Carnegie Mellon

Thread-Level Parallelism

15-213 / 18-213: Introduction to Computer Systems
26t Lecture, Apr. 26, 2012

Instructors:
Todd Mowry and Anthony Rowe

Carnegie Mellon

Today

m Parallel Computing Hardware
= Multicore
= Multiple separate processors on single chip
" Hyperthreading
= Multiple threads executed on a given processor at once

m Thread-Level Parallelism
= Splitting program into independent tasks
= Example: Parallel summation
= Some performance artifacts
= Divide-and conquer parallelism
= Example: Parallel quicksort

Why Multi-Core?

m Traditionally, single core performance is improved by increasing
the clock frequency...

m ...and making deeply pipelined circuits...
m Which leads to...

Heat problems

Speed of light problems

Difficult design and verification

" Large design teams

= Big fans, heat sinks

® Expensive air-conditioning on server farms

m Increasing clock frequency no longer the way to go forward

Carnegie Mellon

Single Core Computer

CPU chip

register file

<::> ALU

ﬁ }stem bus mem(Iry bus
1/O main
Bus Interface |< > bridge <:> memory

ﬁ? Expansion sl_ots>

| S |

USB graphics disk network
controller adapter controller adapter

r 1 i 1

<

Y

mouse keyboard monitor
[network]

Single Core Processor (chip)

CPU chip

Carnegie Mellon

register file

=

ALU

Bus Interface

The single core

e

system bus

-

)

Carnegie Mellon

Multi-Core Architecture

m Somewhat recent trend in computer architecture
m Replicate many cores on a single die

register file register file register file

Bus Interface < >

Core 1l Core 2 Core n

Multi-core Chip

Carnegie Mellon

Multi-core Processor

L3 unified cache
(shared by all cores)

E Core 0 Core n-1 ;
| Regs Regs |
T L1 L1 L1 ;
i d-cache| | i-cache s d-cache| | i-cache :
' | | L2 unified cache L2 unified cache ;

Main memory

m Intel Nehalem Processor
= E.g., Shark machines
= Multiple processors operating with coherent view of memory

Within each core, threads are time-sliced
(just like on a uniprocessor)

several several several several
threads threads threads threads
c c c c
o) o) o) o)
r r r r
e e e e

Interaction With the Operating System

m OS perceives each core as a separate processor
m OS scheduler maps threads/processes to different cores

m Most major OS support multi-core today:
® Mac OS X, Linux, Windows, ...

Flavors of Parallelism

m Instruction Level Parallelism (ILP)
m Thread Level Parallelism (TLP)
m Simultaneous Multi-Threading (SMT)

Carnegie Mellon

Instruction-Level Parallelism

m Parallelism at the machine-instruction level

m Achieved in the processor with
" Pipeline
= Re-ordered instructions
= Split into micro-instructions
= Aggressive branch prediction
= Speculative execution

m |ILP enabled rapid increases in processor performance

" Has since plateaued

Carnegie Mellon

Thread-level Parallelism

m Parallelism on a coarser scale
m Server can serve each client in a separate thread

= Web server, database server

m Computer game can do Al, graphics, physics, Ul in four different
threads

m Single-core superscalar processors cannot fully exploit TLP
" Thread instructions are interleaved on a coarse level with other threads

m Multi-core architectures are the next step in processor
evolution: explicitly exploiting TLP

Simultaneous Multithreading (SMT)

m Complimentary technique to
multi-core

m Addresses the stalled pipeline
problem

" Pipeline is stalled waiting for the
result of a long operation (float?)

