Carnegie Mellon

Network Programming

15-213 / 18-213: Introduction to Computer Systems
215t Lecture, April. 4, 2012

Instructors:
Todd Mowry and Anthony Rowe

Internet Connections

m Clients and servers communicate by sending streams of bytes
over connections:
= Point-to-point, full-duplex (2-way communication), and reliable

m A socket is an endpoint of a connection
® Socket address is an IPaddress:port pair

m A portis a 16-bit integer that identifies a process:
= Ephemeral port: Assigned automatically on client when client makes a
connection request
= Well-known port: Associated with some service provided by a server
(e.g., port 80 is associated with Web servers)

m A connection is uniquely identified by the socket addresses
of its endpoints (socket pair)
" (cliaddr:cliport, servaddr:servport)

Carnegie Mellon

A Programmer’s View of the Internet

m Hosts are mapped to a set of 32-bit /P addresses
" 128.2.217.13

m The set of IP addresses is mapped to a set of identifiers
called Internet domain names
= 128.2.217.13 is mapped to www.cs.cmu.edu

m A process on one Internet host can communicate with a
process on another Internet host over a connection

Carnegie Mellon

Anatomy of an Internet Connection

Client socket address Server socket address

128.2.194.242:51213 :80

Client \ BERE
Connection socket pair (port 80)
(128.2.194.242:51213, :80)
Client host address Server host address

128.2.194.242

51213 is an ephemeral port 80 is a well-known port
allocated by the kernel associated with Web servers

Carnegie Mellon

A Client-Server Transaction

1. Client sends request

Client
process

Server
process

Resource

4. Client 3. Server sends response 2. Server
handles handles
response request

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

m Most network applications are based on the client-server
model:
= Aserver process and one or more client processes
= Server manages some resource
= Server provides service by manipulating resource for clients
= Server activated by request from client (vending machine analogy)

Carnegie Mellon

Using Ports to Identify Services

Server host 128.2.194.242

Client host Service request for
128.2.194.242:80

(i.e., the Web server)
Client

Web server
(port 80)

Echo server
(port 7)

Kernel

Service request for
128.2.194.242:7

] (i.e., the echo server)
Client

Web server
(port 80)

Kernel

Echo server
(port 7)

Carnegie Mellon

Clients

m Examples of client programs
= Web browsers, £tp, telnet, ssh

m How does a client find the server?

® The IP address in the server socket address identifies the host
(more precisely, an adapter on the host)

= The (well-known) port in the server socket address identifies the
service, and thus implicitly identifies the server process that performs
that service.

= Examples of well know ports
= Port 7: Echo server
= Port 23: Telnet server
= Port 25: Mail server
= Port 80: Web server

Carnegie Mellon

Servers

m Servers are long-running processes (daemons)
® Created at boot-time (typically) by the init process (process 1)
® Run continuously until the machine is turned off

m Each server waits for requests to arrive on a well-known port
associated with a particular service
® Port 7: echo server
= Port 23: telnet server
® Port 25: mail server
= Port 80: HTTP server

m A machine that runs a server process is also often referred to
as a “server”

Carnegie Mellon

Server Examples
m Web server (port 80)

= Resource: files/compute cycles (CGI programs)
= Service: retrieves files and runs CGI programs on behalf of the client

m FTP server (20, 21) See /etc/services fora
= Resource: files comprehensive list of the port
= Service: stores and retrieve files mappings on a Linux machine

m Telnet server (23)
= Resource: terminal
= Service: proxies a terminal on the server machine

m Mail server (25)
= Resource: email “spool” file
= Service: stores mail messages in spool file

Carnegie Mellon

Sockets

= What is a socket?
" To the kernel, a socket is an endpoint of communication

" To an application, a socket is a file descriptor that lets the
application read/write from/to the network

= Remember: All Unix 1/0 devices, including networks, are
modeled as files
m Clients and servers communicate with each other by
reading from and writing to socket descriptors

Client Server
®—— 9

clientfd serverfd

m The main distinction between regular file 1/0 and socket
1/0 is how the application “opens” the socket descriptors

