15-213 Recitation

2/18/2012

Announcements

e Buflab due tomorrow
e Cachelab out tomorrow
* Any questions?

Outline

e Cachelab preview
e Useful C functions for cachelab

Cachelab

* Part 1: you have to create a cache simulator
(not an actual cachel) that will record the hits,
misses and evictions of the cache for a given

trace

* Part 2: you will be asked to write code to
calculate some matrix operations, while
efficiently using the cache

 You’ll learn more about caches this week in
lecture

Cachelab(2)

* You will not have any starter code for this lab

— This is important because you will need to be able
to create programs from scratch at some point in
the future

 Some necessary items for doing the lab
include :
— Parsing command line arguments using getopt()
— Using “make”
— Opening and reading from a file

include

e Remember to include files that we will be
using functions from

* For cache lab you will need at least the
following
#include <getopt.h>
#include <stdlib.h>
#include <unistd.h>

#include "cachelab-tools.h"

getopt

- getopt() automates parsing elements on the unix
command line

Typically called in a loop to retrieve arguments
Its return value is stored in a local variable

When getopt() returns -1, there are no more options

To use getopt, your program must include the
header file unistd.h

getopt(2)

* A switch statement is used on the local
variable holding the return value from
getopt()

— Each command line input case can be taken care
of separately

— “optarg” is an important variable — it will point to
the value of the option argument

* You will have to use the atoi() function to convert the
inputs in char* format to ints

* Think about how to handle invalid inputs

Example

int main(int argc, char** argv){
int opt, Xx;
while(-1 != (opt = getopt(argc,argv,“x:"))){ //looping over arguments
switch(opt) { //determine which argument it’s processing
case 'x'":
x=atoi(optarg);
break;
default:
printf(“wrong argument\n");

Suppose the program executable was called “foo”. Then
we would call “./foo -x 1 “ to pass the value 1 to
variable x.

fopen

* The fopen() function opens and i/o stream to
a file and returns a pointer to that stream

— Takes 2 parameters: filename and open type (r, w,
etc.)

* [n cachelab you will use this to open trace files

 Remember to use fclose() on any files that you
open

fscanf

* The fscanf() function is just like scanf() except
it can specify a stream to read from (scanf
always reads from stdin)

— parameters: file pointer, format string with

information on how to read file, and the rest are
pointers to variables to storing data from file

— Typically want to use this function in a loop until it
hits the end of file

e fscanf will be useful in reading from the trace
files

Example

FILE * pFile; //pointer to FILE object

pFile = fopen ("myfile.txt",“r"); //open file for
//reading

intx,y;

char c;

//read two ints and a char from file

fscanf(pFile, “%d %d %c”, &x, &y, &c);

fclose(pFile); //remember to close file when done

Malloc/free

* Use malloc this to allocate memory on the
heap
— Return value of malloc is void™*, so cast to desired
type
— Ex: int *p = (int *)malloc(sizeof(int));
* Always free what you malloc, otherwise may
get memory leak

— Ex: free(p);
* Don’t free memory you didn’t allocate

Failure Conditions and Error Checking

 Don’t assume correct inputs and outputs
 Look at and handle the bad cases as well

— i.e. malloc may return NULL, user may enter
wrong number of inputs into program, inputs
themselves may not be valid, etc.

Makefile

 Makefiles are handy files that spare you from
the burden of recompiling many source files
on the command line whenever you want to
update your program
— It is always named Makefile
— Invoke it using “make”

— To remove object files and executables, call “make
clean”

Reminder on Coding Style

e Remove dead code

— Ex: printf statements for debugging, unused
variables, etc.

* Use descriptive variable and function names

Tutorials

e getopt:
http://www.gnu.org/software/libc/manual/ht
ml| node/Getopt.html

e fscanf:

http://crasseux.com/books/ctutorial/fscanf.ht
ml

* Google for more

http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://crasseux.com/books/ctutorial/fscanf.html
http://crasseux.com/books/ctutorial/fscanf.html

