Carnegie Mellon

Synchronization: Basics

15-213 / 18-213: Introduction to Computer Systems
24t Lecture, April. 17, 2012

Instructors:
Todd C. Mowry & Anthony Rowe

Carnegie Mellon

Today

Threads review

o
m Sharing
m Mutual exclusion
[|

Semaphores

Carnegie Mellon

Process: Traditional View

m Process = process context + code, data, and stack

Process context Code, data, and stack
Program context: 5p —» stack
Data registers
Condition codes shared libraries
Stack pointer (SP)
Program counter (PC) brk — run-time heap
Kernel context: read/write data
VM structures PC— read-only code/data
Descriptor table

brk pointer

Carnegie Mellon

Process: Alternative View

m Process = thread + code, data, and kernel context

Thread Code, data, and kernel context
Program context: shared libraries
Data registers brk —
Condition codes run-time heap
Stack pointer (SP) read/write data
Program counter (PC) PC —* read-only code/data
0
stack
SP Kernel context:
VM structures
Descriptor table
brk pointer

Carnegie Mellon

Process with Two Threads

Thread 1

Program context:
Data registers Code, data, and kernel context
Condition codes shared libraries
Stack pointer (SP) brk —s
Program counter (PC) r] run-time heap
read/write data
Sp —» stack PC— read-only code/data
0
Thread 2
Program context: Kernel context:
Data registers VM structures
Condition codes Descriptor table
Stack pointer (SP) brk pointer

Program counter (PC)

stack

A 4

SP

Carnegie Mellon

Threads vs. Processes

m Threads and processes: similarities
= Each has its own logical control flow
= Each can run concurrently with others
= Each is context switched (scheduled) by the kernel

m Threads and processes: differences
"= Threads share code and data, processes (typically) do not

" Threads are less expensive than processes

= Process control (creating and reaping) is more expensive as
thread control

= Context switches for processes more expensive than for
threads

Carnegie Mellon

Threads vs. Processes (cont.)

m Processes form a tree hierarchy
m Threads form a pool of peers

® Each thread can kill any other

® Each thread can wait for any other thread to terminate
" Main thread: first thread to run in a process

Process hierarchy Thread pool

I

(@) @ @
@ Y .

O
3
‘e
3

s shared code, data
and kernel context

Carnegie Mellon

Posix Threads (Pthreads) Interface

m Pthreads: Standard interface for ~60 functions that manipulate
threads from C programs
" Threads run thread routines:
= void *threadroutine (void *vargp)
" Creating and reaping threads
= pthread create(pthread t *tid, .., func *f, void *argq)
= pthread join(pthread t tid, void **thread return)
= Determining your thread ID
= pthread self()

" Terminating threads
= pthread cancel (pthread t tid)
= pthread exit(void *thread return)
= return (in primary thread routine terminates the thread)
» exit (terminates all threads)

Carnegie Mellon

The Pthreads “Hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
*/
#include "csapp.h" Thread attributes

1 (usually NULL)

void *thread(void *vargp) ;

int main() { Thread arguments

pthread t tid; ‘////// (void *p)

Pthread create(&tid, NULL, thread, NULL);

Pthread join(tid, NULL) ;
exit (0) ;
} assigns return value

(void **p)

/* thread routine */

void *thread(void *vargp) ({
printf ("Hello, world'\n");
return NULL;

Carnegie Mellon

Pros and Cons of Thread-Based Designs

m + Easy to share data structures between threads
= e.g. logging information, file cache

m + Threads are more efficient than processes

m - Unintentional sharing can introduce subtle and hard-to-
reproduce errors!

10

Carnegie Mellon

Today

m Threads review
m Sharing

m Mutual exclusion
m Semaphores

1"

Carnegie Mellon

Shared Variables in Threaded C Programs

m Question: Which variables in a threaded C program are
shared?

"= The answer is not as simple as “global variables are shared” and
“stack variables are private”

m Requires answers to the following questions:
" What is the memory model for threads?
= How are instances of variables mapped to memory?
"= How many threads might reference each of these instances?

m Def: A variable x is shared if and only if multiple threads
reference some instance of x.

