Assembly and Bomblab

Assembly and Bomblab

Outline

© Assembly
@ Basics

@ Operations

© Bomblab
@ Tools
o Walkthrough

Assembly and Bomblab

Assembly Basics
Operations

x86 Architecture

@ Program counter
o Contains address of next instruction
o eip (x86), rip (x86-64)
Stack registers
o Contain addresses of base and top of current stack frame
o Covered tomorrow in lecture
o esp and ebp (x86), rsp and rbp (x86-64)
General purpose registers
e eax, ebx, ecx, edx, esi, edi (x86)
e rax, rbx, rcx, rdx, rsi, rdi, r8, r9, r10, r11, r12, r13, r14, r15
and sometimes rbp (x86-64)

Condition codes
Other stuff

o Control registers, segment selectors, debug registers, SIMD
registers, floating point registers, etc

Assembly and Bomblab

Assembly Basics
Operations

Data Types

@ Integer data
o Data values (signed and unsigned)
@ 1, 2, or 4 bytes (or 8 on x86-64)
o Addresses
o 4 bytes (x86) or 8 bytes (x86-64)
o Floating point data
e 4, 8 or 10 bytes

@ No aggregate data types!

Assembly and Bomblab

Assembly Basics
Operations

Operand Types

o Immediate value

o Examples: $0x15213, $-18213

o Like a C constant, prefixed with ‘$’

e 1, 2 or 4 bytes (or 8 on x86-64)
@ Register

o Examples: %esi, %eax

e Some instructions (e.g. div) use specific registers
e Memory

o Examples: (%esi), 12(Veax,%ebx,4)

e Format is 0(Rb,R1,8)

Rb is the base address register
Ri is the index address register
S is the index scale (1, 2, 4 or 8)
0 is a constant offset

o Equivalent to C style Rb[Ri*S + 0]

Assembly and Bomblab

Assembly Basics
Operations

Memory access

@ movl src,dst

Example: movl $0x15213,%eax

Moves data between registers and memory
Immediate value to register or memory
Register to other register or memory
Memory to register

@ leal src,dst
Example: leal (%eax,’%eax,2),%eax
Computes an address specified by src and saves it in dst

Does not actually dereference src!
Sometimes used by compilers as a fast alternative to imul

@ Example above triples jeax

Assembly and Bomblab

Assembly Basics
Operations

Arithmetic Operations

Two operand commands: One operand commands:

Format Result Format Result

addl src,dst dst += src incl dst dst++

subl src,dst dst -= src decl dst dst—-
imull src,dst dst *= src negl dst dst = -dst
sall src,dst dst <<= src notl dst dst = “dst
sarl src,dst dst >>= src

xorl src,dst dst "= src

andl src,dst dst &= src

orl src,dst dst |= src

There are also 64 bit equivalents (e.g. addq).

Assembly and Bomblab

Assembly Basics
Operations

Arithmetic Example

void foo () { pushq Y%rbp

movq %rsp, Arbp
int a = 0; movl $0, -16(%rbp)
int b = 2; movl $2, -12(%rbp)
movl -12(%rbp), %edx
movl -16(%rbp), %eax
int c =a — b; subl %edx, %eax
movl %eax, -8(%rbp)
movl -8(%rbp), %eax

int d =c<< 2 sall $2, Y%eax
movl %eax, -4(%rbp)
} leave
ret

Assembly and Bomblab

Assembly Basics
Operations

Condition Codes

Set as side-effect of arithmetic operations in the eflags
register

CF set on unsigned integer overflow
ZF set if result was 0
SF set if result was negative

OF set on signed integer overflow

testl a,b and cmpl a,b are similar to andl a,b and subl
a,b but only set condition codes

@ Use set* reg instructions to set register reg based on state
of condition codes.

Assembly and Bomblab

Assembly Basics
Operations

Conditionals

@ Change the instruction pointer with the j* operations
e jmp dst unconditionally jumps to the address dst
o Use other jump variants (e.g. jne or jg) to conditionally jump
@ Usually a testl or cmpl followed by a conditional jump
e Conditional moves added in the x686 standard
@ cmov* src,dst
e Significantly faster than a branch
e GCC does not use these by default for 32 bit code to maintain
backwards compatibility

Assembly and Bomblab

Assembly Basics
Operations

Conditional Example

void bar () { pushq %rbp
movq hrsp, %rbp

int a = 2; movl $2, -8(%rbp)
int b = 0; movl $0, -4(%rbp)
if (a>7){ cmpl $7, -8(%rbp)
jle L3
b++; addl $1, -4(%rbp)
} .L3:
} leave
ret

Assembly and Bomblab

Tools
Bomblab Walkthrough

Overview

@ Series of stages, all asking for a password
o Give the wrong password and the bomb explodes

e You lose a half point every time your bomb explodes
e The bomb should never explode if you're careful

@ We give you the binary, you have to find the passwords

@ The binary ONLY runs on the shark machines

Assembly and Bomblab

Tools
Bomblab Walkthrough

GDB - GNU Debugger

@ Syntax: $> gdb ./bomb
@ Useful commands
e run <args> Runs the bomb with specified command line
arguments
e break <location> Stops the bomb just before the
instruction at the specified location is about to be run
e info functions Lists the names of all functions.
o stepi Steps the program one instruction. nexti will do the
same, but skipping over function calls.
e print <variable> Prints the contents of a variable
e x/<format> <address> Prints contents of the memory area
starting at the address in a specified format
o disassemble <address> Displays the assembly instructions
near the specified address
e layout <type> Changes the layout of GDB. layout asm
followed by layout reg is great
e help and help <command> Explains GDB usage.

Assembly and Bomblab

Tools
Bomblab Walkthrough

Others

@ strings
e Dumps all strings in the binary
e Function names, string literals, etc
@ objdump
e The -d option disassembles the bomb and outputs the
assembly to the terminal
e The -t option dumps the symbol table (all function and global
variable names) to the terminal
e You probably want to redirect the output into a file
objdump -d ./bomb > bomb_asm

Assembly and Bomblab

Tools
Bomblab Walkthrough

Walkthrough

Example bomb walkthrough

Assembly and Bomblab

	Assembly
	Basics
	Operations

	Bomblab
	Tools
	Walkthrough