= ... or waiting for data to arrive from
memory (long latency)

m Other execution units are idle

Carnegie Mellon

L1 D-Cache D-TLB

‘ Integer H Floating Pount\

uCode

[

I=

8 Schedulers

2 —'—|

© Uop queues

£

© Rename/Alloc

O I

ﬁ BTB = Trace Cache
Decoder |

(g *

(a8 BTB and I-TLB

ROM

Source: Intel

Carnegie Mellon

SMT

m Permits multiple independent threads to execute
SIMULTANEOUSLY on the SAME core

m Weaving together multiple “threads”

m Example: if one thread is waiting for a floating point operation to
complete, another thread can use the integer units

Carnegie Mellon

Without SMT, only a single thread
can run at any given time

| | Flogting Point
|
1 [<Gooe ro]
H

Thread 1: floating point

19

Carnegie Mellon

SMT processor: both threads can
run concurrently

Integ Flogting Point

1+ [ecomron]

Thread 2: Thread 1: floating point
integer operation 21

Carnegie Mellon

But: Can’t simultaneously use the

same functional unit
|

Integer |

This scenario is
Impossible with SMT
on a single core

Thread 1 Thread 2 | (@SSuming a single
IMPOSSIBLE integer unit) 22

Carnegie Mellon

SMT is not a “true” parallel processor

m Enables better threading (e.g. up to 30%)

m OS and applications perceive each simultaneous thread as a
separate “virtual processor”

m The chip has only a single copy of each resource

m Compare to multi-core:

® Each core has its own copy of resources

Carnegie Mellon

Multi-core: Threads run on separate cores

~

Int&er Irhqger
N A
\\I \\ |
: g
[
[
|
Thread 1 Thread 2

Carnegie Mellon

Multi-core: Threads run on separate cores

Floay/g Point FIoatiyzjoint

[17 [17
/ /

|/] J

V

Thread 3 Thread 4

Carnegie Mellon

Combining Multi-core and SMT

m Cores can be SMT-enabled (or not)
m The different combinations:

= Single-core, non-SMT: standard uniprocessor
= Single-core, with SMT

= Multi-core, non-SMT

® Multi-core, with SMT: our fish machines

m The number of SMT threads is determined by hardware design

® 2.4 or sometimes 8 simultaneous threads

m Intel calls them “Hyper-threads”

Carnegie Mellon

SMT Dual-core: all four threads can
run concurrently

Intager || Floayhg Point

! ||k
i i

Thread 1 Thread 3 Thread 2 Thread 4 27

Floatig Point

Carnegie Mellon

SMT/Multi-Core and the Memory Hierarchy

m SMT is a sharing of pipeline
resources hyper-threads

®" Thus all caches are shared
m Multi-core chips:

® L1 caches are private (i.e. each core
has its own L1)

® |2 cache private in some
architectures, shared in others

= Main memory is always shared

m Example: Fish machines L2 cache
® Dual-core Intel Xeon processors
® Each core is hyper-threaded memory
® Private L1, shared L2 caches

Carnegie Mellon

Designs with Private L2 Caches

memory

memory

Examples: AMD Opteron,
AMD Athlon, Intel Pentium D

Example: Intel Itanium 2

Quad Core 2 Duo shares L2 in pairs of cores

Carnegie Mellon

Private vs Shared Cache

m Advantages of Private Cache
= Closer to the core, so faster access
" No contention for core access -- no waiting while another core accesses

m Advantages of Shared Cache
® Threads on different cores can share same cache data
= More cache space is available if a single (or a few) high-performance
threads run
m Cache Coherence Problem
" The same memory value can be stored in multiple private caches
" Need to keep the data consistent across the caches
" Many solutions exist
= |nvalidation protocol with bus snooping, ...