12

Carnegie Mellon

Threads Memory Model

m Conceptual model:
= Multiple threads run within the context of a single process
= Each thread has its own separate thread context

= Thread ID, stack, stack pointer, PC, condition codes, and GP registers

= All threads share the remaining process context
= Code, data, heap, and shared library segments of the process virtual address space
= QOpen files and installed handlers

m Operationally, this model is not strictly enforced:
= Register values are truly separate and protected, but...
= Any thread can read and write the stack of any other thread

The mismatch between the conceptual and operation model
is a source of confusion and errors

13

Carnegie Mellon

Example Program to lllustrate Sharing

{

char **ptr;

/* global */

int main ()

int 1i;

pthread t tid;

char *msgs[2] = {
"Hello from foo",
"Hello from bar"

};

ptr = msgs;

for (1 = 0; 1 < 2; i++)
Pthread create(&tid,
NULL,
thread,
(void *)i);
Pthread exit (NULL) ;

/* thread routine */

void *thread(void *vargp)

{
int myid = (int) wvargp;
static int cnt = 0;

printf ("[%d]: %s (svar=%d)\n",
myid, ptr[myid], ++cnt);

/

Peer threads reference main thread’s stack
indirectly through global ptr variable

14

Carnegie Mellon

Mapping Variable Instances to Memory

m Global variables
= Def: Variable declared outside of a function

= Virtual memory contains exactly one instance of any global variable

m Local variables
= Def: Variable declared inside function without static attribute
= Each thread stack contains one instance of each local variable

m Local static variables

= Def: Variable declared inside function with the static attribute

= Virtual memory contains exactly one instance of any local static
variable.

15

Carnegie Mellon

Mapping Variable Instances to Memory

Global var: 1 instance (ptr [data])

\

Local vars: 1 instance (1.m, msgs.m)

7

{

char **ptr; /* global *

int main ()

int i;

pthread t ¥id;

char *msgs[2] = {
"Hello from foo",
"Hello from bar"

};

pPtr = msgs;

for (i = 0; 1 < 2; i++)
Pthread create(&tid,
NULL,
thread,
(void *)i);
Pthread exit (NULL) ;

Local var: 2 instances (
myid.pO [peer thread 0’s stack],
myid.pl [peer thread 1’s stack]

! //
/* thread rouftine */
void *thread/fvoid *vargp)

{

int myid = (int)vargp;
static int cnt = 0;

printf (" [%d]/ %s (svar=%d)\n",
myid, gtr[myid], ++cnt);

/

Local static var: 1 instance (cnt [data])

16

Variable Referenced by
instance main thread?

ptr yes
cnt no
i.m yes
msgs.m yes
myid.pO no
myid.pl no

Shared Variable Analysis

m Which variables are shared?

Referenced by
peer thread 0?

yes
yes
no
yes
yes
no

m ptr, cnt, and msgs are shared

® i and myid are not shared

Carnegie Mellon

Referenced by
peer thread 1?

yes
yes
no
yes
no
yes

Answer: A variable x is shared iff multiple threads reference
at least one instance of x. Thus:

17

Carnegie Mellon

Today

m Threads review
m Sharing

m Mutual exclusion
m Semaphores

18

badcnt. c: Improper Synchronization

/* Thread routine */
void *thread(void *vargp)

{

volatile int cnt = 0; /* global */

int main(int argc, char **argv)

{ int i, niters = *((int *)wvargp);
int niters = atoi(argv|[l]); for (i = 0; i < niters; i++)
pthread t tidl, tid2; ontit: '

Pthread create(&tidl, NULL,
thread, é&niters);

Pthread create(&tid2, NULL,
thread, &niters);

Pthread join(tidl, NULL);

return NULL;

Pthread join(tid2, NULL); linux> ./badcnt 10000
- OK cnt=20000
if (ent !'= (2 * niters)) BOOM:® cnt=13051
printf ("BOOM! cnt=%d\n”, cnt); 1inux>
else
l?ii(g)tf ("OK cnt=¥d\n", cnt); cnt should equal 20,000.
exl ’

What went wrong?

