Carnegie Mellon

Synchronization: Basics

15-213 / 18-213: Introduction to Computer Systems
24t Lecture, April. 17, 2012

Instructors:
Todd C. Mowry & Anthony Rowe

Carnegie Mellon

Process: Traditional View

m Process = process context + code, data, and stack

Process context Code, data, and stack
Program context: p stack
Data registers
Condition codes
Stack pointer (SP)

shared libraries

Program counter (PC) brk run-time heap
Kernel context: read/write data

VM structures PC— read-only code/data

Descriptor table

brk pointer 0

Carnegie Mellon

Today

m Threads review
m Sharing

m Mutual exclusion
]

Semaphores

Carnegie Mellon

Process: Alternative View

m Process = thread + code, data, and kernel context

Thread Code, data, and kernel context
Program context: shared libraries
Data registers brk
Condition codes run-time heap
Stack pointer (SP) read/write data
Program counter (PC) PC— read-only code/data

0

stack ‘
SP

Kernel context:
VM structures
Descriptor table
brk pointer

Carnegie Mellon

Process with Two Threads

Thread 1
Program context:
Data registers Code, data, and kernel context
Condition codes shared libraries
Stack pointer (SP)
Program counter (PC) brk run-time heap
‘ read/write data
SP stack PC—* read-only code/data
0
Thread 2
Program context: Kernel context:
Data registers VM st'ructures
Condition codes Descnptor table
Stack pointer (SP) brk pointer

Program counter (PC)

4_[stack ‘

SP

Carnegie Mellon

Threads vs. Processes (cont.)

m Processes form a tree hierarchy

m Threads form a pool of peers
® Each thread can kill any other
® Each thread can wait for any other thread to terminate
® Main thread: first thread to run in a process

Process hierarchy Thread pool

@ *******
() O N

4 shared code, data
and kernel context

Carnegie Mellon

Threads vs. Processes

m Threads and processes: similarities
® Each has its own logical control flow
® Each can run concurrently with others
® Each is context switched (scheduled) by the kernel

m Threads and processes: differences
= Threads share code and data, processes (typically) do not
® Threads are less expensive than processes
= Process control (creating and reaping) is more expensive as
thread control
= Context switches for processes more expensive than for
threads

Carnegie Mellon

Posix Threads (Pthreads) Interface

m Pthreads: Standard interface for ~60 functions that manipulate
threads from C programs
® Threads run thread routines:
= void *threadroutine(void *vargp)
® Creating and reaping threads
* pthread_create(pthread t *tid, .., func *£, void *arg)
* pthread_ join(pthread t tid, void **thread return)
= Determining your thread ID
» pthread self()
= Terminating threads
* pthread cancel (pthread t tid)
* pthread exit(void *thread return)
= return (in primary thread routine terminates the thread)
= exit (terminates all threads)

Carnegie Mellon

The Pthreads “Hello, world" Program

/*

* hello.c - Pthreads "hello, world" program

*/

#include "csapp.h" Thread attributes

1 (usually NULL)

void *thread(void *vargp) ;

int main() { Thread arguments
pthread t tid; o (void *p)

Pthread create(&tid, NULL, thread, NULL);

Pthread join(tid, NULL);
exit(0);
}

/* thread routine */

void *thread(void *vargp) {
printf ("Hello, world!'\n");
return NULL;

}

|__| assigns return value
(void **p)

Carnegie Mellon

Today

Threads review
Sharing

Mutual exclusion

Semaphores

Carnegie Mellon

Pros and Cons of Thread-Based Designs

m + Easy to share data structures between threads
= e.g., logging information, file cache

m + Threads are more efficient than processes

m - Unintentional sharing can introduce subtle and hard-to-
reproduce errors!

Carnegie Mellon

Shared Variables in Threaded C Programs

m Question: Which variables in a threaded C program are
shared?

= The answer is not as simple as “global variables are shared” and
“stack variables are private”

m Requires answers to the following questions:
® What is the memory model for threads?
® How are instances of variables mapped to memory?
®* How many threads might reference each of these instances?

m Def: A variable x is shared if and only if multiple threads
reference some instance of x.