Carnegie Mellon

Sockets Interface
m Created in the early 80’s as part of the original Berkeley

distribution of Unix that contained an early version of the
Internet protocols

m Provides a user-level interface to the network

Underlying basis for all Internet applications

m Based on client/server programming model

Carnegie Mellon

Overview of the Sockets Interface

Client Server

Connection

open_clientfd

Server))
Session Await connection
request rom
next client
L 1]

close

Carnegie Mellon

Socket Address Structures

m Generic socket address:
® For address arguments to connect, bind, and accept

= Necessary only because C did not have generic (void *) pointers
when the sockets interface was designed

struct sockaddr {
unsigned short sa_family; /* protocol family */
char sa_data[l4]; /* address data. */
}i

sa_family

Ll

— _/

Family Specific

Example: Echo Client and Server

On Client On Server

greatwhite> ./echoserveri 15213
linux> echoclient greatwhite.ics.cs.cmu.edu 15213

server connected to BRYANT-TP4.VLSI.CS.CMU.EDU
(128.2.213.29), port 64690

type: hello there

server received 12 bytes

echo: HELLO THERE
type: D

Connection closed

Carnegie Mellon

Socket Address Structures

m Internet-specific socket address:

" Must cast (sockaddr_in *)to(sockaddr *)forconnect,
bind, and accept

struct sockaddr_in {
unsigned short sin_ family; /* address family (always AF_INET) */
unsigned short sin port; /* port num in network byte order */
struct in_addr sin_addr; /* IP addr in network byte order */
unsigned char sin_zero([8]; /* pad to sizeof (struct sockaddr) */

whml 1.0 1.1 [Tololololololol0]

sa_family _ _J

Family Specific

sin_family

Carnegie Mellon

Echo Client Main Routine

#include "csapp.h"

/* usage: ./echoclient host port */
int main(int argc, char **argv)

{

int clientfd, port; :?::d input
char *host, buf[MAXLINE];
rio_t rio;
host = argv[l]; port = atoi(argv[2]);
clientfd = Open_clientfd(host, port);
Rio_readinitb (&rio, clientfd);
Send line to printf ("type:"); fflush(stdout);
server - while (Fgets(buf, MAXLINE, stdin) != NULL) {
Receive line \ Rio_writen(clientfd, buf, strlen(buf));
+———> Rio readlineb (&rio, buf, MAXLINE) ;
from server =

printf ("echo:") ; | Printserver
") ——
Fputs (buf, stdout); response
printf ("type:"); fflush(stdout);
}
Close(clientfd) ;

exit(0) ;

Carnegie Mellon

Overview of the Sockets Interface

Client Server

open_listenfd
open_clientfd

Connection

Carnegie Mellon

Echo Client: open_clientfd
(socket)

m socket creates a socket descriptor on the client
® Just allocates & initializes some internal data structures
" AF_INET: indicates that the socket is associated with Internet protocols
" SOCK_STREAM: selects a reliable byte stream connection
® provided by TCP

int clientfd; /* socket descriptor */

if ((clientfd = socket (AF_INET, SOCK_STREAM, 0)) < 0)
return -1; /* check errno for cause of error */

. <more>

Carnegie Mellon

Echo Client: open clientfd

int open_clientfd(char *hostname, int port) { ‘
int clientfd; This function opens a connection
struct hostent *hp; from the client to the server at
struct sockaddr_in serveraddr; hostname :port
if ((clientfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) Create
return -1; /* check errno for cause of error */ socket
/* Fill in the server's IP address and port */
if ((hp = gethostbyname (hostname)) == NULL)
return -2; /* check h_errno for cause of error */
bzero((char *) &serveraddr, sizeof (serveraddr)) ; Create
serveraddr.sin_family = AF_INET; address
becopy ((char *)hp->h_addr_list[0],
(char *)&serveraddr.sin_addr.s_addr, hp->h length);
serveraddr.sin_port = htons(port);
/* Establish a connection with the server */
if (connect(clientfd, (SA *) &serveraddr, .
sizeof (serveraddr)) < 0) Establish
return -1; connection
return clientfd;
}

