Cache



Outline

Memory organization

Caching

- Different types of locality

- Cache organization

Cachelab

- Warnings are errors

- Part (a) Building Cache Simulator

- Part (b) Efficient Matrix Transpose
Blocking



Memory Hierarchy

- Registers
Today: we study this

- SRAM interaction to give you an
Idea how caching works

- DRAM

- Local Secondary storage



SRAM vs DRAM Trade-off

- SRAM (cache)

- Faster (L1 cache: 1 CPU cycle)

- Smaller (Kilobytes (L1) or Megabytes (L2))
- More expensive and “energy-hungry”

- DRAM (main memory)

- Relatively slower (hundreds of CPU cycles)
- Larger (Gigabytes)

- Cheaper



Caching

Temporal locality

- A memory location accessed is likely to be
accessed again multiple times in the future

- After accessing address X in memory, save the
bytes in cache for future access

Spatial locality

- If a location is accessed, then nearby locations are
likely to be accessed in the future.

- After accessing address X, save the block of
memory around X in cache for future access



Memory Address

- 64-bit on shark machines

memory address

tag set index block offset

- Block offset: b bits
- Set Index: s bits



Cache

A cache iIs a set of 2”*s cache sets

A cache set is a set of E cache lines
- E is called associativity

- If E=1, it is called “direct-mapped”

Each cache line stores a block
- Each block has 2”b bytes



Cachelab

- Warnings are errors!

Include proper header files

Part (a) Building a cache simulator

Part (b) Optimizing matrix transpose



Warnings are Errors

- Strict compilation flags

- Reasons:

- Avoid potential errors that are hard to
debug

- Learn good habits from the beginning



Part (a) Cache simulator

A cache simulator is NOT a cache!
- Memory contents NOT stored
- Block offsets are NOT used

- Simply counts hits, misses, and evictions

Your cache simulator need to work for different s,
b, E, given at run time.

Use LRU replacement policy



Cache simulator: Hints

A cache is just 2D array of cache lines:
- struct cache_line cache[S][E];

- S =275, Is the number of sets

- E Is associativity

Each cache _line has:

- Valid bit

- Tag

- LRU counter



Part (b) Efficient Matrix Transpose

- Matrix Transpose (A -> B)

Matrix A Matrix B

1 5 9 13

1 2 3 4
s 6 7 8 -261014

9 10 11 12 3 7 11 15

13 14 15 16 4 8 12 16



Part (b) Efficient Matrix Transpose

- Matrix Transpose (A -> B)
- Suppose block size is 8 bytes (2 ints)

13 14 15 16

Question: After we handle
1&2. Should we handle 3&4
first, or 5&6 first ?



Blocking

What inspiration do you get from previous
slide ?

- Divide matrix into sub-matrices
- This is called blocking (CSAPP2e p.629)

- Size of sub-matrix depends on

- cache block size, cache size, input matrix size

- Try different sub-matrix sizes

We hope you invent more tricks to reduce the
number of misses !



Part (b)

- Cache:

- You get 1 kilobytes of cache
- Directly mapped (E=1)
- Block size is 32 bytes (b=5)

- There are 32 sets (s=5)

est Matrices:
- 32 by 32, 64 by 64, 61 by 67



The End

- Good luck!



	Slide 1
	Outline
	Memory Hierarchy
	SRAM vs DRAM tradeoff
	Caching
	Memory Address
	Cache
	Cachelab
	Warnings are Errors
	Part (a) Cache simulator
	Cache simulator: Hints
	Part (b) Efficient Matrix Transpose
	Part (b) Efficient Matrix Transpose
	Blocking
	Part (b)
	The End