Carnegie Mellon

Threads Memory Model

m Conceptual model:
= Multiple threads run within the context of a single process

® Each thread has its own separate thread context
= Thread ID, stack, stack pointer, PC, condition codes, and GP registers

= All threads share the remaining process context
= Code, data, heap, and shared library segments of the process virtual address space
= Open files and installed handlers

m Operationally, this model is not strictly enforced:
= Register values are truly separate and protected, but...
® Any thread can read and write the stack of any other thread

The mismatch between the conceptual and operation model
is a source of confusion and errors

Carnegie Mellon

Mapping Variable Instances to Memory

m Global variables
= Def: Variable declared outside of a function
® Virtual memory contains exactly one instance of any global variable

m Local variables
= Def: Variable declared inside function without static attribute
= Each thread stack contains one instance of each local variable

m Local static variables
= Def: Variable declared inside function with the static attribute

= Virtual memory contains exactly one instance of any local static
variable.

Carnegie Mellon

Example Program to lllustrate Sharing

char **ptr; /* global */ /* thread routine */
void *thread(void *vargp)
int main () {
{ int myid = (int) vargp;
int i; static int cnt = 0;
pthread t tid;
char *msgs[2] = { printf ("[%d]: %s (svar=%d)\n",

"Hello from foo", myid, ptr[myid], ++cnt);

"Hello from bar" }

}i;
ptr = msgs; /
Peer threads reference main thread'’s stack

for (i = 0; i < 2; i++) indirectly through global ptr variable
Pthread create(&tid,
NULL,
thread,

(void *)i);
Pthread exit (NULL) ;

Carnegie Mellon

Mapping Variable Instances to Memory

Global var: 1 instance (ptr [data])
Local vars: 1 instance (1 .m, msgs.m)

Al

char **ptr; /* global * Local var: 2 instances (
myid.pO [peer thread 0’s stack],
int main() myid.pl [peer thread 1’s stack]

{) /
int i;

pthread t ¥id;
= /* thread routine */

char *msgs[2] = {
"Hello from foo" void *thread/void *vargp)

"Hello from bar" {
}; int myid = (int)vargp;
static int cnt = 0;

ptr = msgs;

printf (" [%d]} %s (svar=%d)\n",

for (i = 0; i < 2; i++)
myid, gtr[myid], ++cnt);

Pthread create (&tid,
NULL, }
thread, /
(void *)i);

Pthread exit (NULL) ;

Local static var: 1 instance (cnt [data])

Carnegie Mellon

m Which variables are shared?

ptr yes yes
cnt no yes
im yes no
msgs.m yes yes
myid.p0 no yes
myid.pl no no

at least one instance of x. Thus:

m i and myid are not shared

Variable Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

Shared Variable Analysis

Referenced by

yes
yes
no
yes
no
yes

Answer: A variable x is shared iff multiple threads reference

m ptr, cnt, and msgs are shared

Carnegie Mellon

volatile int cnt = 0; /* global */

int main(int argc, char **argv)
{
int niters = atoi(argv[l]);
pthread t tidl, tid2;

Pthread create(&tidl, NULL,
thread, &niters);
Pthread create(&tid2, NULL,
thread, &niters);
Pthread join(tidl, NULL);
Pthread join(tid2, NULL);

/* Check result */

if (ent != (2 * niters))

printf ("BOOM! cnt=%d\n”, cnt);
else

printf ("OK cnt=%d\n", cnt);
exit(0);

badcnt. c: Improper Synchronization

/* Thread routine */
void *thread(void *vargp)

{

int i, niters = *((int *)vargp):

for (i = 0; i < niters; i++)
cnt++;

return NULL;
}

linux> ./badcnt 10000
OK cnt=20000

linux> ./badcnt 10000
BOOM! cnt=13051
linux>

cnt should equal 20,000.

What went wrong?

