
Assembly
Bomblab

Assembly and Bomblab

Assembly and Bomblab

Assembly
Bomblab

Outline

1 Assembly
Basics
Operations

2 Bomblab
Tools
Walkthrough

Assembly and Bomblab

Assembly
Bomblab

Basics
Operations

x86 Architecture

Program counter

Contains address of next instruction
eip (x86), rip (x86-64)

Stack registers

Contain addresses of base and top of current stack frame
Covered tomorrow in lecture
esp and ebp (x86), rsp and rbp (x86-64)

General purpose registers

eax , ebx , ecx , edx , esi , edi (x86)
rax , rbx , rcx , rdx , rsi , rdi , r8, r9, r10, r11, r12, r13, r14, r15
and sometimes rbp (x86-64)

Condition codes

Other stuff

Control registers, segment selectors, debug registers, SIMD
registers, floating point registers, etc

Assembly and Bomblab

Assembly
Bomblab

Basics
Operations

Data Types

Integer data
Data values (signed and unsigned)

1, 2, or 4 bytes (or 8 on x86-64)

Addresses

4 bytes (x86) or 8 bytes (x86-64)

Floating point data

4, 8 or 10 bytes

No aggregate data types!

Assembly and Bomblab

Assembly
Bomblab

Basics
Operations

Operand Types

Immediate value

Examples: $0x15213, $-18213
Like a C constant, prefixed with ‘$’
1, 2 or 4 bytes (or 8 on x86-64)

Register

Examples: %esi, %eax
Some instructions (e.g. div) use specific registers

Memory

Examples: (%esi), 12(%eax,%ebx,4)
Format is O(Rb,Ri,S)

Rb is the base address register
Ri is the index address register
S is the index scale (1, 2, 4 or 8)
O is a constant offset

Equivalent to C style Rb[Ri*S + O]

Assembly and Bomblab

Assembly
Bomblab

Basics
Operations

Memory access

movl src,dst
Example: movl $0x15213,%eax
Moves data between registers and memory
Immediate value to register or memory
Register to other register or memory
Memory to register

leal src,dst
Example: leal (%eax,%eax,2),%eax
Computes an address specified by src and saves it in dst
Does not actually dereference src!
Sometimes used by compilers as a fast alternative to imul

Example above triples %eax

Assembly and Bomblab

Assembly
Bomblab

Basics
Operations

Arithmetic Operations

Two operand commands:
Format Result

addl src,dst dst += src
subl src,dst dst -= src
imull src,dst dst *= src
sall src,dst dst <<= src
sarl src,dst dst >>= src
xorl src,dst dst ^= src
andl src,dst dst &= src
orl src,dst dst |= src

One operand commands:
Format Result

incl dst dst++
decl dst dst--
negl dst dst = -dst
notl dst dst = ~dst

There are also 64 bit equivalents (e.g. addq).

Assembly and Bomblab

Assembly
Bomblab

Basics
Operations

Arithmetic Example

void f o o () {

i n t a = 0 ;
i n t b = 2 ;

i n t c = a − b ;

i n t d = c << 2 ;

}

pushq %rbp
movq %rsp, %rbp
movl $0, -16(%rbp)
movl $2, -12(%rbp)
movl -12(%rbp), %edx
movl -16(%rbp), %eax
subl %edx, %eax
movl %eax, -8(%rbp)
movl -8(%rbp), %eax
sall $2, %eax
movl %eax, -4(%rbp)
leave
ret

Assembly and Bomblab

Assembly
Bomblab

Basics
Operations

Condition Codes

Set as side-effect of arithmetic operations in the eflags
register

CF set on unsigned integer overflow

ZF set if result was 0

SF set if result was negative

OF set on signed integer overflow

testl a,b and cmpl a,b are similar to andl a,b and subl
a,b but only set condition codes

Use set* reg instructions to set register reg based on state
of condition codes.

Assembly and Bomblab

Assembly
Bomblab

Basics
Operations

Conditionals

Change the instruction pointer with the j* operations

jmp dst unconditionally jumps to the address dst
Use other jump variants (e.g. jne or jg) to conditionally jump

Usually a testl or cmpl followed by a conditional jump

Conditional moves added in the x686 standard

cmov* src,dst
Significantly faster than a branch
GCC does not use these by default for 32 bit code to maintain
backwards compatibility

Assembly and Bomblab

Assembly
Bomblab

Basics
Operations

Conditional Example

void bar () {

i n t a = 2 ;
i n t b = 0 ;
i f (a > 7) {

b++;
}

}

pushq %rbp
movq %rsp, %rbp
movl $2, -8(%rbp)
movl $0, -4(%rbp)
cmpl $7, -8(%rbp)
jle .L3
addl $1, -4(%rbp)

.L3:
leave
ret

Assembly and Bomblab

Assembly
Bomblab

Tools
Walkthrough

Overview

Series of stages, all asking for a password

Give the wrong password and the bomb explodes

You lose a half point every time your bomb explodes
The bomb should never explode if you’re careful

We give you the binary, you have to find the passwords

The binary ONLY runs on the shark machines

Assembly and Bomblab

Assembly
Bomblab

Tools
Walkthrough

GDB - GNU Debugger

Syntax: $> gdb ./bomb
Useful commands

run <args> Runs the bomb with specified command line
arguments
break <location> Stops the bomb just before the
instruction at the specified location is about to be run
info functions Lists the names of all functions.
stepi Steps the program one instruction. nexti will do the
same, but skipping over function calls.
print <variable> Prints the contents of a variable
x/<format> <address> Prints contents of the memory area
starting at the address in a specified format
disassemble <address> Displays the assembly instructions
near the specified address
layout <type> Changes the layout of GDB. layout asm
followed by layout reg is great
help and help <command> Explains GDB usage.

Assembly and Bomblab

Assembly
Bomblab

Tools
Walkthrough

Others

strings
Dumps all strings in the binary
Function names, string literals, etc

objdump
The -d option disassembles the bomb and outputs the
assembly to the terminal
The -t option dumps the symbol table (all function and global
variable names) to the terminal
You probably want to redirect the output into a file
objdump -d ./bomb > bomb asm

Assembly and Bomblab

Assembly
Bomblab

Tools
Walkthrough

Walkthrough

Example bomb walkthrough

Assembly and Bomblab

	Assembly
	Basics
	Operations

	Bomblab
	Tools
	Walkthrough

