
15-213 Recitation

2/18/2012

Announcements

• Buflab due tomorrow

• Cachelab out tomorrow

• Any questions?

Outline

• Cachelab preview

• Useful C functions for cachelab

Cachelab

• Part 1: you have to create a cache simulator
(not an actual cache!) that will record the hits,
misses and evictions of the cache for a given
trace

• Part 2: you will be asked to write code to
calculate some matrix operations, while
efficiently using the cache

• You’ll learn more about caches this week in
lecture

Cachelab(2)

• You will not have any starter code for this lab
– This is important because you will need to be able

to create programs from scratch at some point in
the future

• Some necessary items for doing the lab
include :
– Parsing command line arguments using getopt()

– Using “make”

– Opening and reading from a file

#include

• Remember to include files that we will be
using functions from

• For cache lab you will need at least the
following

#include <getopt.h>

#include <stdlib.h>

#include <unistd.h>

#include "cachelab-tools.h"

getopt

- getopt() automates parsing elements on the unix

command line

 Typically called in a loop to retrieve arguments

 Its return value is stored in a local variable

 When getopt() returns -1, there are no more options

To use getopt, your program must include the

header file unistd.h

getopt(2)

• A switch statement is used on the local
variable holding the return value from
getopt()
– Each command line input case can be taken care

of separately

– “optarg” is an important variable – it will point to
the value of the option argument
• You will have to use the atoi() function to convert the

inputs in char* format to ints

• Think about how to handle invalid inputs

Example
int main(int argc, char** argv){

int opt, x;

while(-1 != (opt = getopt(argc,argv,“x:"))){ //looping over arguments

 switch(opt) { //determine which argument it’s processing

 case 'x':

 x=atoi(optarg);

 break;

 default:

 printf(“wrong argument\n");

 }

}

Suppose the program executable was called “foo”. Then
we would call “./foo -x 1 “ to pass the value 1 to
variable x.

fopen

• The fopen() function opens and i/o stream to
a file and returns a pointer to that stream

– Takes 2 parameters: filename and open type (r, w,
etc.)

• In cachelab you will use this to open trace files

• Remember to use fclose() on any files that you
open

fscanf

• The fscanf() function is just like scanf() except
it can specify a stream to read from (scanf
always reads from stdin)
– parameters: file pointer, format string with

information on how to read file, and the rest are
pointers to variables to storing data from file

– Typically want to use this function in a loop until it
hits the end of file

• fscanf will be useful in reading from the trace
files

Example

FILE * pFile; //pointer to FILE object

pFile = fopen ("myfile.txt",“r"); //open file for
 //reading

int x, y;

char c;

//read two ints and a char from file

fscanf(pFile, “%d %d %c”, &x, &y, &c);

fclose(pFile); //remember to close file when done

Malloc/free

• Use malloc this to allocate memory on the
heap
– Return value of malloc is void*, so cast to desired

type

– Ex: int *p = (int *)malloc(sizeof(int));

• Always free what you malloc, otherwise may
get memory leak
– Ex: free(p);

• Don’t free memory you didn’t allocate

Failure Conditions and Error Checking

• Don’t assume correct inputs and outputs

• Look at and handle the bad cases as well

– i.e. malloc may return NULL, user may enter
wrong number of inputs into program, inputs
themselves may not be valid, etc.

Makefile

• Makefiles are handy files that spare you from
the burden of recompiling many source files
on the command line whenever you want to
update your program

– It is always named Makefile

– Invoke it using “make”

– To remove object files and executables, call “make
clean”

Reminder on Coding Style

• Remove dead code

– Ex: printf statements for debugging, unused
variables, etc.

• Use descriptive variable and function names

Tutorials

• getopt:
http://www.gnu.org/software/libc/manual/ht
ml_node/Getopt.html

• fscanf:
http://crasseux.com/books/ctutorial/fscanf.ht
ml

• Google for more

http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://crasseux.com/books/ctutorial/fscanf.html
http://crasseux.com/books/ctutorial/fscanf.html

