Floating Point

15-213: Introduction to Computer Systems – Recitation January 30, 2012

Today: Floating Point

- Data Lab
- Floating Point Basics
 - Representation
 - Interpreting the bits
 - Rounding
- Floating Point Examples
 - Number to Float
 - Float to Number

Data Lab

- Due Thursday at 11:59pm
- Any questions?

Representation

Basic format of bit representation (single precision):

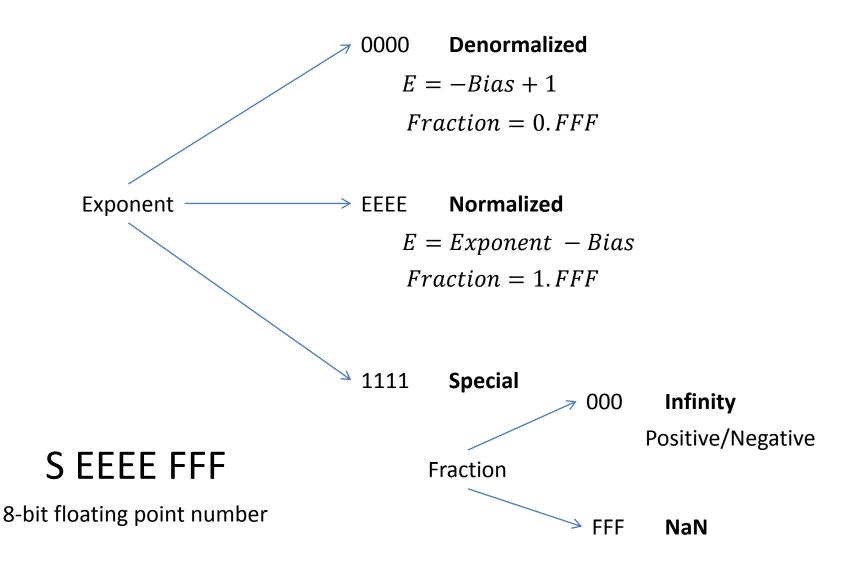
Sign	Exponent	Fraction (Mantissa)
1-bit	8-bits	23-bits

$$-1^{s} * M * 2^{E}$$

Where E is based on the Bias

$$Bias = 2^{k-1} - 1 = 2^{8-1} - 1 = 127$$
 $k = \text{exponent bits}$

Interpreting the Bits



Rounding

- Round to even
 - Like regular rounding except for the exactly half case
 - If the last rounded bit is 1 round up, else round down

1.10	1001	Greater then 0.5, round up	1.11
1.10	0110	Less than 0.5, round down	1.10
1.11	1000	Round to even up	10.00
1.10	1000	Round to even down	1.10

Convert: -5

S EEEE FFF

8-bit floating point number

Convert: -5

$$Bias = 2^{4-1} - 1 = 2^3 - 1 = 7$$

- Negative so we know S = 1
- Turn 5 to bits:

$$5_{10} = 101_2$$

Normalized value so lets fit in the leading 1

- Thus F = 010
- Now we figure out the exponent:

$$101_2 \rightarrow 1.01_2 \times 2^2$$

Calculate the exponent bits:

$$E = Exponent - Bias \rightarrow 2 = Exponent - 7 \rightarrow Exponent = 2 + 7 = 9$$

So the exponent is 9, in bits:

$$Exponent = 1001_2$$

Answer: 1 1001 010₂

Convert: 6/512

- Convert: 6/512
- Is it denormalized? Check the largest denormalized:

$$0\ 0000\ 111_2 = 0.111_2\ x\ 2^{-6} = 111_2\ x\ 2^{-9} = 7\ x\ 2^{-9} = 7/512$$

Denormalized, we know the exponent is going to be:

$$E = -Bias + 1 = -7 + 1 = -6$$

So we know the form of the answer is going to be:

$$0.FFF \times 2^{-6}$$

Lets remove the decimal point to make it a bit easier:

$$FFF \times 2^{-9}$$

The fraction bits are the top of the fraction:

$$6_{10} = 110_2$$

Why does that work? Lets remove the decimal point to make it a bit easier to see:

$$0.110 \times 2^{-6} = 110 \times 2^{-9}$$

Remembering that these are fractions:

2-1	2^{-2}	2^{-3}	2-4	2-5	2-6	2-7	2-8	2-9
1	1	1	1	1	1	1	1	1
$\overline{2}$	$\overline{4}$	8	16	32	64	128	256	512

We can see the table in terms on 512ths:

							2-8	
256	128	64	32	16	8	4	$\frac{2}{512}$	1
512	512	512	512	512	512	512	512	512

We want 6 512ths which are the bits we used.

Putting it all together: 0 0000 110

Convert: 27

- Convert: 27
- Positive so we know S = 0
- Turn 27 to bits:

$$27_{10} = 11011_2$$

Normalized value so lets fit in the leading 1

 But we only have 3 fraction bits so we must round.
 Digits after rounding equal half, last rounding digit is 1 so we round up.

$$1.1011_2 = 1.110_2$$

• Thus F = 110

Calculate the exponent :

$$11100_2 \rightarrow 1.1100_2 \ x \ 2^4$$

Calculate the exponent bits:

$$E = Exponent - Bias \rightarrow 4 = Exponent - 7 \rightarrow Exponent = 4 + 7 = 11$$

So the exponent is 11, in bits:

$$Exponent = 1011_2$$

Answer: 0 1011 110₂

Convert: 1 1001 010₂

- Convert: 1 1001 010₂
- Sign bit tells us it is negative
- We know it is normalized (non-zero exponent) so lets figure out the exponent:

$$1001_2 = 9_{10}$$

$$E = Exponent - Bias \rightarrow 9 - 7 = 2$$

Now the fraction (remember the leading 1):

$$1.010_{2}$$

Put it all together:

$$1.010_2 \times 2^2 = 101_2 = 5_{10}$$

Answer: -5

Convert: 0 0000 110

- Convert: 0 0000 110
- Sign bit tells us its positive
- It is denormalized because of the 0 exponent so lets figure out the exponent:

$$E = -Bias + 1 \rightarrow -7 + 1 = -6$$

Now the fraction (remember the leading 0):

$$0.110 \times 2^{-6}$$

Put it all together:

$$0.110_2 \times 2^{-6} = 0.000000110_2$$

Put it all together:

$$0.110_2 \times 2^{-6} = 0.000000110_2$$

Now lets examine our fraction chart:

							2-8	
256	128	64	32	16	8	4	$\frac{2}{512}$	1
512	512	512	512	512	512	512	512	512

Answer: 6/512

Convert: 0 1011 110₂

- Convert: 0 1011 110₂
- Sign bit tells us it is positive
- We know it is normalized (non-zero exponent) so lets figure out the exponent:

$$1011_2 = 11_{10}$$

$$E = Exponent - Bias \rightarrow 11 - 7 = 4$$

Now the fraction (remember the leading 1):

$$1.110_{2}$$

Put it all together:

$$1.110_2 \times 2^4 = 11100_2 = 28_{10}$$

Answer: 28

Questions?