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Concurrent Programming is Hard!

m Classical problem classes of concurrent programs:

® Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system

= Example: who gets the last seat on the airplane?

= Deadlock: improper resource allocation prevents forward progress
= Example: traffic gridlock

= Lijvelock / Starvation / Fairness: external events and/or system

scheduling decisions can prevent sub-task progress
= Example: people always jump in front of you in line
m Many aspects of concurrent programming are beyond the
scope of 15-213
= but, notall ©
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Concurrent Programming is Hard!

m The human mind tends to be sequential
m The notion of time is often misleading

m Thinking about all possible sequences of events in a
computer system is at least error prone and
frequently impossible
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Reminder: Iterative Echo Server

Client Server
socket socket

bind open_listenfd
open_clientfd

listen
Connection

it

v
Client / rio_resdine
] ]

close

Await connection
request from
next client
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Iterative Servers

m Iterative servers process one request at a time

client 1 server client 2
connect
connect
write write
call read
call read
ret read
close |, close
_______________ o
accept Wait for Client 1
read
write

ret read

Fundamental Flaw of Iterative Servers

client 1

connect

write
call read
ret read

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

Server blocks
waiting for
data from
Client 1

client 2

connect

write

call read

Client 2 blocks
waiting to read
from server

m Solution: use concurrent servers instead

= Concurrent servers use multiple concurrent flows to serve multiple
clients at the same time

Where Does Second Client Block?

m Second client attemptsto = Call to connect returns
connect to iterative server = Even though connection not
yet accepted

= Server side TCP manager
queues request

= Feature known as “TCP
listen backlog”

Client

socket

lopen_clientfd

m Call to rio_writen returns

= Server side TCP manager
buffers input data

request
connect [T~ ~-—-—---! > . .
m Call to rio_readlineb

blocks
= Server hasn’t written

Connection

anything for it to read yet.
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Server concurrency (3 approaches)

Allow server to handle multiple clients simultaneously

m 1. Processes
= Kernel automatically interleaves multiple logical flows
= Each flow has its own private address space

m 2. Threads
= Kernel automatically interleaves multiple logical flows
= Each flow shares the same address space
= 3. 1/0 multiplexing with select ()
® Programmer manually interleaves multiple logical flows
= All flows share the same address space
= Relies on lower-level system abstractions
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Concurrent Servers: Multiple Processes

m Spawn separate process for each client

client 1 server client 2

call accept .. call connect

call connect|™

ret comnect
............ " ret accept

call fgets| Chi|d1/ fork

call read
User goes ret connect
out to lunch ret aceept call fgets
Client 1 blocks fork ~_child 2 write
waiting for user 11 call read
to type in data ca

read

write
close end read
close
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Process-Based Concurrent Echo Server

int main(int argc, char **argv)
F Fork separate process for
int listenfd, connfd; each client
int port = atoi(argv[l]);
struct sockaddr_in clientaddr; Does nOt a"OW any
int clientlen=sizeof (clientaddr) ; communication between
Signal (SIGCHLD, sigchld handler) ; different client handlers
listenfd = Open_listenfd (port) ;
while (1) {
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
if (Fork() == 0) {
Close (listenfd); /* Child closes its listening socket */
echo (connfd) ; /* Child services client */
Close (connfd) ; /* Child closes connection with client */
exit(0) ; /* Child exits */
}
Close (connfd) ; /* Parent closes connected socket (important!) */
}
}
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Review: Iterative Echo Server

int main(int argc, char **argv)
{
int listenfd, connfd;
int port = atoi(argv[l]):;
struct sockaddr_in clientaddr;
int clientlen = sizeof (clientaddr) ;

listenfd = Open listenfd(port) ;

while (1) { -
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
echo (connfd) ;
Close (connfd) ;

}
exit (0) ;

® Accept a connection request
= Handle echo requests until client terminates
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Process-Based Concurrent Echo Server
(cont)

void sigchld_handler (int sig)
{
while (waitpid(-1, 0, WNOHANG) > 0)

return;

= Reap all zombie children
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Process Execution Model

Connection Requests
Listening
Server
Process
Client 1 Client 2
Client1data | Server Server [Client 2 data
> Process Process

= Each client handled by independent process
= No shared state between them

= Both parent & child have copies of listenfd and connfd
= Parent must close connfd
= Child must close listenfd