Carnegie Mellon

Exploiting parallel execution

m So far, we’ve used threads to deal with 1/0 delays

= e.g., one thread per client to prevent one from delaying another
m Multi-core CPUs offer another opportunity

= Spread work over threads executing in parallel on N cores

" Happens automatically, if many independent tasks

= e.g., running many applications or serving many clients
= Can also write code to make one big task go faster

= by organizing it as multiple parallel sub-tasks

m Shark machines can execute 16 threads at once
= 8 cores, each with 2-way hyperthreading
" Theoretical speedup of 16X

= never achieved in our benchmarks

26

Carnegie Mellon

Summation Example

m Sum numbers O, ..., N-1
= Should add up to (N-1)*N/2
m Partition into K ranges
= |N/K] values each
= Accumulate leftover values serially
m Method #1: All threads update single global variable

= 1A: No synchronization
= 1B: Synchronize with pthread semaphore
® 1C: Synchronize with pthread mutex
= “Binary” semaphore. Only values 0 & 1

27

Accumulating in Single Global Variable:

Declarations

typedef unsigned long data_t;
/* Single accumulator */
volatile data t global sum;

/* Mutex & semaphore for global sum */
sem t semaphore;
pthread mutex t mutex;

/* Number of elements summed by each thread */
size t nelems per thread;

/* Keep track of thread IDs */
pthread t tid[MAXTHREADS];

/* Identify each thread */

int myid[MAXTHREADS] ;

28

Accumulating in Single Global Variable:
Operation

nelems_per_thread = nelems / nthreads;
/* Set global value */
global sum = 0;

/* Create threads and wait for them to finish */
for (1 = 0; i < nthreads; i++) {
myid[i] = 1;
Pthread create(&tid[i], NULL, thread fun, &myid[i]);
}
for (i = 0; 1 < nthreads; i++)
Pthread join(tid[i], NULL);

result = global sum;

/* Add leftover elements */

for (e = nthreads * nelems per thread; e < nelems; e++)
result += e;

29

Carnegie Mellon

Thread Function: No Synchronization

void *sum race (void *vargp)

{
int myid = *((int *)vargp)
size t start = myid * nelems per thread;
size t end = start + nelems per thread;
size t i;

for (i = start; 1 < end; i++) {
global sum += i;

}

return NULL;

30

Accumulating in Single Global Variable:
lllustration

Thread 0 Thread 1 Thread n

- - o o e e e e e e

C
C
C

[global sum 1

Carnegie Mellon

L e —

3

Carnegie Mellon

Unsynchronized Performance

Parallel Sums #1

A\
o\

M D
1

0.5

Elapsed Seconds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Threads

m N=230
m Best speedup = 2.86X
m Gets wrong answer when > 1 thread!

32

Carnegie Mellon

Thread Function: Semaphore / Mutex

Semaphore

void *sum sem(void *vargp)

{
int myid = *((int *)vargp)
size t start = myid * nelems per thread;
size t end = start + nelems per thread;
size_t i;

for (i = start; 1 < end; i++) {
sem wait (&semaphore) ;
global sum += i;

sem post (&semaphore) ;

}
return NULL;

Mutex

pthread mutex lock (&mutex) ;
global sum += i;
pthread mutex unlock (&mutex) ;

33

Accumulating with Mutex / Semaphore

Thread 0 Thread 1 Thread n

Cnt (n-20)- n

O

— e - - = - -

- e o o o o e e e .
— o o o o o o oy,

- s s s e e e e o o

C
C

-~

Mutex / Semaphore

[global sum }

Carnegie Mellon

34

Semaphore / Mutex Performance

Parallel Sums #2

700

600

500

B
o
o

Elapsed Seconds
N w
(e} (@)
o (@)

100 [

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

Threads

ﬂ&v\/\/ \/ -

—fli—Semaphore

Mutex

m Terrible Performance
= 2.5seconds = ~10 minutes

m Mutex 3X faster than semaphore
m Clearly, neither is successful

Carnegie Mellon

35

Carnegie Mellon

Separate Accumulation

m Method #2: Each thread accumulates into separate variable
= 2A: Accumulate in contiguous array elements
= 2B: Accumulate in spaced-apart array elements
= 2C: Accumulate in registers

/* Partial sum computed by each thread */
data t psum[MAXTHREADS*MAXSPACING] ;

/* Spacing between accumulators */

size t spacing = 1;

