Carnegie Mellon Carnegie Mellon

Today

m Parallel Computing Hardware
Thread-Level Parallelism " Multicore

= Multiple separate processors on single chip
® Hyperthreading
15-213 / 18-213: Introduction to Computer Systems

= Multiple threads executed on a given processor at once
26t Lecture, Apr. 26, 2012

m Thread-Level Parallelism

| ® Splitting program into independent tasks
nstructors:

= Example: Parallel summation
Todd Mowry and Anthony Rowe = Some performance artifacts

= Divide-and conquer parallelism
= Example: Parallel quicksort

Carnegle Mellon
. Single Core Computer
Why Multi-Core? & P
CPU chip

m Traditionally, single core performance is improved by increasing [EBisteflg

the clock frequency... <:I ALU
m ...and making deeply pipelined circuits... systembus memory bus
m Which leads to... ﬁ

p
. — 1/0 main
Heat problems Bus Interface <::‘7 bridge memory

® Speed of light problems

= Difficult design and verification ﬁ? Expansion slots
= Large design teams |

= Big fans, heat sinks 1/0 bus {L
= Expensive air-conditioning on server farms

UsB graphics disk
controller adapter controller

1 !

mouse keyboard monitor [—— I

’ network ‘

m Increasing clock frequency no longer the way to go forward adapter

Carnegie Mellon Carnegie Mellon

Single Core Processor (chip) Multi-Core Architecture

CPU chip

The single core m Somewhat recent trend in computer architecture

C / m Replicate many cores on a single die

AW | |«
register file register file register file

i L~ Fystem s <%> ALU I:> ALU

register file

ALU

000
Bus Interface < /j‘> {} {} {} <:|
- = - = - =
’ Bus Interface K:>

Core 1 Core 2 Core n

Multi-core Chip

Carnegie Mellon

. Within each core, threads are time-sliced
Multi-core Processor . . .
e 3 (just like on a uniprocessor)

Carnegic Mellon

Core 0
several several several several
threads threads threads threads
L1
i-cache
L2 unified cache
c c c c
L3 unified cach ° ° ° °
unified cache
(shared by all cores) ‘ r r i i
e e e e
1 2 3 4
Main memory ‘
m Intel Nehalem Processor
® E.g., Shark machines
= Multiple processors operating with coherent view of memory
\A A YYVYyYyY yYvyy yYvyy

Carnegie Mellon

Interaction With the Operating System Flavors of Parallelism

m OS perceives each core as a separate processor m Instruction Level Parallelism (ILP)

m OS scheduler maps threads/processes to different cores m Thread Level Parallelism (TLP)

m Most major OS support multi-core today: m Simultaneous Multi-Threading (SMT)

= Mac OS X, Linux, Windows, ...

Instruction-Level Parallelism Thread-level Parallelism

m Parallelism at the machine-instruction level m Parallelism on a coarser scale

m Achieved in the processor with m Server can serve each client in a separate thread
= Pipeline = Web server, database server
® Re-ordered instructions m Computer game can do Al, graphics, physics, Ul in four different
®= Split into micro-instructions threads

" Aggressive branch prediction m Single-core superscalar processors cannot fully exploit TLP

® Thread instructions are interleaved on a coarse level with other threads

m Multi-core architectures are the next step in processor
evolution: explicitly exploiting TLP

= Speculative execution

m ILP enabled rapid increases in processor performance

® Has since plateaued

Carnegie Mellon Carnegie Mellon

Simultaneous Multithreading (SMT) SMT
m Complimentary technique to m Permits multiple independent threads to execute
multi-core J___ SIMULTANEOUSLY on the SAME core
m Addresses the stalled pipeline 5 [Integer][Fioating Point | m Weaving together multiple “threads”
pro'ble'm . N § m Example: if one thread is waiting for a floating point operation to
® Pipeline is stalled waiting for the ° complete, another thread can use the integer units
result of a long operation (float?) o
= ... or waiting for data to arrive from S R JAI
memory (long latency) §
m Other execution units are idle = Trace Cache I pcnde
T
H
Source: Intel
Camegie Mellon
Without SMT, only a single thread SMT processor: both threads can
can run at any given time run concurrently