19

Carnegie Mellon

Assembly Code for Counter Loop

C code for counter loop in thread i

for (i=0; i < niters; i++)
cnt++;

Corresponding assembly code

movl (%$rdi) ,%ecx
movl $0,%edx
cmpl %ecx,%edx
jge .L13

movl cnt (%rip) , %eax
incl %eax

movl %eax,cnt (%rip)

cmpl %ecx, Sedx
j1 .L11

r=——""° Incl %edx™ "~ " T T T T 77 \

> Head (H))

Load cnt (L))
> Update cnt (U))
Store cnt (S)

> Tail (T;)

.L13:

20

Carnegie Mellon

Concurrent Execution

m Keyidea: In general, any sequentially consistent interleaving
is possible, but some give an unexpected result!

= |. denotes that thread i executes instruction |
= %eax;is the content of %eax in thread i’s context

i (thread) instr, %eax, %eax, cnt

(AR
T

Thread 1
critical section

=3

Thread 2
critical section

=3

1 e (= O]
1

N

N

N
NININ|[=|

N

=R INININMNIN (== (-
dlHw(iclr|T|w|c|—

1
NININIRIR|IR|R[O|O|O

[T
[

oK

21

Carnegie Mellon

Concurrent Execution (cont)

m Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2

i (thread) instr;, %eax, %eax, cnt
1 H, - - 0
1 L, 0 - 0
1 U, 1 - 0
2 H, - - 0
2 L, - 0
1 S, 1 - 1
1 T, 1 - 1
2 U, - 1 1
2 S, - 1 1
2 T, - 1 1 Oops!

22

Carnegie Mellon

Concurrent Execution (cont)

m How about this ordering?

i (thread) instr, %eax, %eax, cnt
1 H, 0
1 L, 0
2 H,

2 L, 0

2 U, 1

2 S, 1 1

1 U, 1

1 S, 1 1

1 T,

2 T, 1 Oops!

m We can analyze the behavior using a progress graph

23

Carnegie Mellon

Progress Graphs

Thread 2 A progress graph depicts
the discrete execution

¢ o o o o o state space of concurrent

T, threads.
(L, S))

1 ¢ ¢ ° @ @ Each axis corresponds to
S, the sequential order of

P ° ° ° ° ° instructions in a thread.
U,

Each point corresponds to

1 ° ° ¢ ¢ ¢ a possible execution state
L, (Inst,, Inst,).
L o o o o o
E.g., (L;, S,) denotes state
H, where thread 1 has

o o o ‘ ¢ “— Thread1 completed L, and thread
2 has completed S,.

24

Carnegie Mellon

Trajectories in Progress Graphs

Thread 2
A trajectory is a sequence of legal
¢ o o o o state transitions that describes one
T, x possible concurrent execution of the
threads.
o o o o [
S, x Example:
1 ¢ ¢ ¢ ¢ x H1, 11, U1, H2, L2, S1,T1, U2, S2, T2
— —
o o

@ T “— Thread 1

25

Carnegie Mellon

Critical Sections and Unsafe Regions

Thread 2
L, U, and S form a critical
it o o o o o section with respect to the
shared variable cnt
T,
9 ¢ e e e ¢ Instructions in critical
S, sections (wrt to some
critical ! . . . o . shared variable) should not
section . be interleaved
wrt < U, Unsafe region
cnt * ® ° ® ° ® Sets of states where such
L, interleaving occurs form
-y unsafe regions
H,
¢ ¢ ¢ ¢ ¢ “— Thread 1
H, L, U, S, L
N\ J
"

critical section wrt cnt
26

Carnegie Mellon

Critical Sections and Unsafe Regions

Thread 2

safe

. o —: >]] o
Def: A trajectory is safe iff it does
T, not enter any unsafe region

9 e ®
S, | x Claim: A trajectory is correct (wrt
critical cnt) iff itis safe

section)
wrt < U, Unsafe region
ent @ o o —_—
unsafe
o o

@ T “— Thread 1

critical section wrt cnt
27

Carnegie Mellon

Enforcing Mutual Exclusion

m Question: How can we guarantee a safe trajectory?

m Answer: We must synchronize the execution of the threads so
that they never have an unsafe trajectory.
= j.e., need to guarantee mutually exclusive access to critical regions

m Classic solution:
= Semaphores (Edsger Dijkstra)

m Other approaches (out of our scope)
= Mutex and condition variables (Pthreads)
= | ocks and rwlocks (Pthreads)
= Monitors (Java)

