Full Name:

Andrew ID (print clearly!):

15-213/18-213, Spring 2012

Exam 1

Tuesday, March 6, 2012
Instructions:

e Make sure that your exam is not missing any sheets, then write your full name and Andrew ID on the
front.

o This exam is closed book, closed notes. You may not use any electronic devices.

e Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

e The exam has a maximum score of 100 points.

e The problems are of varying difficulty. The point value of each problem is indicated. Good luck!

Problem Your Score Possible Points

1 15
2 16
3 15
4 16
5 16
6 5
7 17

Total 100

Page 1 of 12

Problem 1. (15 points):

Bits and Bytes

A. Consider the C function below:

int func(int x)

{
int y;
y=(x<<31)>>31;
return y;

When “func (7) ” is called (i.e. x=7) on IA32, what is the return value?

B. The expression x * x > 0 holds uniformly for

(a) both signed and unsigned integers
(b) signed integers, but not for unsigned integers
(c) unsigned integers, but not for signed integers

(d) neither signed nor unsigned integers

C. What is the evaluation result of expression 11102 ~ 101027
(a) 11114
(b) 10109
(c) 01004
(d) 01109

Page 2 of 12

D. Assume that you are working on a machine with 8-bit ints and arithmetic right shifts. Further
assume that variable x is a signed integer represented in two’s complement. Match each of the de-
scriptions on the left with 0, 1, or more snippets of code on the right. Write the letter of each matching
snippet in the blank under the description. Some code snippets may not match any of the descriptions.

(1) 13 » x (@ x & (x - 1)

(b) - ((x | MAX_INT) >> 7)
(2) Absolute value of x.

() (("x & MIN_INT) == 0

(3) Round x down to nearest power of 2.

d) (x << 4) | ((x > 4) & 0x0F)

(4) Round x to a multiple of 16) (x >> 4) << 4

5) .) (x << 3) + (x << 2) + x
x <

(g) (0x80 >> 4) & x

(6) Swap most significant and least significant

byte of x.
(h)y x » (1 | (x >> 7))

Page 3 of 12

Problem 2. (16 points):

Floating point

Consider an 8-bit floating point representation based on the IEEE floating point format that has:

e 1 sign bit,

e 4 exponent bits (hence the Bias = 7), and

e 3 fraction bits.

Numeric values are encoded as a value of the form V = (—1)° x M x 2F, where S is the sign bit, E is
the exponent after biasing, and M is the significand value. The fraction bits encode the significand value M
using either a denormalized (exponent field 0) or a normalized representation (exponent field nonzero). The
exponent F is given by £ = 1 — Bias for denormalized values and ¥ = e — Bias for normalized values,

where e is the value of the exponent field interpreted as an unsigned number.

A. Below, you are given some decimal values, and your task it to encode them in floating point format.
If rounding is necessary, you should use round-to-even. In addition, you should give the rounded
value of the encoded floating point number. Give these as whole numbers (e.g., 17) or as fractions in

reduced form (e.g., 3/4).

Value Floating Point Bits Rounded value
9/32 0 0101 o001 9/32
40
15/2
1/128

B. Given the 8-bit floating point representation described above, how many different rational numbers

can be represented? (Assume that 0 and —0 count as just one number.)

C. The relative error between a real number x # 0, and its closest IEEE floating point approximation,
T is ‘%‘ Given the IEEE-like 8-bit floating representation described above (with 1 sign bit, 4
exponent bits and 3 fraction bits), what is the maximum relative error for the range of real numbers in

the range = € (0, 8)? (Note that z is strictly greater than 0 and strictly less than 8.)

(a) 1/16
(b) 1/8
() 1/4
@) 1/2
(e) 1

Page 4 of 12

Problem 3. (15 points):
x86-64 Assembly Code

For each of the following three C code functions (on the left), give the letter of the corresponding block of

x86-64 assembly code (on the right).

long int funcl (long int a)

{

long int ij;

if (a > 100L)

return a = 5L;

for (i OL; 1 < 10L; i++) {
a = a » 5L;

}

return a;

}
Assembly that matches func1:

long int func2(long int a)
{

long int i = 0L;

while (i < 10L) {

a = a * 5L;
i++;

}

if (a > 100L)

return aj;

else return ax5L;

