Carnegie Mellon

Concurrent Programming

15-213 / 18-213: Introduction to Computer Systems
23 Lecture, April. 12, 2012

Instructors:
Todd Mowry and Anthony Rowe

Carnegie Mellon

Concurrent Programming is Hard!

m Classical problem classes of concurrent programs:

® Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system

= Example: who gets the last seat on the airplane?

= Deadlock: improper resource allocation prevents forward progress
= Example: traffic gridlock

= Lijvelock / Starvation / Fairness: external events and/or system

scheduling decisions can prevent sub-task progress
= Example: people always jump in front of you in line
m Many aspects of concurrent programming are beyond the
scope of 15-213
= but, notall ©

Carnegie Mellon

Concurrent Programming is Hard!

m The human mind tends to be sequential
m The notion of time is often misleading

m Thinking about all possible sequences of events in a
computer system is at least error prone and
frequently impossible

Carnegie Mellon

Reminder: Iterative Echo Server

Client Server
socket socket

bind open_listenfd
open_clientfd

listen
Connection

it

v
Client / rio_resdine
]]

close

Await connection
request from
next client

Carnegie Mellon

Iterative Servers

m Iterative servers process one request at a time

client 1 server client 2
connect
connect
write write
call read
call read
ret read
close |, close
_______________ o
accept Wait for Client 1
read
write

ret read

Fundamental Flaw of Iterative Servers

client 1

connect

write
call read
ret read

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

Server blocks
waiting for
data from
Client 1

client 2

connect

write

call read

Client 2 blocks
waiting to read
from server

m Solution: use concurrent servers instead

= Concurrent servers use multiple concurrent flows to serve multiple
clients at the same time

Where Does Second Client Block?

m Second client attemptsto = Call to connect returns
connect to iterative server = Even though connection not
yet accepted

= Server side TCP manager
queues request

= Feature known as “TCP
listen backlog”

Client

socket

lopen_clientfd

m Call to rio_writen returns

= Server side TCP manager
buffers input data

request
connect [T~ ~-—-—---! > . .
m Call to rio_readlineb

blocks
= Server hasn’t written

Connection

anything for it to read yet.

Carnegie Mellon

Server concurrency (3 approaches)

Allow server to handle multiple clients simultaneously

m 1. Processes
= Kernel automatically interleaves multiple logical flows
= Each flow has its own private address space

m 2. Threads
= Kernel automatically interleaves multiple logical flows
= Each flow shares the same address space
= 3. 1/0 multiplexing with select ()
® Programmer manually interleaves multiple logical flows
= All flows share the same address space
= Relies on lower-level system abstractions

Carnegie Mellon

Concurrent Servers: Multiple Processes

m Spawn separate process for each client

client 1 server client 2

call accept .. call connect

call connect|™

ret comnect
............ " ret accept

call fgets| Chi|d1/ fork

call read
User goes ret connect
out to lunch ret aceept call fgets
Client 1 blocks fork ~_child 2 write
waiting for user 11 call read
to type in data ca

read

write
close end read
close

Carnegie Mellon

Process-Based Concurrent Echo Server

int main(int argc, char **argv)
F Fork separate process for
int listenfd, connfd; each client
int port = atoi(argv[l]);
struct sockaddr_in clientaddr; Does nOt a"OW any
int clientlen=sizeof (clientaddr) ; communication between
Signal (SIGCHLD, sigchld handler) ; different client handlers
listenfd = Open_listenfd (port) ;
while (1) {
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
if (Fork() == 0) {
Close (listenfd); /* Child closes its listening socket */
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit(0) ; /* Child exits */
}
Close (connfd) ; /* Parent closes connected socket (important!) */
}
}

Carnegie Mellon

Review: Iterative Echo Server

int main(int argc, char **argv)
{
int listenfd, connfd;
int port = atoi(argv[l]):;
struct sockaddr_in clientaddr;
int clientlen = sizeof (clientaddr) ;

listenfd = Open listenfd(port) ;

while (1) { -
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
echo (connfd) ;
Close (connfd) ;

}
exit (0) ;

® Accept a connection request
= Handle echo requests until client terminates

Carnegie Mellon

Process-Based Concurrent Echo Server
(cont)

void sigchld_handler (int sig)
{
while (waitpid(-1, 0, WNOHANG) > 0)

return;

= Reap all zombie children

Carnegie Mellon

Process Execution Model

Connection Requests
Listening
Server
Process
Client 1 Client 2
Client1data | Server Server [Client 2 data
> Process Process

= Each client handled by independent process
= No shared state between them

= Both parent & child have copies of listenfd and connfd
= Parent must close connfd
= Child must close listenfd

Carnegie Mellon

Implementation Must-dos With
Process-Based Designs

m Listening server process must reap zombie children
= to avoid fatal memory leak
m Listening server process must close its copy of connfd
= Kernel keeps reference for each socket/open file
= After fork, refcnt (connfd) = 2
= Connection will not be closed until refcnt (connfd) == 0