Carnegie Mellon

Echo Client: open_clientfd
(gethostbyname)

m The client then builds the server’s Internet address

int clientfd; /* socket descriptor */
struct hostent *hp; /* DNS host entry */
struct sockaddr_in serveraddr; /* server’s IP address */

/* £ill in the server's IP address and port */
if ((hp = gethostbyname (hostname)) == NULL)

return -2; /* check h_errno for cause of error */
bzero((char *) &serveraddr, sizeof (serveraddr)) ; Check

serveraddr.sin_family = AF_INET; this out!
serveraddr.sin_port = htons (port) ; / :
bcopy ((char *)hp->h_addr_1list[0],

(char *)&serveraddr.sin_addr.s_addr, hp->h length);

20

Carnegie Mellon Carnegie Mellon

A Careful Look at bcopy Arguments Bcopy Argument Data Structures
/* DNS host entry structure */
struct hostent { struct hostent
st h_length h_addr_list
int h_length; /* length of an address, in bytes */ = = =
char **h addr_list; /* null-terminated array of in_addr structs */ 000 | 0
};
s_addr
struct sockaddr_ in { struct I:I:I:I:l
5 o o in addr s_addr
struct in_addr sin_addr; /* IP addr in network byte order */ - I:I:I:D
);. o /* Internet address structure */
struct in addr {
unsigned int s_addr; /* network byte order (big-endian) */ struct sockaddr in
}i —
sin_family sin_port sin_addr
struct hostent *hp; /* DNS host entry */ AF—‘JFNETI I I I I I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 ‘
struct sockaddr_in serveraddr; /* server’s IP address */ A
struct in_addr | 440
beopy ((char *)hp->h_addr_list[0], /* src, dest */ =
(char *)&serveraddr.sin_addr.s_addr, hp->h_length) ; I:I:I:D
21 2
. .
Echo Client: lientfd Echo Server: Main Routine
c o Ien * open_c ien int main(int argc, char **argv) {
int listenfd, connfd, port, clientlen;
(conneCt) struct sockaddr_in clientaddr;
struct hostent *hp;
m Finally the client creates a connection with the server char *haddrp;
. . . . i d short client t;
= Client process suspends (blocks) until the connection is created unsignec short client_por
= After resuming, the client is ready to begin exchanging messages with the port = atoi(argv[l]); /* the server listens on a port passed
server via Unix I/O calls on descriptor clientfd . . o e eemmEmel e
listenfd = open_listenfd (port) ;
int clientfd; /* socket descriptor */ e _(1) { . .
. R clientlen = sizeof (clientaddr) ;
struct sockaddr_in serveraddr; /* server address */ £d = A 13 £d SA * 14 dd 13 1 .
typedef struct sockaddr SA; /* generic sockaddr */ coan = Accept(listenfd, () éclientaddr, sclientlen);

hp = Gethostbyaddr ((const char *)&clientaddr.sin addr.s_addr,
sizeof (clientaddr.sin_addr.s_addr), AF_INET);

/* Establish a connection with the server */ X _ N
haddrp = inet ntoa(clientaddr.sin_addr) ;

if (connect(clientfd, (SA *)&serveraddr, sizeof (serveraddr)) < 0) N . .
. client_port = ntohs(clientaddr.sin_port) ;
return -1;

return clientfd: printf ("server connected to %s (%s), port %u\n",
} hp->h_name, haddrp, client port);
echo (connfd) ;
Close (connfd) ;

Carnegie Mellon

Overview of the Sockets Interface

Client Server

open_listenfd
open_clientfd

Connection

m Office Telephone Analogy for Server
= Socket: Buya phone
" Bind: Tell the local administrator what number you want to use
= Listen: Plug the phone in
= Accept: Answer the phone when it rings

Carnegie Mellon

Echo Server: open listenfd (cont.)

