
Cache

Outline

• Memory organization

• Caching

– Different types of locality

– Cache organization

• Cachelab

– Warnings are errors

– Part (a) Building Cache Simulator

– Part (b) Efficient Matrix Transpose

• Blocking

Memory Hierarchy

• Registers

• SRAM

• DRAM

• Local Secondary storage

• Remote Secondary storage

Today: we study this
interaction to give you an
idea how caching works

SRAM vs DRAM Trade-off

• SRAM (cache)
– Faster (L1 cache: 1 CPU cycle)

– Smaller (Kilobytes (L1) or Megabytes (L2))

– More expensive and “energy-hungry”

• DRAM (main memory)
– Relatively slower (hundreds of CPU cycles)

– Larger (Gigabytes)

– Cheaper

Caching

• Temporal locality

– A memory location accessed is likely to be
accessed again multiple times in the future

– After accessing address X in memory, save the
bytes in cache for future access

• Spatial locality

– If a location is accessed, then nearby locations are
likely to be accessed in the future.

– After accessing address X, save the block of
memory around X in cache for future access

Memory Address

• 64-bit on shark machines

• Block offset: b bits
• Set index: s bits

Cache

• A cache is a set of 2^s cache sets

• A cache set is a set of E cache lines

– E is called associativity

– If E=1, it is called “direct-mapped”

• Each cache line stores a block

– Each block has 2^b bytes

Cachelab

• Warnings are errors!

• Include proper header files

• Part (a) Building a cache simulator

• Part (b) Optimizing matrix transpose

Warnings are Errors

• Strict compilation flags

• Reasons:
– Avoid potential errors that are hard to

debug

– Learn good habits from the beginning

Part (a) Cache simulator

• A cache simulator is NOT a cache!

– Memory contents NOT stored

– Block offsets are NOT used

– Simply counts hits, misses, and evictions

• Your cache simulator need to work for different s,
b, E, given at run time.

• Use LRU replacement policy

Cache simulator: Hints

• A cache is just 2D array of cache lines:
– struct cache_line cache[S][E];

– S = 2^s, is the number of sets

– E is associativity

• Each cache_line has:
– Valid bit

– Tag

– LRU counter

Part (b) Efficient Matrix Transpose

• Matrix Transpose (A -> B)

 Matrix A Matrix B
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

Part (b) Efficient Matrix Transpose

• Matrix Transpose (A -> B)
• Suppose block size is 8 bytes (2 ints)

Access A[0][0] cache miss

Access B[0][0] cache miss

Access A[0][1] cache hit

Access B[1][0] cache miss

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Question: After we handle
1&2. Should we handle 3&4
first, or 5&6 first ?

1

2

Blocking

• What inspiration do you get from previous
slide ?

– Divide matrix into sub-matrices

– This is called blocking (CSAPP2e p.629)

– Size of sub-matrix depends on

• cache block size, cache size, input matrix size

– Try different sub-matrix sizes

• We hope you invent more tricks to reduce the
number of misses !

Part (b)

• Cache:
– You get 1 kilobytes of cache

– Directly mapped (E=1)

– Block size is 32 bytes (b=5)

– There are 32 sets (s=5)

• Test Matrices:
– 32 by 32, 64 by 64, 61 by 67

The End

• Good luck!

	Slide 1
	Outline
	Memory Hierarchy
	SRAM vs DRAM tradeoff
	Caching
	Memory Address
	Cache
	Cachelab
	Warnings are Errors
	Part (a) Cache simulator
	Cache simulator: Hints
	Part (b) Efficient Matrix Transpose
	Part (b) Efficient Matrix Transpose
	Blocking
	Part (b)
	The End