Carnegie Mellon

Concurrent Server: accept lllustrated
listenfd(3)
¢ 1. Server blocks in accept,
Client 0 Server waiting for connection
clientfd request on listening
descriptor 1istenfd
Connection listenfd(3)
|request ____ .o 2. Client makes connection
Client o Server request by calling connect
clientfd
listenfd (3)
3. Server returns connfd from
Server accept. Forks child to handle
client. Connection is now
Server established between clientfd
Client 0§, ., & chid and connfd
clientfd connfd (4)
14

Carnegie Mellon

Pros and Cons of Process-Based Designs

m + Handle multiple connections concurrently
m + Clean sharing model
= descriptors (no)
= file tables (yes)
= global variables (no)
m + Simple and straightforward
m — Additional overhead for process control
m — Nontrivial to share data between processes
= Requires IPC (interprocess communication) mechanisms
= FIFO’s (named pipes), System V shared memory and semaphores

Approach #2: Multiple Threads

m Very similar to approach #1 (multiple processes)
= but, with threads instead of processes

Alternate View of a Process

m Process = thread + code, data, and kernel context

Thread (main thread) Code and Data
____________________ i shared libraries
sp brk run-time heap

Thread context: read/write data

PC —| read-only code/data

Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

1
1
1
1
:
1
: Data registers
1
1
1
1
1
1

Traditional View of a Process
m Process = process context + code, data, and stack

Process context Code, data, and stack

stack

Program context: SP
Data registers
Condition codes

shared libraries

Stack pointer (SP) brk .

Program counter (PC) run-time heap
Kernel context: read/write data

VM structures PC —| read-only code/data

Descriptor table

brk pointer ’

Carnegie Mellon

A Process With Multiple Threads

m Multiple threads can be associated with a process
® Each thread has its own logical control flow
= Each thread shares the same code, data, and kernel context
= Share common virtual address space (inc. stacks)
= Each thread has its own thread id (TID)

Thread 1 (main thread) Shared code and data Thread 2 (peer thread)

shared libraries

run-time heap

Thread 1 context: read/write data Thread 2 context:
Data registers read-only code/data Data registers
Condition codes . Condition codes
SP1 SP2
PC1 Kernel context: PC2

VM structures
Descriptor table
brk pointer

20

Carnegie Mellon

Logical View of Threads

m Threads associated with process form a pool of peers
= Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

0@ o ¢
| (er)

OJOXO,
® © ®

(b

¥ &
™| shared code, data
and kernel context

Carnegie Mellon

Logical Concurrency

m Two threads are (logically) concurrent if their flows
overlap in time

m Otherwise, they are sequential

- Examples: Thread A Thread B Thread C

®= Concurrent: A & B, A&C
= Sequential: B& C

Time (I 777777

Carnegie Mellon

Thread Execution

m Single Core Processor = Multi-Core Processor

= Simulate concurrency
by time slicing

= Can have true
concurrency

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

Carnegie Mellon

Threads vs. Processes

m How threads and processes are similar
= Each has its own logical control flow
® Each can run concurrently with others (possibly on different cores)
® Each is context switched

m How threads and processes are different
® Threads share code and some data
= Processes (typically) do not
® Threads are somewhat less expensive than processes

= Process control (creating and reaping) twice as expensive as thread
control

= Linux numbers:
— ~20K cycles to create and reap a process
— ~10K cycles (or less) to create and reap a thread

24

Carnegie Mellon

Posix Threads (Pthreads) Interface

m Pthreads: Standard interface for ~60 functions that

manipulate threads from C programs

= (Creating and reaping threads
* pthread create ()
» pthread join()

= Determining your thread ID
* pthread self()

® Terminating threads
* pthread cancel ()
* pthread exit()
= exit () [terminates all threads] , RET [terminates current thread]

= Synchronizing access to shared variables
* pthread mutex init
* pthread mutex [un]lock
* pthread cond init
* pthread cond [timed]wait

Carnegie Mellon

Execution of Threaded“hello, world”

call Pthread_create()

Pthread_create() retums | e, peer thread

call Pthread_join() | e

. printf ()
main thread waits for return NULL;
peer thread to terminate | et (peer thread
........................... terminates)

Pthread_join() returns [«

exit()
terminates

main thread and
any peer threads

Carnegie Mellon

The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
*/
#include "csapp.h" -
Thread attributes
void *thread(void *vargp) ; (usually NULL)
int main() { Th
read arguments
pthread_t tid; (voi dg*p)

Pthread create(&tid, NULL, thread, NULL);

Pthread join(tid, LL) ;
exit(0); Nq\
} return value

void **p)

/* thread routine */

void *thread(void *vargp) {
printf ("Hello, world!\n");
return NULL;