36

Carnegie Mellon

Separate Accumulation: Operation

nelems_per_thread = nelems / nthreads;

/* Create threads and wait for them to finish */
for (i = 0; 1 < nthreads; i++) {
myid[i] = i;
psum[i*spacing] = O0;
Pthread create(&tid[i], NULL, thread fun, &myid[i]):;
}
for (i = 0; i < nthreads; i++)
Pthread join(tid[i], NULL);

result = 0;
/* Add up the partial sums computed by each thread */
for (1 = 0; 1 < nthreads; i++)
result += psum[i*spacing];
/* Add leftover elements */
for (e = nthreads * nelems per thread; e < nelems; e++)
result += e;

37

Carnegie Mellon

Thread Function: Memory Accumulation

void *sum global (void *vargp)

{
int myid = *((int *)vargp)
size t start = myid * nelems per thread;
size t end = start + nelems per thread;
size t i;

size t index = myid*spacing;

psum[index] = 0;

for (i = start; 1 < end; i++) {
psum[index] += 1i;

}

return NULL;

38

Carnegie Mellon

Accumulating into memory (no spacing)

Thread 0 Thread 1 Thread n

- - o o e e e e e e

C
C
C

psum [MAXTHREADS *MAXSPACING]

[global sum }

39

Carnegie Mellon

Accumulating into memory (spacing)

Thread 0 Thread 1 Thread n

- - o o e e e e e e

C
—~C
C

psum [MAXTHREADS *MAXSPACING]

[global sum }

40

Memory Accumulation Performance

Parallel Sums #3

2.5 Hi

1: ‘\‘*‘»—o—o—o—‘ﬁ_._‘_.
0.5 \\‘~ -
w

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Elapsed Seconds

Threads

== Race
Adjacent memory acc

=== Spaced memory acc

m Clear threading advantage
= Adjacent speedup: 5 X

= Spaced-apart speedup: 13.3 X (Only observed speedup > 8)
m Why does spacing the accumulators apart matter?

Carnegie Mellon

4

Carnegie Mellon

False Sharing

psum

Cache Block m Cache Block m+1

m Coherency maintained on cache blocks

m To update psumli], thread i must have exclusive access

" Threads sharing common cache block will keep fighting each other
for access to block

42

False Sharing Performance

False Sharing Effects

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Threads

—=51
—52
——54
S8
——516

= Best spaced-apart performance 2.8 X better than best adjacent

m Demonstrates cache block size = 64
= 8-byte values
" No benefit increasing spacing beyond 8

Carnegie Mellon

43

Carnegie Mellon

Thread Function: Register Accumulation

void *sum local (void *vargp)
{
int myid = *((int *)vargp)
size t start = myid * nelems per thread;
size t end = start + nelems per thread;
size t i;
size t index = myid*spacing;
data t sum = 0;
for (i = start; i1 < end; i++) {
sum += 1i;
}

psum[index] = sum; return NULL;

44

Carnegie Mellon

Accumulating into register

Thread 0 Thread 1 Thread n

‘/ —————— \\ ‘/ ------ N /- T--== \\
1 |

1 CntO0-20 : 1 Cnt20-40 : I Cnt(n-20)-n |

: ' : I : I

I o ' I ;

I : I ! (YY) | :

I I I I

: ! : ! l :
I | | I

I sum : I sum : I sum :

'\) '\ I \ !

N o = - — /

psum [MAXTHREADS *MAXSPACING]

[global sum }

45

Carnegie Mellon

Register Accumulation Performance

Parallel Sums #4

2.5 \
\\ = RacCe
\\ == Spaced memory acc

e —

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N

=
wn

Elapsed Seconds

[

o
U

o

Threads

m Clear threading advantage
= Speedup=7.5X
m 2X better than fastest memory accumulation

46

Carnegie Mellon

Amdahl’s Law

m Overall problem
= T Total time required
= p Fraction of total that can be spedup (O<p =<1)
= k Speedup factor

m Resulting Performance
" T, =pT/k+(1-p)T
= Portion which can be sped up runs k times faster
= Portion which cannot be sped up stays the same
= Maximum possible speedup
= k=00