J: | || FIo}ﬁng Pointl J: | Integ\(|| FIo;ﬁng Pointl

Aoc] |
=M H =H H

1 m 1 Eim

Thread 1: floating point Thread 2: Thread 1: floating point
19 integer operation 1

Carnegie Mellon Carnegie Mellon

But: Can’t simultaneously use the SMT is not a “true” parallel processor
same functional unit ,
m Enables better threading (e.g. up to 30%)

-I-_Bm m OS and applications perceive each simultaneous thread as a
| Intebqr\ | I | separate “virtual processor”

m The chip has only a single copy of each resource

m Compare to multi-core:

® Each core has its own copy of resources

I
Bl H |
1
I | | This scenario is
I impossible with SMT
on a single core
Thread 1 Thread2 | (@ssuming a single
IMPOSSIBLE integer unit) 22

Carnegie Mellon Carnegie Mellon

Multi-core: Threads run on separate cores Multi-core: Threads run on separate cores

| Integer || | || oy Linteger || | [I |[Floaghg Point | || 1 | |

| Floati}@ Point |

m s oz |
T H - H — Cache |-

o] g o
(e e 2} 2}

Thread 1 Thread 2 Thread 3 Thread 4

[
[—

Carnegie Mellon

Combining Multi-core and SMT

m Cores can be SMT-enabled (or not)

Carnegic Mellon

SMT Dual-core: all four threads can
run concurrently

m The different combinations:
= Single-core, non-SMT: standard uniprocessor
= Single-core, with SMT
= Multi-core, non-SMT
= Multi-core, with SMT: our fish machines
m The number of SMT threads is determined by hardware design
® 2,4 or sometimes 8 simultaneous threads I l I I

'E | In?bger ”Floa)lﬁg Pointl -E | Ir\gger ” Floaty(g Pointl

m Intel calls them “Hyper-threads” I I

[H H [H H

— | — |

Thread 1 Thread 3 Thread 2 Thread4 2/

Carnegie Mellon Carnegie Mellon

SMT/Multi-Core and the Memory Hierarchy Designs with Private L2 Caches

m SMT is a sharing of pipeline

resources hyper-threads
® Thus all caches are shared

m Multi-core chips:

® L1 caches are private (i.e. each core
has its own L1)

® 2 cache private in some
architectures, shared in others

® Main memory is always shared memory
m Example: Fish machines L2 cache memory
= Dual-core Intel Xeon processors i’:\;g‘:ﬁ;ﬁ'\?:tzp;:;gtm b
® Each core is hyper-threaded memory ’ Example: Intel Itanium 2
" Private L1, shared L2 caches Quad Core 2 Duo shares L2 in pairs of cores

Carnegie Mellon

Private vs Shared Cache

m Advantages of Private Cache
® Closer to the core, so faster access
= No contention for core access -- no waiting while another core accesses

m Advantages of Shared Cache
= Threads on different cores can share same cache data
= More cache space is available if a single (or a few) high-performance
threads run
m Cache Coherence Problem
® The same memory value can be stored in multiple private caches
" Need to keep the data consistent across the caches
® Many solutions exist
= Invalidation protocol with bus snooping, ...