}

26

Carnegie Mellon

Thread-Based Concurrent Echo Server

int main(int argc, char **argv) {
int port = atoi(argv[1l]);
struct sockaddr_in clientaddr;
int clientlen=sizeof (clientaddr) ;
pthread_t tid;

int listenfd = Open_listenfd(port);
while (1) {
int *connfdp = Malloc(sizeof (int)) ;
*connfdp = Accept(listenfd,
(SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, echo_thread, connfdp);

= Spawn new thread for each client
® Pass it copy of connection file descriptor

= Note use of Malloc()!
= Without corresponding Free()

28

Carnegie Mellon

Thread-Based Concurrent Server (cont)

/* thread routine */

void *echo_thread(void *vargp)

{
int connfd = *((int *)vargp);
Pthread detach(pthread_self());
Free (vargp) ;
echo (connfd) ;
Close (connfd) ;
return NULL;

® Run thread in “detached” mode

= Runs independently of other threads

= Reaped automatically (by kernel) when it terminates
® Free storage allocated to hold clientfd

= “Producer-Consumer” model

Carnegie Mellon

Potential Form of Unintended Sharing
while (1) {
int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, echo_thread, (void *) &connfd);

connfd = connfd,

Main thread stack

Peer, stack

—> 1connfd = *vargp

...................... Peer, stack
1connfd = *vargp m

Why would both copies of vargp point to same location?

Carnegie Mellon

Threaded Execution Model

Connection Requests

Listening
Server

Client 2

. Client 1
Client 1 datq Server

Client 2 data
Server

® Multiple threads within single process

= Some state between them
= e.g., file descriptors

30

Carnegie Mellon

Could this race occur?

Main Thread
int i; void *thread(void *vargp)
for (i = 0; i < 100; i++) { {
Pthread create(&tid, NULL, int i = *((int *)vargp):;
thread, &i); Pthread detach (pthread self()):;
} save value(i);
return NULL;
}

m Race Test
= |f no race, then each thread would get different value of i
= Set of saved values would consist of one copy each of 0 through 99

32

Carnegie Mellon

Experimental Results

No Race
2

B LT

0 2 4 6 810121416182022 2426283032 343638404244 46485052 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98
Single core laptop

3
2
. I IIIIII IIIIIIII IIIIII IIIIIIIIIIIIIIIII IIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII TNRTT

02 4 6 8101214 1618202224 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

Multicore server

6
o (1] | I” | | |I 111 ‘ ‘

0 2 4 6 810121416182022 242628 30 32 34 36 38 4042 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

m The race can really happen!

IS

~

Carnegie Mellon

Pros and Cons of Thread-Based Designs

m + Easy to share data structures between threads
= e.g., logging information, file cache
m + Threads are more efficient than processes

m = Unintentional sharing can introduce subtle and hard-
to-reproduce errors!
" The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads

® Hard to know which data shared & which private

" Hard to detect by testing
= Probability of bad race outcome very low
= But nonzero!

= Future lectures

Carnegie Mellon

Issues With Thread-Based Servers

m Must run “detached” to avoid memory leak
= At any point in time, a thread is either joinable or detached
= Joinable thread can be reaped and killed by other threads
» must be reaped (with pthread Jjoin)to free memory resources
® Detached thread cannot be reaped or killed by other threads
= resources are automatically reaped on termination
= Default state is joinable
» usepthread detach (pthread self()) tomake detached
m Must be careful to avoid unintended sharing
= For example, passing pointer to main thread’s stack
* Pthread create(&tid, NULL, thread, (void *)&connfd);
m All functions called by a thread must be thread-safe
= (next lecture)

Carnegie Mellon

Approaches to Concurrency

m Processes
® Hard to share resources: Easy to avoid unintended sharing
= High overhead in adding/removing clients
m Threads
® Easy to share resources: Perhaps too easy
" Medium overhead
= Not much control over scheduling policies
= Difficult to debug
= Event orderings not repeatable
= 1/0 Multiplexing
= Tedious and low level
= Total control over scheduling
= Very low overhead
= Cannot create as fine grained a level of concurrency
® Does not make use of multi-core

36

Carnegie Mellon

View from Server’s TCP Manager

Client1 Client2 Server

|srv> ./echoserverp 15213 |

cll> ./echoclient greatwhite.ics.cs.cmu.edu 15213

|srv> connected to (128.2.192.34), port 50437 |

cl2> ./echoclient greatwhite.ics.cs.cmu.edu 15213 |

[szv> connected to (128.2.205.225), port 41656

Listening = 128.2.220.10 15213
cll 128.2.192.34 50437 128.2.220.10 15213
cl2 128.2.205.225 41656 128.2.220.10 15213

Carnegie Mellon

View from Server’s TCP Manager
l_m-n_mu

Listening - 128.2.220.10 15213
cll 128.2.192.34 50437 128.2.220.10 15213
cl2 128.2.205.225 41656 128.2.220.10 15213

m Port Demultiplexing
® TCP manager maintains separate stream for each connection
= Each represented to application program as socket
= New connections directed to listening socket
= Data from clients directed to one of the connection sockets

38

10