28

Carnegie Mellon

Today

m Threads review
m Sharing

m Mutual exclusion
m Semaphores

29

Carnegie Mellon

Semaphores

m Semaphore: non-negative global integer synchronization
variable

m Manipulated by P and V operations:
= P(s): [while (s == 0) wait(); s--;]
= Dutch for "Proberen" (test)
= V(s): [s++;]
= Dutch for "Verhogen" (increment)

m OS kernel guarantees that operations between brackets [] are
executed indivisibly

= Only one P or V operation at a time can modify s.
= When while loop in P terminates, only that P can decrement s

m Semaphore invariant: (s >=0)

30

C Semaphore Operations

Pthreads functions:

#include <semaphore.h>
int sem init(sem t *sem, 0, unsigned int val);} /* s = val */

int sem wait(sem t *s); /* P(s) */
int sem post(sem t *s); /* V(s) */

CS:APP wrapper functions:

#include "csapp.h”

void P(sem t *s); /* Wrapper function for sem wait */
void V(sem t *s); /* Wrapper function for sem post */

3

Carnegie Mellon

badcnt. c: Improper Synchronization

volatile int cnt = 0; /* global */

int main(int argc, char **argv)
{
int niters = atoi(argv[1l])
pthread t tidl, tid2;

Pthread create(&tidl, NULL,
thread, &niters);
Pthread create(&tid2, NULL,
thread, &niters);
Pthread join(tidl, NULL);
Pthread join(tid2, NULL);

/* Check result */
if (cnt !'= (2 * niters))

printf ("BOOM! cnt=%d\n”, cnt);
else

printf ("OK cnt=%d\n", cnt);
exit (0) ;

/* Thread routine */
void *thread(void *vargp)

{

int i, niters = *((int *)wvargp);
for (i = 0; 1 < niters; i++)
cnt++;

return NULL;

How can we fix this using
semaphores?

32

Carnegie Mellon

Using Semaphores for Mutual Exclusion

m Basicidea:

= Associate a unique semaphore mutex, initially 1, with each shared
variable (or related set of shared variables).

= Surround corresponding critical sections with P(mutex) and
V(mutex) operations.

m Terminology:
= Binary semaphore: semaphore whose value is always 0 or 1
= Mutex: binary semaphore used for mutual exclusion
= P operation: “locking” the mutex
= V operation: “unlocking” or “releasing” the mutex
= “Holding” a mutex: locked and not yet unlocked.

= Counting semaphore: used as a counter for set of available

resources.
33

Carnegie Mellon

goodcnt. c: Proper Synchronization

m Define and initialize a mutex for the shared variable cnt:

volatile int cnt = O0; /* Counter */
sem t mutex; /* Semaphore that protects cnt */
Sem init(&mutex, 0, 1); /* mutex = 1 */

m Surround critical section with P and V:

for (i = 0; i < niters; i++) { linux> ./goodcnt 10000
P (&mutex) ; OK cnt=20000
cnt++; linux> ./goodcnt 10000
V (&mutex) ; OK cnt=20000

} linux>

Warning: It’s much slower
thanbadcnt.c.

34

Carnegie Mellon

Why Mutexes Work

Thread 2
1 1 0 0 0 0 1 1 Provide mutually exclusive
' * * * * * * * access to shared variable by
T, surrounding critical section
! o -0 o0 . ! . o with P and V operations on
V(s) : , Forbidden region : : semaphore s (initially set to 1)
s, ! ! o Semaphore invariant
L0 o0 e e e e WO 0 creates a forbidden region
u, Unsafe region that encloses unsafe region
R L that cannot be entered by any
L trajectory.
2 0 1 1 A 0 0
P(5)1 1 0 0 0 0 1 1
HZ
1 1 1
. T . Thread 1
NN H Ps) L U S V) T,
Initially

s=1 35

Carnegie Mellon

Summary

m Programmers need a clear model of how variables are
shared by threads.

m Variables shared by multiple threads must be protected
to ensure mutually exclusive access.

m Semaphores are a fundamental mechanism for enforcing
mutual exclusion.

36