Carnegic Mellon

Summation Example

m Sum numbers 0, ..., N-1
= Should add up to (N-1)*N/2
m Partition into K ranges
= |N/K] values each
= Accumulate leftover values serially
m Method #1: All threads update single global variable
= 1A: No synchronization
= 1B: Synchronize with pthread semaphore
® 1C: Synchronize with pthread mutex
= “Binary” semaphore. Only values 0 & 1

Carnegie Mellon

Exploiting parallel execution

m So far, we’ve used threads to deal with I/O delays
= e.g., one thread per client to prevent one from delaying another
m Multi-core CPUs offer another opportunity
= Spread work over threads executing in parallel on N cores
® Happens automatically, if many independent tasks
= e.g., running many applications or serving many clients
® Can also write code to make one big task go faster
= by organizing it as multiple parallel sub-tasks
m Shark machines can execute 16 threads at once
= 8 cores, each with 2-way hyperthreading
® Theoretical speedup of 16X
= never achieved in our benchmarks

26

Accumulating in Single Global Variable:
Declarations

typedef unsigned long data t;
/* Single accumulator */
volatile data_t global_ sum;

/* Mutex & semaphore for global sum */
sem_t semaphore;
pthread mutex_t mutex;

/* Number of elements summed by each thread */
size_t nelems_per_thread;

/* Keep track of thread IDs */
pthread t tid[MAXTHREADS] ;

/* Identify each thread */
int myid[MAXTHREADS] ;

28

Accumulating in Single Global Variable:
Operation

nelems_per_thread = nelems / nthreads;
/* Set global value */
global sum = 0;

/* Create threads and wait for them to finish */
for (i = 0; i < nthreads; i++) {
myid[i] = i;
Pthread create(&tid[i], NULL, thread fun, &myid[i]);
}
for (i = 0; i < nthreads; i++)
Pthread join(tid[i], NULL);

result = global_sum;

/* Add leftover elements */

for (e = nthreads * nelems per_ thread; e < nelems; e++)
result += e;

Carnegic Mellon

Accumulating in Single Global Variable:
lllustration

Thread 0 Thread 1 Thread n

'r ______ \‘ {/ —————— \‘ ',' ——————— \\
| L | ' :

1

| Cnt0-20 I | Cnt20-40 | | Cnt(n-20-n !
1 1 ! !

1 : 1 : ese ! :
OO T O
1 ! | 1 | 1
| 1 h 1 1 |
1 1 \ 1 | 1
‘\ _____ /l \ /1 \\ /l

Carnegie Mellon

Thread Function: No Synchronization

void *sum_race(void *vargp)
{
int myid = *((int *)vargp);
size_t start = myid * nelems_per thread;
size t end = start + nelems_per_ thread;
size t i;
for (i = start; i < end; i++) {
global_sum += i;
}
return NULL;
}

30

Carnegic Mellon

Unsynchronized Performance

Parallel Sums #1

Elapsed Seconds

15
\ ——Race
1

Ty

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Threads

m N=23%
m Best speedup = 2.86X
m Gets wrong answer when > 1 thread!

32

Carnegie Mellon

Thread Function: Semaphore / Mutex

Semaphore

void *sum_sem(void *vargp)

{
int myid = *((int *)vargp);
size_t start = myid * nelems_per_ thread;
size_t end = start + nelems_per_ thread;
size_t i;

for (i = start; i < end; i++) {
sem_wait (&semaphore) ;
global_sum += i;

sem_post (&semaphore) ;

}
return NULL;

Mutex

pthread mutex lock (&mutex) ;
global_sum += i;
pthread mutex unlock (&mutex) ;

Carnegic Mellon

Semaphore / Mutex Performance

Parallel Sums #2

——Race

—8-Semaphore

Elapsed Seconds

Mutex

12 3 45 6 7 8 9101112 13141516

Threads

m Terrible Performance
= 2.5seconds =» ~10 minutes

m Mutex 3X faster than semaphore

m Clearly, neither is successful

Carnegie Mellon

Accumulating with Mutex / Semaphore

Thread 0 Thread 1 Thread n
'/ \‘ 'z —————— \‘ ',' ——————— \\
' ! . |
| Cnt0-20 1 | Cnt20-40 1 | Cnt(n-201-n !
1 | ! 1
1 ! 1 ! see ! !
1 1 !
OO T D
1 1 1 1 1 I
1 T ! 1 !
1 oy 1 1 !
\ ! \ 1 !