}
Assembly that matches func?:

long int func3(long int a)
{
long int i = 0L;
do {
if(a > 100L)
return a;

a =

i++;
} while(i < 10L);
return aj;

}
Assembly that matches func3:

a x 5L;

(A) 0: 48 8d 04 bf lea (%rdi, 3rdi, 4), $rax
4: 48 83 ff 63 cmp $0x63, $rdi
8: 7e 16 jle 0x20
a: 48 0f af ff imul $rdi, $rdi
e: 48 83 ff Oa cmp $0xa, $rdi
12: b8 64 00 00 00 mov $0x64, Seax
17: ba 00 00 00 00 mov $0x0, $edx
lc: 48 0f 4c c2 cmovl $rdx, $rax
20: £3 c3 repz retqg
B) 0: ps 00 00 00 00 mov $0x0, eax
5: 48 8d 3c bf lea ($rdi, $rdi, 4),srdi
9: 48 83 c0 01 add $0x1, $rax
d: 48 83 f8 0a cmp $0xa, $rax
11: 75 f2 jne 0x5
13: 48 83 ff 64 cmp $0x64, %rdi
17: 48 8d 04 bf lea (%rdi, $rdi, 4), $rax
1b: 48 0f 4e f£8 cmovle %$rax, $rdi
1f: 48 89 f£8 mov $rdi, $rax
22: c3 retqg
((D 0: 48 89 f8 mov %$rdi, $rax
3: ba 00 00 00 00 mov $0x0, $edx
8: 48 83 ff 64 cmp $0x64, $rdi
c: 7e 05 jle 0x13
e: 48 8d 04 bf lea ($rdi, $rdi, 4), %rax
12: c3 retqg
13: 48 8d 04 80 lea ($rax, %rax,4),%rax
17: 48 83 c2 01 add $0x1, $rdx
lb: 48 83 fa Oa cmp $0xa, $rdx
1f: 75 f2 Jjne 0x13
21: £3 c3 repz retqg
D) 0. 48 89 £s8 mov %rdi,%rax
3: 48 83 ff 64 cmp $0x64, $rdi
7: 7f 1f Jjg 0x28
9: 48 8d 04 bf lea (%rdi, $rdi, 4), $rax
d: ba 01 00 00 00 mov $0x1, $edx
12: eb Oe Jjmp 0x22
14: 48 8d 04 80 lea ($rax, %rax,4),%rax
18: 48 83 c2 01 add $0x1, $rdx
lc: 48 83 fa Oa cmp $0xa, $rdx
20: 74 06 Jje 0x28
22: 48 83 f8 64 cmp $0x64, $rax
26: Te ec jle 0x14
28: £3 c3 repz retqg

Page 5 of 12

Problem 4. (16 points):

Stack discipline.

A. Caller-save and callee-save register conventions change when making recursive function calls:

True or False:

B. Putting a special “canary” value on the stack just beyond a buffer can be used to detect overflows:

(a) Always
(b) Never

(c) Sometimes

C. On x86-64 machines we tend to see more pushing and popping from the stack relative to IA32:

True or False:
D. Consider a C function with the following declaration:
void spawn_larva(int a, int b, int ¢, int d);

Assuming spawn_larva has been compiled for an x86 IA32 machine with 4-byte ints, what
would be the address of the argument b in terms of $ebp in the stack frame of spawn_larva?

(a) $ebp +8

(b) %ebp+12
(c) $ebp + 16
(d) $ebp +20

Page 6 of 12

E. Given the following function call, fill in the stack frame diagram with:

e Any function arguments (labeled by variable name: “x” if variable is int x)
e Return addresses (marked as “Return Address”)
e The smallest location on the stack pointed to by $esp and $ebp

00000000 <foo>:

0: 0: 55 push %ebp
1: int foo (int n) 1: 89 eb mov $esp, $ebp
2 { 3: 53 push $ebx
3: if(n<=1) return 1; 4: 83 ec 14 sub $0x10, $esp
4: else 7: 8b 5d 08 mov 0x8 (%ebp) , sebx
5: n=nxfoo (n-1); a: b8 01 00 00 00 mov $0x1, $eax
6: return nj; f: 83 fb 01 cmp $0x1, $ebx
7 } 12: 7e 0Oe Jjle 22 <foo+0x22>
8: 14: 8d 43 ff lea -0x1 (%ebx) , $eax
9: 17: 89 04 24 mov %eax, (%esp)
10: la: e8 fc ff ff ff call <foo>
11: x=foo(2); 1f: 0f af c3 imul %$ebx, $eax
22: 83 c4 14 add $0x10, $esp
25: 5b pop %ebx
26: 5d pop sebp
27: c3 ret
e +
Oxffff1004 | <end of calling func stack frame> |
e +
Oxf£f£f£1000 | | <- Start argument build area for line 11
e +
OxffffOffc |
e +
Oxffff0ff8 |
o +
Oxffff0ffd | |
e +
Oxffff0ff0 |
e +
OxffffOfec |
o +
OxffffO0fe8 |
R e +
Oxffff0fed |
e +
O0xffff0fel |
e +
OxffffOfdc |
e +
Oxffff0fd8 |
e +
Oxffff0fd4d |
e +
Oxffff0£fd0o |
e +
OxffffOfcc |
e +
Smallest location pointed to by $esp: and $ebp:

after calling foo();
Page 7 of 12

Problem 5. (16 points):

Structure layout.

struct a {
floatx £f;
char c;
int x;
char z[4];
double d;
short s;

}i

struct b {
struct a al;
int vy;
struct a az2;
bi

A. Show the layout of st ruct a in memory and shade in any bytes used for padding on a Shark Linux
machine running in IA32 mode (i.e. with 32-bit addresses).

0x0

0x8

0x10

0x18

0x20

How many total bytes does struct a use in this case?

B. Now show the layout of st ruct a in memory (and shade in any bytes used for padding) on a Shark
Linux machine running in x86-64 mode (i.e. with 64-bit addresses).

0x0

0x8

0x10

0x18

0x20

How many total bytes does st ruct a use in this case?

Page 8 of 12

C. How many bytes does struct b use on a Shark Linux machine in IA32 mode (i.e. with 32-bit
addresses)?

D. How many bytes does struct b use on a Shark Linux machine in x86-64 mode (i.e. with 64-bit
addresses)?

Page 9 of 12

Problem 6. (5 points):

Memory Hiearchy

A. What type of non-volatile memory would most likely store firmware like a computer’s BIOS?

(a) RAM

(b) EEPROM
(c¢) Hard Disk
(d) Tape Drive

B. Rank the following rates that you would expect from an SSD (such as Flash memory) from fastest (1)
to slowest (3):

e Random read throughput:
e Sequential read throughput:

e Random write throughput:

Page 10 of 12

Problem 7. (17 points):

Caches

Consider a computer with an 8-bit address space and a direct-mapped 32-byte data cache with 4-byte
cache blocks.

A. The boxes below represent the bit-format of an address. In each box, indicate which field that bit
represents (it is possible that a field does not exist) by labeling them as follows:

BO: Block Offset
SI: Set Index
CT: Cache Tag

7 6 5 4 3 2 1 0

B. The table below shows a trace of load addresses accessed in the data cache. Assume the cache is
initially empty. For each row in the table, please complete the two rightmost columns, indicating (i)
the set number (in decimal notation) for that particular load, and (ii) whether that loads hits (H) or
misses (M) in the cache (circle either “H” or “M” accordingly). Also, please indicate the total number
of cache hits in the blank below the table.

Load Hex Binary Set Number? | Hit or Miss?
No. | Address | Address (in Decimal) | (Circle one)
1 c7 1100 0111 H M
2 55 0101 0101 H M
3 la 0001 1010 H M
4 c5 1100 0101 H M
5 eb 11100110 H M
6 56 0101 0110 H M
7 77 01110111 H M
8 28 0010 1000 H M
9 75 0111 0101 H M
10 94 1001 0100 H M

How many cache hits were there in total?

Page 11 of 12

C. For the trace of load addresses shown in Part B, below is a list of possible final states for the cache,
showing the hex value of the tag for each cache block in each set. Assume that initially all cache

blocks are invalid (represented by X).

