Carnegie Mellon

C Primer and Virtual Memory

15-213 / 18-213: Introduction to Computer Systems
10t Recitation, March 26t 2012

Grant Skudlarek
Section H

Today

m Shell Lab

m Malloc Lab

m CPrimer

m Virtual Memory

Shell Lab

m Due Thursday, March 29!!!

Today

m Shell Lab

m Malloc Lab

m CPrimer

m Virtual Memory

Carnegie Mellon

Malloc Lab

m Lab goes out Thursday March 29

m Due Thursday April 12

m As always, read the documentation
m Start early (seriously)

Carnegie Mellon

Today

m Shell Lab

m Malloc Lab

m CPrimer

m Virtual Memory

Carnegie Mellon

C Primer — Basics of C, style and
conventions

m Saving you from malloc misery
m Basics

m Useful language features

m Debugging conventions

m The C Programming Language by Kernighan
and Ritchie

Carnegie Mellon

Basics (just review)

m Statically allocated arrays:
" int prices[100];
= Getting rid of magic numbers:
» 1nt prices [NUMITEMS];

m Dynamically allocated arrays:
" int *pricesZ2 = (int *) malloc(sizeof (int) * wvar);
m Which is valid:
" prices2 = prices;
" prices = prices2;
m The & operator:
" gprices([1l] isthesameas prices+1
m Function Pointer:
" int (*fun) ();

® Pointer to function returning int

Carnegie Mellon

Pg 101 K&R

m char **argv

= argv: pointer to a pointer to a char
m int (*daytab) [13]

= daytab: pointer to array[13] of int
m int *daytab[13]

= daytab: array[13] of pointer to int
m char (*(*x())[]) ()

= x: function returning pointer to array[] of pointer to function
returning char

m char (*(*x[3]) ()) [5]

= x:array[3] of pointer to function returning pointer to array[5] of
char

m Takeaway

" There is an algorithm to decode this (see K&R pg. 101)
= Always use parenthesis!!
= Typedef

Carnegie Mellon

Typedef

m For convenience and readable code

m Example:

" typedef struct
{

int x;
int y;
} point;
m Function Pointer example:
" typedef int (*ptZ2Func) (1nt, 1nt);

" pt2Func isa pointer to a function that takes 2 int arguments
and returns an int

10

Carnegie Mellon

Macros

m C Preprocessor looks at macros in the preprocessing step
of compilation

m Use #define to avoid magic numbers:
" #define TRIALS 100

m Function like macros — short and heavily used code

snippets
" #define GET BYTE ONE (x) ((x) & Oxff)
" #define GET BYTE TWO(x) (((x) >> 8) & Oxff)

m Also look at inline functions (example prototype):
" inline int fun(int a, 1int b)

= Requests compiler to insert assembly of max wherever a call to
max is made

m Both useful for malloc

1

Carnegie Mellon

Debugging

m Using the DEBUG flag:
" #define DEBUG

#ifdef DEBUG
.. // debugging print statements, etc.
fendif
m Compiling (if you want to debug):
" gcc -DDEBUG foo.c —-o foo
m Using assert
" assert (posvar > 0);

" man 3 assert

m Compiling (if you want to turn off asserts):
" gcc —-DNDEBUG foo.c —-o foo

12

Other stuff

m Usage messages

= Putting this in is a good habit — allows you to add features while
keeping the user up to date

" man -—-h
m fopen/fclose

= Always error check!
m Malloc

= Error check

" Free everything you allocate
m Global variables

= Namespace pollution

" |f you must, make them private:
» static 1int foo;

13

Carnegie Mellon

Today

m Shell Lab

m Malloc Lab

m CPrimer

m Virtual Memory

14

Carnegie Mellon

Virtual Memory Abstraction

m Virtual memory is layer of indirection between processor
and physical memory providing:
= Caching
= Memory treated as cache for much larger disk
" Memory management
= Uniform address space eases allocation, linking, and loading
" Memory protection

= Prevent processes from interfering with each other by setting
permission bits

15

Virtual Memory Implementation

m Virtual memory implemented by combination of
hardware and software

= (QOperating system creates page tables
= Page table is array of Page Table Entries (PTEs) that map virtual
pages to physical pages
= Hardware Memory Management Unit (MMU) performs address
translation

Main memory

Virtual address Physical address

VA PA]
CPU AL > MMU _()—>

RN S WS

2
&

Data word

16

Carnegie Mellon

Address Translation and Lookup

m On memory access (e.g., mov Oxdeadbeef, %eax)
= CPU sends virtual address to MMU
= MMU uses virtual address to index into in-memory page tables
= Cache/memory returns PTE to MMU
= MMU constructs physical address and sends to mem/cache
= Cache/memory returns requested data word to CPU

17

Carnegie Mellon

Recall: Address Translation With a Page Table

Virtual address

Page table n p P °
base register Virtual page number (VPN) Virtual page offset (VPO)
(PTBR)
Page table address Page table
for process)Valid Physical page number (PPN)
—>
Valid bit = 0:
page not in memory €
(page fault)
m-1 v p p-1 v 0

Physical page number (PPN) Physical page offset (PPO)

Physical address

18

Translating with a k-level Page Table

VIRTUAL ADDRESS

n-1 p-1 0
» VPN 1 » VPN?2 » VPN k VPO
H_/
Level 1 Level 2 Level k
page table page table R page table
|
T » PPN }—‘
m-1 \ p-1 0
PPN PPO

PHYSICAL ADDRESS

19

x86 Example Setup

m Page size 4KB (212 Bytes)
m Addresses: 32 bits (12 bit VPO, 20 bit VPN)

m Consider a one-level page table with:
= Base address: 0x01000000
= 4-byte PTEs
= 4KB aligned (i.e., lowest 12 bits are zero)
= Lowest 3 bits used as permissions
— Bit O: Present?
— Bit 1: Writeable?
— Bit 2: UserAccessible?

m How big overall?
m 2720 indicies, so 4MB

20

Carnegie Mellon

Example

m Given the setup from the previous slide, what are the
VPN (index), PPO, and VPO of address: Oxdeadbeef?

21

Example

m Answers:
= VPN (index) = Oxdeadb (1101 1110 1010 1101 1011)
= VPO = PPO = Oxeef

m Consider a page table entry in our example PT:
" |ocation of PTE = base + (size * index)
= 0x0137ab6c = base + 4 * index
" PTE: 0x98765007
® Physical address: 0x98765eef

22

Carnegie Mellon

Example: 2 level page table

31 22 21 12 11 0

Page directory base = 0x10000000
0x10000000
0x10000004

Use the first VPN to index into the page directory. This
gives the address of the start of the page table.

23

Carnegie Mellon

2-level page table — cont’d

1 22 21 12 1 0
Page table base = OxabcO0000 Dxdeadb000
0xabc00000
Oxabc00004

Ixdeadbeef
1

Use the second VPN to index into the page table. This
gives the address of the start of the page frame. Add the
offset to obtain the location in physical memory.

24

Carnegie Mellon

Questions?

25