\

‘ Mutex / Semaphore
global_sum

Carnegic Mellon

Separate Accumulation

m Method #2: Each thread accumulates into separate variable
® 2A: Accumulate in contiguous array elements
= 2B: Accumulate in spaced-apart array elements

® 2C: Accumulate in registers

/* Partial sum computed by each thread */
data_t psum[MAXTHREADS*MAXSPACING] ;

/* Spacing between accumulators */
size_t spacing = 1;

36

Carnegie Mellon

Separate Accumulation: Operation

nelems_per_ thread = nelems / nthreads;

/* Create threads and wait for them to finish */
for (i = 0; i < nthreads; i++) {
myid[i] = i;
psum[i*spacing] = 0;
Pthread create(&tid[i], NULL, thread fun, &myid[i]);
}
for (i = 0; i < nthreads; i++)
Pthread join(tid[i], NULL);

result = 0;
/* Add up the partial sums computed by each thread */
for (i = 0; i < nthreads; i++)
result += psum[i*spacing];
/* Add leftover elements */
for (e = nthreads * nelems per_thread; e < nelems; e++)
result += e;

Accumulating into memory (no spacing)

Thread 0 Thread 1 Thread n

Cnt 20 - 40 Cnt (n-20)- n

—— e e

C

psum [MAXTHREADS *MAXSPACING]
global_sum

39

Carnegie Mellon

Thread Function: Memory Accumulation

void *sum_global (void *vargp)

{
int myid = *((int *)vargp);
size_t start = myid * nelems_per thread;
size t end = start + nelems_per_ thread;
size t i;

size t index = myid*spacing;

psum[index] = 0;

for (i = start; i < end; i++) {
psum[index] += i;

}

return NULL;

38

Carnegic Mellon

Accumulating into memory (spacing)

Thread 0 Thread 1 Thread n

Cnt 20 - 40 Cnt (n-20)- n

—— e e

C

psum [MAXTHREADS *MAXSPACING]
global_sum

40

10

Carnegie Mellon

Memory Accumulation Performance

Parallel Sums #3

15 | N —+—Race

. M Adjacent memory acc
——Spaced memory acc

0.5 \‘\R‘_‘/i

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

Elapsed Seconds

Threads

m Clear threading advantage
= Adjacent speedup: 5 X
= Spaced-apart speedup: 13.3 X (Only observed speedup > 8)

m Why does spacing the accumulators apart matter?

4“

Carnegic Mellon

False Sharing Performance

False Sharing Effects

Threads

® Best spaced-apart performance 2.8 X better than best adjacent
m Demonstrates cache block size = 64

= 8-byte values

= No benefit increasing spacing beyond 8

43

Carnegie Mellon

False Sharing

psum | | | | | | |

Cache Block m Cache Block m+1

m Coherency maintained on cache blocks
m To update psum(i], thread i must have exclusive access

= Threads sharing common cache block will keep fighting each other
for access to block

42

Carnegic Mellon

Thread Function: Register Accumulation

void *sum local (void *vargp)
{
int myid = *((int *)vargp);
size_t start = myid * nelems_per_ thread;
size t end = start + nelems_per_ thread;
size t i;
size_t index = myid*spacing;
data_t sum = 0;
for (i = start; i < end; i++) {
sum += i;
}

psum[index] = sum; return NULL;

11

Carnegie Mellon

Accumulating into register

Thread 0 Thread 1 Thread n

Cnt 20 - 40 Cnt (n-20)- n

C

,___________
—— e e

-

psum [MAXTHREADS *MAXSPACING]

global_sum

45

Carnegic Mellon

Amdahl’s Law

m Overall problem
®* T Total time required
®" p Fraction of total that can be spedup (0<p <1)
" k Speedup factor
m Resulting Performance
= T,=pT/k+(1-p)T
= Portion which can be sped up runs k times faster
= Portion which cannot be sped up stays the same
= Maximum possible speedup
= k=00