19

Carnegie Mellon

Today

m Threads review
m Sharing

m Mutual exclusion
m Semaphores

Carnegie Mellon

Assembly Code for Counter Loop

C code for counter loop in thread i

for (i=0; i < niters; i++)
cnt++;

Corresponding assembly code

movl (%rdi) ,%ecx
movl $0 ’ %edx Head (HI)
cmpl %ecx, %edx
jge .L13

I 75 5
movl cnt(%rip),%eax Load cnt (L))
incl %eax Update cnt (U)
movl %$eax,cnt(%rip) Store cnt (S)

""" Incl™%edx~ """ """~ "7
cmpl %ecx,%edx i
31 .111 Tail (T)

.L13:

20

Carnegie Mellon

Concurrent Execution

m Key idea: In general, any sequentially consistent interleaving
is possible, but some give an unexpected result!
= | denotes that thread i executes instruction |
= %eax;is the content of %eax in thread i’s context

i(thread) instr, %eax, %eax, cnt

.
B

Thread 1

D critical section
]

Thread 2
critical section

1<
Ve o]
'

BIN(N(NNN (R
-
£
'
NININ (R (=== |O oo

OK

Carnegie Mellon

Concurrent Execution (cont)

m How about this ordering?

i (thread) instr, %eax, %eax, cnt
1 H, 0
1 L, 0
2 H,

2 L, 0

2 U, 1

2 S, 1 1

1 U, 1

1 s, 1 1

1 T,

2 T, 1 Oops!

m We can analyze the behavior using a progress graph

Carnegie Mellon

Concurrent Execution (cont)

m Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2

i(thread) instr, %eax, %eax, cnt
1 H, - - 0
1 L 0 - 0
1 [VH 1 - 0
2 H, - - 0
2 L, - 0 0
1 S, 1 - 1
1 T, 1 - 1
2 U, - 1 1
2 S, 1 1
2 T, - 1 1 Oops!

Carnegie Mellon

Progress Graphs

Thread 2 A progress graph depicts
the discrete execution
state space of concurrent
threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst,, Inst,).

E.g. (L,, S,) denotes state
where thread 1 has
completed L, and thread
2 has completed S,.

24

Carnegie Mellon

Trajectories in Progress Graphs

Thread 2
A trajectory is a sequence of legal
° ° ° ° state transitions that describes one
T, I possible concurrent execution of the
threads.
L) L) L) L]
S, I Example:
¢ ¢ ¢ ° H1,11,U1, H2, L2, S1,T1,U2,S2, T2
U,
° ° —
L,
[] [] ° o
H,

* “— Thread 1
H, L U, S; T

Carnegie Mellon

Critical Sections and Unsafe Regions

Thread 2
safe
L []
Def: A trajectory is safe iff it does
T, not enter any unsafe region
L [] [
s, Claim: A trajectory is correct (wrt
critical . . R cnt) iff it is safe
section)
wrt U, Unsafe region
cnt - ©
L unsafe
[] [] [] []
H,

« “— Thread 1
H L u s T e

critical section wrt cnt

Carnegie Mellon

Critical Sections and Unsafe Regions

Thread 2
L, U, and S form a critical
° ° ° ° ° section with respect to the
T shared variable cnt
2

Instructions in critical
S, sections (wrt to some

critical ° O o o . sha'red variable) should not
section be interleaved

wre 3 Y2 Unsafe region

cnt o = = . ° Sets of states where such

interleaving occurs form
unsafe regions

Thread 1

critical section wrt cnt

26

Carnegie Mellon

Enforcing Mutual Exclusion

m Question: How can we guarantee a safe trajectory?

m Answer: We must synchronize the execution of the threads so
that they never have an unsafe trajectory.
® j.e., need to guarantee mutually exclusive access to critical regions

m Classic solution:
= Semaphores (Edsger Dijkstra)

m Other approaches (out of our scope)
= Mutex and condition variables (Pthreads)
® Locks and rwlocks (Pthreads)
® Monitors (Java)

28

Carnegie Mellon

Today

m Threads review
m Sharing

m Mutual exclusion
]

