due next Thursday, at 11:59 PM

Agenda

• Problem 1 and 5
• Processes and Signals
• Shell lab

Problem 1

A.Consider the C function below:
int func(int x)
{

int y;
y=(x<<31)>>31;
return y;

}
When “func(7)” is called (i.e.x=7) on IA32, what is the return value? __-1__

Problem 1

B. The expression x*x >= 0 holds uniformly for
(a) both signed and unsigned integers
(b) signed integers, but not for unsigned integers
(c) unsigned integers, but not for signed integers
(d) neither signed nor unsigned integers

C.What is the evaluation result of expression 11102ˆ10102?
(a) 11112

(b) 10102

(c) 01002

(d) 01102

Problem 1

D. Assume that you are working on a machine with 8-bit ints and arithmetic right shifts. Further
assume that variable x is a signed integer represented in two’s complement. Match each of the descriptions on the
left with 0, 1, or more snippets of code on the right. Write the letter of each matching
snippet in the blank under the description. Some code snippets may not match any of the descriptions.

(1) 13*x (F)
(2) Absolute value of x. (H)
(3) Round x down to nearest power of 2. (NONE)

(a) x & (x - 1)
(b) -((x | MAX_INT) >> 7)
(c) ((˜x & MIN_INT) == 0(3) Round x down to nearest power of 2. (NONE)

(4) Round x to a multiple of 16 (E)

(5) x < 0 (B) (C)
(6) Swap most significant and least significant
four bits of x. (D)

(c) ((˜x & MIN_INT) == 0
(d) (x << 4) | ((x >> 4) & 0x0F)
(e) (x >> 4) << 4
(f) (x << 3) + (x << 2) + x
(g) (0x80 >> 4) & x
(h) x*(1 | (x >> 7))

Problem 5
Structure layout.
struct a {

float *f;
char c;
int x;
char z[4];
double d;double d;
short s;

};

struct b {
struct a a1;
int y;
struct a a2;

};

Problem 5
A
0x0 f f f f c # # #
0x8 x x x x z z z z
0x10 d d d d d d d d
0x18 s s # # 28 bytes
0x20

B
0x0 f f f f f f f f
0x8 c # # # x x x x
0x10 z z z z # # # #
0x18 d d d d d d d d
0x20 s s # # # # # # 40 bytes

Problem 5

C
Struct a1: 28 bytes
Int: 4 bytes
Struct a2: 28 bytes
60 bytes

B
Struct a1: 40 bytes
Int: 4 bytes
4 bytes padding (struct a needs 8 byte alignment)
Struct a2: 40 bytes
88 bytes

Agenda

• Problem 1 and 5
• Processes and Signals
• Shell lab

Processes

• What is a program?
– Written according to a specification that tells users

what it is supposed to do
– A bunch of data and instructions stored in an – A bunch of data and instructions stored in an

executable binary file
– Stateless since binary file is static

Processes

• What is a process?
– A running instance of a program in execution
– One of the most profound ideas in CS

• A fundamental abstraction provided by the OS
– Single thread of execution (linear control flow) ….
– … until you create more threads (later in the course)
– Stateful:

• Full set of private address space and registers
• Other state like open file descriptors and etc.

Processes

• Four basic process control functions
– fork()
– exec*() and other variants such as execve() – exec*() and other variants such as execve()

• But they all fundamentally do the same thing
– exit()
– wait()

Standard on all UNIX-based systems

Don’t be confused:
Fork(), Exit(), Wait() are all wrappers provided by
CSAPP

Processes

• fork()
– Creates or spawns a child process
– OS creates an exact duplicate of parent’s state:– OS creates an exact duplicate of parent’s state:

• Virtual address space (memory), including heap and
stack
• Registers, except for the return value (%eax/%rax)
• File descriptors but files are shared

– Result àààà Equal but separate state
– Returns 0 for child process but child’s PID for parent

Processes

• exec*()
– Replaces the current process’s state and context
– Provides a way to load and run another program

• Replaces the current running memory image with that of • Replaces the current running memory image with that of
new program

• Set up stack with arguments and environment variables
• Start execution at the entry point

– The newly loaded program’s perspective: as if the
previous program has not been run before

