15-213 "The Class That Gives CMU Its Zip!"

Introduction to Computer Systems

Taerim Kim January 23, 2012

Topics:

- Welcome
- Integers
- Datalab

Welcome to recitation

Where am I?

- 15-213 recitation, section G
- Somewhere in Wean...

Who is this fool standing in front of me?

- Taerim Kim
- SCS, class of 2012
- Fourth semester on 15-213 staff (or something like that)

What are we supposed to be doing here?

- Reinforce important lecture materials
- Jump start on labs
- Review for exams

- 2 - 15-213, S'12

Getting help

Recitations

- Come with questions
- Ask questions
- Pay attention

Office hours

- Monday through Thursday
- 6:00pm to 8:00pm
- WEH 5207

Piazza

- Replaces the staff mailing list
- Students post questions—answered by fellow students or staff members

-3- 15-213, S'12

Posting on Piazza

Answers to these questions should be, "Yes"

- Have I read the textbook?
- Have I read the writeup?
- Have I read the FAQs?
- Have I read relevant man pages?
- Have I spent a nontrivial amount of time pondering the problem myself?

Answers to these questions should be, "No"

- Will I have to post lots of code?
- Will I give anything away to my peers?

- 4 - 15-213, S'12

Review of integers

Two types

- Signed
- Unsigned

Consider a k-bit unsigned integer

- Bit n has value ____
- Minimum value is _____, and maximum value is _____

Consider a k-bit signed integer

- Bit n has value ____, except for most significant bit, which has value ____
- Minimum value is _____, and maximum value is _____

Shifting

Two directions

- Left: x << k</p>
- Right: x >> k

Two types

- Arithmetic
- Logical

Relationship with signed/unsigned

- Which type of shift is used with each type of integer?
- Why?

Thinking about shifting

Left shift

- Similar to which arithmetic operation?
- Completely identical?

Right shift

- Similar to which arithmetic operation?
- Completely identical?

The benefit of shifting

- Often faster than performing an actual arithmetic operation
- Good compilers will replace when appropriate on programmer's behalf

-7- 15-213, S'12

Nifty two's complement factoids

Negation

- Does -x == ~x + 1?
- Always?

Properties of zero

- What is the value of x & 0?
- What is the value of x | 0?
- What is the value of x & (0 1)?
- What is the value of -0?

– 8 – 15-213, S'12

Datalab

Details

- Available since Thursday, January 19
- Due Thursday, February 2
- That's two weeks! You shouldn't need all that time, but don't procrastinate.

Your job

- Solve a series of integer and floating point puzzles
- Use as few operations as possible
- Learn stuff
 - Representation of numbers in computers
 - Manipulating numbers

– 9 – 15-213, S'12

Starting a lab

Set up your workspace

- Download the handout
- Unpack the handout
- "Keep it secret. Keep it safe."

Read relevant stuff

- Read the textbook
- Read the writeup
- Read the textbook
- Read the writeup

Work on the shark machines

- 10 - 15-213, S'12

Unix basics

Know how to remotely access lab machines

- SCP (WinSCP if you're on Winblows)
- SSH (PuTTY if you're on Winblows)

Familiarize yourself with a reasonable text editor

- Emacs (lol)
- Vim

Figure out Unix and AFS file permissions

Learn how to help yourself

- man
- apropos

– 11 – 15-213, S'12

A parting gift: a hint

Don't underestimate datalab

- One puzzle in particular is very difficult
- You will struggle with the limit on the number of operations

Think about this example

- Write the function int parity(int n);
- Returns 1 if n has an odd number of 1 bits; 0 otherwise
- How do we do that?

– 12 – 15-213, S'12

A parting gift: a hint

Don't underestimate datalab

- One puzzle in particular is very difficult
- You will struggle with the limit on the number of operations

Think about this example

- Write the function int parity(int n);
- Returns 1 if n has an odd number of 1 bits; 0 otherwise
- How do we do that?
 - Idea: XOR all of the bits together!

```
» Example: 10100111
» 1 ^ 0 ^ 1 ^ 0 ^ 0 ^ 1 ^ 1 ^ 1 = 1
```

But this uses way too many operations

– 13 – 15-213, S'12

A parting gift: a hint

Don't underestimate datalab

- One puzzle in particular is very difficult
- You will struggle with the limit on the number of operations

Think about this example

- Write the function int parity(int n);
- Returns 1 if n has an odd number of 1 bits; 0 otherwise
- How do we do that?
 - Idea: divide and conquer!

– 14 – 15-213, S'12

Go away

– 15 – 15-213, S'12