Semaphores

C Semaphore Operations

Pthreads functions:

#include <semaphore.h>
int sem init(sem t *sem, 0, unsigned int val);} /* s = val */

int sem wait(sem t *s); /* P(s) */
int sem post(sem t *s); /* V(s) */

CS:APP wrapper functions:

#include "csapp.h”

void P(sem t *s); /* Wrapper function for sem wait */
void V(sem_t *s); /* Wrapper function for sem_post */

Carnegie Mellon

Semaphores

m Semaphore: non-negative global integer synchronization
variable

= Manipulated by P and V operations:
= P(s): [while (s == 0) wait(); s--;]
= Dutch for "Proberen" (test)
= V(s): [s++;]
= Dutch for "Verhogen" (increment)

m OS kernel guarantees that operations between brackets [] are
executed indivisibly
= Only one P or V operation at a time can modify s.
= When while loop in P terminates, only that P can decrement s

m Semaphore invariant: (s >= 0)

30

badcnt. c: Improper Synchronization

/* Thread routine */
void *thread(void *vargp)

{

int i, niters = *((int *)vargp);

volatile int cnt = 0; /* global */

int main(int argc, char **argv)
{
int niters = atoi(argv[1l]):;

£ i=0; i< nits ; i+
pthread t tidl, tid2; or & < mEEDp)

cnt++;

Pthread create(&tidl, NULL,
thread, &niters);
Pthread create(&tid2, NULL,
thread, &niters);
Pthread join(tidl, NULL);
Pthread join(tid2, NULL);

return NULL;
}

/* Check result */

if (ent != (2 * niters)) How can we fix this using
elz:intf("BOOM! cnt=%d\n”, cnt); semaphores?

printf ("OK cnt=%d\n", cnt);
exit(0) ;

32

Carnegie Mellon

Using Semaphores for Mutual Exclusion

m Basicidea:
= Associate a unique semaphore mutex, initially 1, with each shared
variable (or related set of shared variables).
® Surround corresponding critical sections with P(mutex) and
V(mutex) operations.

= Terminology:
= Binary semaphore: semaphore whose value is always 0 or 1
= Mutex: binary semaphore used for mutual exclusion
= P operation: “locking” the mutex
= V operation: “unlocking” or “releasing” the mutex
= “Holding” a mutex: locked and not yet unlocked.

= Counting semaphore: used as a counter for set of available
resources.

Carnegie Mellon

Why Mutexes Work
Thread 2
’ 4 0 0 0 0 1 1 Provide mutually exclusive
° ° ° ° ° * * access to shared variable by
T, surrounding critical section
! oLt .0 LWt with P and V operations on
V(s) . \ Forbidden region \ \ semaphore s (initially set to 1)
s, ! i A Semaphore invariant
O 0% e a4 ed e L0, creates a forbidden region
u Unsafe region that encloses unsafe region
LN . L that cannot be entered by any
L trajectory.
2 0 3 0 L3 1 1-1 . 1 i . . 0 . 0
Pls) | 4 1 0 0 0 0 1 1
HZ
1 1 0 0 0 0 1 Thread 1
H, P(s) L, U S, Vs) T,
Initially
s=1 "

Carnegie Mellon

goodcnt. c: Proper Synchronization

m Define and initialize a mutex for the shared variable cnt:

volatile int cnt = 0; /* Counter */
sem_t mutex; /* Semaphore that protects cnt */
Sem_init(&mutex, 0, 1); /* mutex = 1 */

m Surround critical section with P and V:

for (i = 0; i < niters; i++) { linux> ./goodcnt 10000
P (&mutex) ; OK cnt=20000
cnt++; linux> ./goodent 10000
V (&mutex) ; OK cnt=20000

} linux>

Warning: It’s much slower
thanbadent.c.

Carnegie Mellon

Summary

m Programmers need a clear model of how variables are
shared by threads.

m Variables shared by multiple threads must be protected
to ensure mutually exclusive access.

m Semaphores are a fundamental mechanism for enforcing
mutual exclusion.

36