= T, =(1-p)T

47

Carnegie Mellon

Amdahl’s Law Example

m Overall problem
= T=10 Total time required
" p=0.9 Fraction of total which can be sped up
= k=9 Speedup factor

m Resulting Performance
" T,=09%*10/9+0.1*10=1.0+1.0=2.0
= Maximum possible speedup
= T,=0.1*10.0=1.0

48

Carnegie Mellon

Memory Consistency

m There are different memory consistency models

= Abstract model of how hardware handles concurrent accesses

m Most systems provide “sequential consistency”
= Qverall effect consistent with each individual thread
= But, the threads can be interleaved in any way
= |like when one-thread-at-a-time, but with constant interleaving
L SO, no correctness effects
= But, there can be performance effects

= related to keeping cached values consistent

= copying data from one cache to another is sorta like a cache miss

49

Memory Consistency

inta=1;
int b = 100;

N

Threadl:
Wa: a=2;
Rb: print(b);

Thread2:
Whb: b = 200;
Ra: print(a);

m What are the possible values printed?
= Depends on memory consistency model

Carnegie Mellon

Thread consistency
constraints

Wa——— Rb

Wbh—— Ra

= Abstract model of how hardware handles concurrent accesses

m Sequential consistency

= Qverall effect consistent with each individual thread

= QOtherwise, arbitrary interleaving

50

Sequential Consistency Example

Thread consistency

i"t a=1 constraints
int b =100; Wa Rb
Threadl: Thread2: Wh Ra
Wa: a=2; Wb: b = 200;
Rb: print(b); | | Ra: print(a); Rb Wb

Ra ———
Wb < Ra
Wa <

m Impossible outputs
= 100,1and 1, 100

= Would require reaching both Ra and Rb before Wa and Wb

Wa < Rb
Wb <

Ra
Wa

Rb

Ra
Ra

—Rb
—Rb

—Rb

Ra

Carnegie Mellon

100, 2

200, 2

2,200
1,200

2,200

200, 2

51

Non-Coherent Cache Scenario

m Write-back caches, without
coordination between them

Thread1 Cache

Carnegie Mellon

inta=1;
int b = 100;

N

Threadl:
Wa: a=2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Thread2 Cache

a: 2 b:100 |

! a:1 bh:200

a:1

print 1

print 100

52

Snoopy Caches

m Tag each cache block with state

Invalid
Shared

Exclusive

Cannot use value

Readable copy

Writeable copy

Carnegie Mellon

inta=1;

int b =100;
Thread1l: Thread2:
Wa: a=2; Wb: b = 200;
Rb: print(b); | | Ra: print(a);

Thread1 Cache Thread2 Cache
E| a:2
E |b:200
Main Memory
a:1 b:100

53

Snoopy Caches

Tag each cache block with state
Invalid Cannot use value
Shared Readable copy
Exclusive Writeable copy

Carnegie Mellon

inta=1;

int b =100;
Thread1l: Thread2:
Wa: a=2; Wb: b = 200;
Rb: print(b); | | Ra: print(a);

Thread1 Cache Thread2 Cache

S| a:2

S| a2

S b:K

emory

a:1 b:100

print 2
print 200

m When cache sees request for
one of its E-tagged blocks

m Supply value from cache
m Settagto$S

54

Carnegie Mellon

Summary: Creating Parallel Machines

m Multicore
= Separate instruction logic and functional units
= Some shared, some private caches
" Must implement cache coherency

m Hyperthreading
= Also called “simultaneous multithreading”
= Separate program state
= Shared functional units & caches
" No special control needed for coherency

m Combining
= Shark machines: 8 cores, each with 2-way hyperthreading
" Theoretical speedup of 16X
= Never achieved in our benchmarks

55