@) Set: | 0| 1[2]3 |45 7
Tag: | X |71 | X |X|4|1|X
®) Set: |O| 1|23 [|4|5]6/|7
Tag: | 1 X1 X|1[14]0X
© Set: | O | 12|34 |5]6/|7
Tag: | X |11 [X|]0]2]0]|X
) Set: | O | 1|23 |4 |5|6|7
Tag: | X |17 | X |X|4]|4]0
© Set: | O | 123 |4 |5]6/|7
Tag: | X |1]7(|X[4]4]|]0]|X
® Set: | 0 | 1 314|567
Tag: [X |71 X [X[4|0]|X
@ Set: |O| 12 |3]4|5|6]|7
8 e [7[X|1]0[4]4]0[X

Which of the choices above is the correct final state of the cache?

Page 12 of 12

15-213/18-213 Midterm Exam Notes Sheet Spring 2011

Jumps Arithmetic Operations
Jump Condition Format Computation
jmp 1 addl Src,Dest Dest = Dest + Src
je ZF subl Src,Dest Dest = Dest - Src
jne ~ZF imull Src,Dest Dest = Dest * Src
js SF sall Src,Dest Dest = Dest << Src
jns ~SF sarl Src,Dest Dest = Dest >> Src
jg ~(SFAOF)&~ZF shrl Src,Dest Dest = Dest >> Src
jge ~(SFAOF) xorl Src,Dest Dest = Dest ” Src
jl (SFAOF) adnl Src,Dest Dest = Dest & Src
jle (SFAOF) | ZF orl Src,Dest Dest = Dest | Src
ja ~CF&"~ZF
Memory Operations
ib | cF yop
Format Computation
(Rb, Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reb[Rb]+Reg|[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg|Ri]]
Registers
63 31 15 87
srax seax %ax %ah %al .
Return value Linux Stack
Srbx Sebx $bx Sbh 2bl Callee saved
r
$rcx $ecx %cx %ch %cl Argument H#4
$rdx %edx %dx %dh $dl Argument #3
srsi %esi %si %sil Argument #2 <
Frame
%rdi %edi %di %dil Argument #1
srbp %ebp bp sopl | Callee saved Arguments
$rsp %esp $sp $spl Stack Pointer \ Return Addr
518 %r8d %r8w srgp| Argument #5 sebp => Old %ebp
519 $r9d 3r9w srop| Argument #6
Saved
5110 $r10d $r10w sriop| Reserved Registers
+
sril $rild %rilw sr11p| Used for linking Local
Variables
5112 sr12d $rl2w sriop| Callee saved
5ri13 %r13d $rl3w sr13p| Callee saved
Argument
sri4 Sri4d Srldw sr1ap| Callee saved Build
sesp=—>
$r15 3r15d $rl5w sr15p| Callee saved

Specific Cases of Alignment (IA32)
1 byte: char, ...
no restrictions on address
2 bytes: short, ...
lowest 1 bit of address must be 02
4 bytes: int, float, char *, ...
lowest 2 bits of address must be 002
8 bytes: double, ...
Windows (and most other OS’ s & instruction sets):
lowest 3 bits of address must be 0002
Linux:
lowest 2 bits of address must be 002
i.e., treated the same as a 4-byte primitive data type
12 bytes: long double
Windows, Linux:
lowest 2 bits of address must be 002
i.e., treated the same as a 4-byte primitive data type

Specific Cases of Alignment (x86-64)

1 byte: char, ...
no restrictions on address
2 bytes: short, ...
lowest 1 bit of address must be 02
4 bytes: int, float, ...
lowest 2 bits of address must be 002
8 bytes: double, char *, ...
Windows & Linux:
lowest 3 bits of address must be 0002
16 bytes: long double
Linux:
lowest 3 bits of address must be 0002
i.e., treated the same as a 8-byte primitive data type

Floating Point

Bias = 2k1 -1

C Data Type Intel IA32 x86-64
char 1 1
short 2 2
int 4 4
long 4 8
long long 8 8
float 4 4
double 8 8
long double 10/12 10/16
pointer 4 8

Byte Ordering
4-byte variable 0x01234567 at 0x100

Big Endian
Least significant byte has highest address

0x100 0x101 0x102 0x103
| oo | 23 | a5 | 67 |

Little Endian
Least significant byte has lowest address
0x100 0x101 0x102 0x103
| 67 | as | 23 | o1 |