Carnegie Mellon

Implementation Must-dos With
Process-Based Designs

m Listening server process must reap zombie children
= to avoid fatal memory leak
m Listening server process must close its copy of connfd
= Kernel keeps reference for each socket/open file
= After fork, refcnt (connfd) = 2
= Connection will not be closed until refcnt (connfd) == 0
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Concurrent Server: accept lllustrated
listenfd(3)
¢ 1. Server blocks in accept,
Client 0 Server waiting for connection
clientfd request on listening
descriptor 1istenfd
Connection listenfd(3)
|request ____ .o 2. Client makes connection
Client o Server request by calling connect
clientfd
listenfd (3)
3. Server returns connfd from
Server accept. Forks child to handle
client. Connection is now
Server established between clientfd
Client 0§, ., & chid and connfd
clientfd connfd (4)
14
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Pros and Cons of Process-Based Designs

m + Handle multiple connections concurrently
m + Clean sharing model
= descriptors (no)
= file tables (yes)
= global variables (no)
m + Simple and straightforward
m — Additional overhead for process control
m — Nontrivial to share data between processes
= Requires IPC (interprocess communication) mechanisms
= FIFO’s (named pipes), System V shared memory and semaphores




Approach #2: Multiple Threads

m Very similar to approach #1 (multiple processes)
=  but, with threads instead of processes

Alternate View of a Process

m Process = thread + code, data, and kernel context

Thread (main thread) Code and Data
____________________ i shared libraries
sp brk run-time heap

Thread context: read/write data

PC —| read-only code/data

Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

1
1
1
1
:
1
: Data registers
1
1
1
1
1
1

Traditional View of a Process
m Process = process context + code, data, and stack

Process context Code, data, and stack

stack

Program context: SP
Data registers
Condition codes

shared libraries

Stack pointer (SP) brk .

Program counter (PC) run-time heap
Kernel context: read/write data

VM structures PC —| read-only code/data

Descriptor table

brk pointer ’
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A Process With Multiple Threads

m Multiple threads can be associated with a process
® Each thread has its own logical control flow
= Each thread shares the same code, data, and kernel context
= Share common virtual address space (inc. stacks)
= Each thread has its own thread id (TID)

Thread 1 (main thread) Shared code and data Thread 2 (peer thread)

shared libraries

run-time heap

Thread 1 context: read/write data Thread 2 context:
Data registers read-only code/data Data registers
Condition codes . Condition codes
SP1 SP2
PC1 Kernel context: PC2

VM structures
Descriptor table
brk pointer

20
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Logical View of Threads

m Threads associated with process form a pool of peers
= Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

0@ o ¢
| (er)

OJOXO,
® © ®

(b

¥ &
™| shared code, data
and kernel context
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Logical Concurrency

m Two threads are (logically) concurrent if their flows
overlap in time

m Otherwise, they are sequential

- Examples: Thread A Thread B Thread C

®= Concurrent: A & B, A&C
= Sequential: B& C

Time ( I 777777
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Thread Execution

m Single Core Processor = Multi-Core Processor

= Simulate concurrency
by time slicing

= Can have true
concurrency

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores
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Threads vs. Processes

m How threads and processes are similar
= Each has its own logical control flow
® Each can run concurrently with others (possibly on different cores)
® Each is context switched

m How threads and processes are different
® Threads share code and some data
= Processes (typically) do not
® Threads are somewhat less expensive than processes

= Process control (creating and reaping) twice as expensive as thread
control

= Linux numbers:
— ~20K cycles to create and reap a process
— ~10K cycles (or less) to create and reap a thread
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Posix Threads (Pthreads) Interface

m Pthreads: Standard interface for ~60 functions that

manipulate threads from C programs

= (Creating and reaping threads
* pthread create ()
» pthread join()

= Determining your thread ID
* pthread self()

® Terminating threads
* pthread cancel ()
* pthread exit()
= exit () [terminates all threads] , RET [terminates current thread]

= Synchronizing access to shared variables
* pthread mutex init
* pthread mutex [un]lock
* pthread cond init
* pthread cond [timed]wait
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Execution of Threaded“hello, world”

call Pthread_create()

Pthread_create() retums | e, peer thread

call Pthread_join() | e

. printf ()
main thread waits for return NULL;
peer thread to terminate | et (peer thread
........................... terminates)

Pthread_join() returns [«

exit()
terminates

main thread and
any peer threads
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The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
*/
#include "csapp.h" -
Thread attributes
void *thread(void *vargp) ; (usually NULL)
int main() { Th
read arguments
pthread_t tid; (voi dg*p)

Pthread create(&tid, NULL, thread, NULL);

Pthread join(tid, LL) ;
exit(0); Nq\
} return value

void **p)