* T.=(1-p)T

47

Register Accumulation Performance

Parallel Sums #4

15 ——Race

—m-Spaced memory acc

1
Register acc
05

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

Elapsed Seconds

Threads

m Clear threading advantage
" Speedup=7.5X
m 2X better than fastest memory accumulation

Carnegie Mellon

46

Carnegic Mellon

Amdahl’s Law Example

m Overall problem
" T=10 Total time required
" p=0.9 Fraction of total which can be sped up
= k=9 Speedup factor
m Resulting Performance
" T,=0.9%10/9+0.1*10=1.0+1.0=2.0
® Maximum possible speedup
= T,=0.1%10.0=1.0

48

12

Memory Consistency

m There are different memory consistency models

= Abstract model of how hardware handles concurrent accesses
m Most systems provide “sequential consistency”

= Qverall effect consistent with each individual thread

= But, the threads can be interleaved in any way

= like when one-thread-at-a-time, but with constant interleaving

m So, no correctness effects

= But, there can be performance effects

= related to keeping cached values consistent
= copying data from one cache to another is sorta like a cache miss

Memory Consistency

inta=1;
int b = 100;

N

Carnegie Mellon

Thread consistency
constraints
Wa———— Rb

Thread1: Thread2:
Wa: a=2; Whb: b = 200; Wb R
Rb: print(b); | | Ra: print(a); a

49

m What are the possible values printed?

= Depends on memory consistency model

= Abstract model of how hardware handles concurrent accesses
m Sequential consistency

= Qverall effect consistent with each individual thread

= QOtherwise, arbitrary interleaving

50

Carnegic Mellon

Sequential Consistency Example

Carnegic Mellon

Non-Coherent Cache Scenario

inta=1;
m Write-back caches, without int b = 100;

coordination between them /\

Thread1:
Wa: a=2;

Thread2:
Whb: b = 200;

- . Thread consistency
!n: : - 1’00 constraints
in ‘/\ Wa Rb
Thread1: Thread2: Wb Ra
Wa: a=2; Whb: b = 200;
Rb: print(b); | | Ra: print(a); Rb Wh Ra 100,2
Wa < Rb Ra 200,2
Wb <)
Ra Rb 2,200
Ra Wa Rb 1,200
Wb < Ra Rb 2,200
Wa <
Rb Ra 200, 2

m Impossible outputs
= 100, 1and 1, 100
= Would require reaching both Ra and Rb before Wa and Wb

Rb: print(b); | | Ra: print(a);

Thread1 Cache Thread2 Cache

a:2 b:100 a1l b:200 print 1
' >(| print 100

=

52

13

Carnegie Mellon

Snoopy Caches

inta=1;
int b = 100;

m Tag each cache block with state /\
Invalid Cannot use value Thread1: Threadz:
Shared Readable copy Wa: a=2; Whb: b = 200;
Exclusive Writeable copy Rb: print(b); | | Ra: print(a);

Thread1 Cache Thread2 Cache
[[
Main Memory

Carnegic Mellon

Summary: Creating Parallel Machines

m Multicore
= Separate instruction logic and functional units
® Some shared, some private caches
" Must implement cache coherency
m Hyperthreading
= Also called “simultaneous multithreading”
= Separate program state
= Shared functional units & caches
= No special control needed for coherency
= Combining
= Shark machines: 8 cores, each with 2-way hyperthreading
= Theoretical speedup of 16X
= Never achieved in our benchmarks

Snoopy Caches

m Tag each cache block with state
Invalid Cannot use value
Shared Readable copy
Exclusive Writeable copy

Carnegie Mellon

inta=1;
int b = 100;

N

Thread1:
Wa: a=2;
Rb: print(b);

Thread2:
Whb: b = 200;
Ra: print(a);

Thread1 Cache Thread2 Cache

S| a2

E 200
N /]
T WaimMemory

print 2

print 200

m When cache sees request for
one of its E-tagged blocks

m Supply value from cache
m SettagtoS

14