– It is actually a family of functions
• man 3 exec

Processes

• exit()
– Terminates the current process
– OS frees resources such as heap memory – OS frees resources such as heap memory

and open file descriptors and so on…
– Reduce to a zombie state
• Must wait to be reaped by the parent

process (or the init process if the parent
died)
• Reaper can inspect the exit status

Processes

• wait()
– Waits for a child process to change state
– If a child terminated, the parent “reaps” the child,

freeing all resources and getting the exit statusfreeing all resources and getting the exit status
– Child fully “gone”
– For details: man 2 wait

Processes (Concurrency)

• What are the possible
output (assuming fork

pid_t child_pid = fork();

if (child_pid == 0){
/* only child comes here */

output (assuming fork
succeeds) ?
– Child!, Parent!
– Parent!, Child!

• How to get the child to
always print first?

printf(“Child!\n”);

exit(0);
}
else{

printf(“Parent!\n”);
}

int status;
pid_t child_pid = fork();

if (child_pid == 0){
/* only child comes here */

Processes (Concurrency)

• Waits til the child has
terminated.

Parent can inspect exit
/* only child comes here */

printf(“Child!\n”);

exit(0);
}
else{

waitpid(child_pid, &status, 0);

printf(“Parent!\n”);
}

Parent can inspect exit
status of

child using ‘status’
– WEXITSTATUS(status)

• Output always: Child!, Parent!

Processes (Concurrency)

• An example of
something useful.

int status;
pid_t child_pid = fork();
char* argv[] = {“ls”, “-l”, NULL};
char* env[] = {…, NULL};

if (child_pid == 0){ something useful.
• Why is the first arg

“ls”?

• Will child reach here?

if (child_pid == 0){
/* only child comes here */

execve(“/bin/ls”, argv, env);

/* will child reach here? */
}
else{

waitpid(child_pid, &status, 0);

… parent continue execution…
}

Processes

• Four basic States
– Running
• Executing instructions on the CPU
• Number bounded by number of CPU cores• Number bounded by number of CPU cores

– Runnable
• Waiting to be running

– Blocked
• Waiting for an event, maybe input from STDIN
• Not runnable

– Zombie
• Terminated, not yet reaped

Signals

• Primitive form of interprocess communication
• Notify a process of an event• Notify a process of an event
• Asynchronous with normal execution
• Come in several types

– man 7 signal

• Sent in various ways
– Ctrl+C, Ctrl+Z
– kill()
– kill utility

Signals

• Handling signals
– Ignore
– Catch and run signal handler
– Terminate, and optionally dump core– Terminate, and optionally dump core

• Blocking signals
– sigprocmask()

• Waiting for signals
– sigsuspend()

• Can’t modify behavior of SIGKILL and
SIGSTOP

• Non-queuing

Signals

• Signal handlers
– Can be installed to run when a signal is received
– The form is void handler(int signum){ …. }– The form is void handler(int signum){ …. }
– Separate flow of control in the same process
– Resumes normal flow of control upon returning
– Can be called anytime when the appropriate signal is

fired

Signals (Concurrency)

….install sigchld handler…

pid_t child_pid = fork();

if (child_pid == 0){

void sigchld_handler(int signum)
{

int status;

pid_t child_pid = if (child_pid == 0){
/* child comes here */

execve(……);
}
else{

add_job(child_pid);

}

pid_t child_pid =
waitpid(-1, &status, WNOHANG);

if (WIFEXITED(status))
remove_job(child_pid);

}

What could happen here?

How to solve this issue?
Block off SIGCHLD signal at the appropriate
places. You’d have to think of it yourself.

Agenda

• Problem 1 and 5
• Processes and Signals
• Shell lab

Shell lab

• Read the code we’ve given you
– There’s a lot of stuff you don’t need to write

yourself
– It’s a good example of the code we expect from – It’s a good example of the code we expect from

you

Shell lab

• Do not use sleep() to avoid race conditions.
This is incorrect, we will dock performance
points for it.

• Only use sleep() for performance to avoid • Only use sleep() for performance to avoid
executing useless instructions (like sitting in a
while loop) Your code should still work if sleep
calls are removed

Shell lab

• Hazards
– Race conditions

• Hard to debug so start early

– Reaping zombies– Reaping zombies
• Race conditions
• Fiddling with signals

– Waiting for foreground job
• One of the only places where sleep is acceptable,

though not really needed

Q & A

• Thank you