/* thread routine */

void *thread(void *vargp) {
printf ("Hello, world!\n");
return NULL;

}

26
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Thread-Based Concurrent Echo Server

int main(int argc, char **argv) {
int port = atoi(argv[1l]);
struct sockaddr_in clientaddr;
int clientlen=sizeof (clientaddr) ;
pthread_t tid;

int listenfd = Open_listenfd(port);
while (1) {
int *connfdp = Malloc(sizeof (int)) ;
*connfdp = Accept(listenfd,
(SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, echo_thread, connfdp);

= Spawn new thread for each client
® Pass it copy of connection file descriptor

= Note use of Malloc()!
= Without corresponding Free()

28




Carnegie Mellon

Thread-Based Concurrent Server (cont)

/* thread routine */

void *echo_thread(void *vargp)

{
int connfd = *((int *)vargp);
Pthread detach(pthread_self());
Free (vargp) ;
echo (connfd) ;
Close (connfd) ;
return NULL;

® Run thread in “detached” mode

= Runs independently of other threads

= Reaped automatically (by kernel) when it terminates
® Free storage allocated to hold clientfd

= “Producer-Consumer” model
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Potential Form of Unintended Sharing
while (1) {
int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, echo_thread, (void *) &connfd);

connfd = connfd,

Main thread stack

Peer, stack

—> 1connfd = *vargp

...................... Peer, stack
1connfd = *vargp m

Why would both copies of vargp point to same location?
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Threaded Execution Model

Connection Requests

Listening
Server

Client 2

. Client 1
Client 1 datq Server

Client 2 data
Server

® Multiple threads within single process

= Some state between them
= e.g., file descriptors

30
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Could this race occur?

Main Thread
int i; void *thread(void *vargp)
for (i = 0; i < 100; i++) { {
Pthread create(&tid, NULL, int i = *((int *)vargp):;
thread, &i); Pthread detach (pthread self()):;
} save value(i);
return NULL;
}

m Race Test
= |f no race, then each thread would get different value of i
= Set of saved values would consist of one copy each of 0 through 99
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Experimental Results

No Race
2
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m The race can really happen!
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Pros and Cons of Thread-Based Designs

m + Easy to share data structures between threads
= e.g., logging information, file cache
m + Threads are more efficient than processes

m = Unintentional sharing can introduce subtle and hard-
to-reproduce errors!
" The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads

® Hard to know which data shared & which private

" Hard to detect by testing
= Probability of bad race outcome very low
= But nonzero!

= Future lectures

Carnegie Mellon

Issues With Thread-Based Servers

m Must run “detached” to avoid memory leak
= At any point in time, a thread is either joinable or detached
= Joinable thread can be reaped and killed by other threads
» must be reaped (with pthread Jjoin)to free memory resources
® Detached thread cannot be reaped or killed by other threads
= resources are automatically reaped on termination
= Default state is joinable
» usepthread detach (pthread self()) tomake detached
m Must be careful to avoid unintended sharing
= For example, passing pointer to main thread’s stack
* Pthread create(&tid, NULL, thread, (void *)&connfd);
m All functions called by a thread must be thread-safe
= (next lecture)
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Approaches to Concurrency

m Processes
® Hard to share resources: Easy to avoid unintended sharing
= High overhead in adding/removing clients
m Threads
® Easy to share resources: Perhaps too easy
" Medium overhead
= Not much control over scheduling policies
= Difficult to debug
= Event orderings not repeatable
= 1/0 Multiplexing
= Tedious and low level
= Total control over scheduling
= Very low overhead
= Cannot create as fine grained a level of concurrency
® Does not make use of multi-core
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View from Server’s TCP Manager

Client1 Client2  Server

|srv> ./echoserverp 15213 |

cll> ./echoclient greatwhite.ics.cs.cmu.edu 15213

|srv> connected to (128.2.192.34), port 50437 |

cl2> ./echoclient greatwhite.ics.cs.cmu.edu 15213 |

[szv> connected to (128.2.205.225), port 41656

Listening = 128.2.220.10 15213
cll 128.2.192.34 50437 128.2.220.10 15213
cl2 128.2.205.225 41656 128.2.220.10 15213
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View from Server’s TCP Manager
l_m-n_mu

Listening - 128.2.220.10 15213
cll 128.2.192.34 50437 128.2.220.10 15213
cl2 128.2.205.225 41656 128.2.220.10 15213

m Port Demultiplexing
® TCP manager maintains separate stream for each connection
= Each represented to application program as socket
= New connections directed to listening socket
= Data from clients directed to one of the connection sockets
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