/* Listenfd will be an endpoint for all requests to port
on any IP address for this host */
bzero((char *) &serveraddr, sizeof (serveraddr)) ;
serveraddr.sin family = AF INET;
serveraddr.sin_addr.s_addr = htonl (INADDR ANY) ;
serveraddr.sin port = htons((unsigned short)port) ;
if (bind(listenfd, (SA *) &serveraddr, sizeof (serveraddr)) < 0)
return -1;

/* Make it a listening socket ready to accept
connection requests */

if (listen(listenfd, LISTENQ) < 0)
return -1;

return listenfd;

Carnegie Mellon

Echo Server: open listenfd

int open_listenfd(int port)

{
int listenfd, optval=l;
struct sockaddr_in serveraddr;

/* Create a socket descriptor */
if ((listenfd = socket (AF_INET, SOCK_STREAM, 0)) < 0)
return -1;

/* Eliminates "Address already in use" error from bind. */
if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
(const void *)&optval , sizeof(int)) < 0)
return -1;

. <more>

26

Carnegie Mellon

Echo Server: open listenfd
(socket)

m socket creates a socket descriptor on the server
" AF_INET: indicates that the socket is associated with Internet protocols
" SOCK_STREAM: selects a reliable byte stream connection (TCP)

int listenfd; /* listening socket descriptor */

/* Create a socket descriptor */
if ((listenfd = socket (AF_INET, SOCK_STREAM, 0)) < 0)
return -1;

28

Carnegie Mellon

Echo Server: open listenfd
(setsockopt)

m The socket can be given some attributes

/* Eliminates "Address already in use" error from bind(). */
if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
(const void *)&optval , sizeof(int)) < 0)
return -1;

m Handy trick that allows us to rerun the server immediately
after we kill it
= Otherwise we would have to wait about 15 seconds
® Eliminates “Address already in use” error from bind ()
m Strongly suggest you do this for all your servers to simplify
debugging

Carnegie Mellon

Echo Server: open listenfd

(bind)

m bind associates the socket with the socket address we just
created

int listenfd; /* listening socket */

struct sockaddr_in serveraddr; /* server’s socket addr */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */

if (bind(listenfd, (SA *)&serveraddr, sizeof (serveraddr)) < 0)
return -1;

Carnegie Mellon

Echo Server: open listenfd
(initialize socket address)

m Initialize socket with server port number
m Accept connection from any IP address

struct sockaddr_in serveraddr; /* server's socket addr */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */

bzero((char *) &serveraddr, sizeof (serveraddr)) ;

serveraddr.sin_family = AF_INET;

serveraddr.sin_port = htons((unsigned short)port) ;

serveraddr.sin_addr.s_addr = htonl (INADDR ANY) ;

m IP addr and port stored in network (big-endian) byte order

sin_port sin_addr

wfm] | | Jkf o0l 0 o 00]0]

sa_family

sin family

30

Carnegie Mellon

Echo Server: open listenfd

(listen)

m listen indicates that this socket will accept connection
(connect) requests from clients

m LISTENQ is constant indicating how many pending requests
allowed

int listenfd; /* listening socket */

/* Make it a listening socket ready to accept connection requests */
if (listen(listenfd, LISTENQ) < 0)
return -1;
return listenfd;

}

m We’'re finally ready to enter the main server loop that
accepts and processes client connection requests.

32

Carnegie Mellon

Echo Server: Main Loop

m The server loops endlessly, waiting for connection
requests, then reading input from the client, and echoing
the input back to the client.

main() {
/* create and configure the listening socket */

while (1) {
/* Accept(): wait for a connection request */
/* echo(): read and echo input lines from client til EOF */
/* Close(): close the connection */

Carnegie Mellon

Echo Server: accept

m accept () blocks waiting for a connection request

int listenfd; /* listening descriptor */
int connfd; /* connected descriptor */
struct sockaddr in clientaddr;

int clientlen;

clientlen = sizeof (clientaddr) ;
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

m accept returns a connected descriptor (connfd) with
the same properties as the listening descriptor
(listenfd)

m Returns when the connection between client and server is created
and ready for I/O transfers

m All I/O with the client will be done via the connected socket

m accept alsofills in client’s IP address

Carnegie Mellon

Overview of the Sockets Interface

Client Server

open_clientfd

Connection

13]

request from

Client /
Server
Session

next client

Carnegie Mellon

Echo Server: accept lllustrated
listenfd (3)
'Y 1. Server blocks in accept,
Client & Server waiting for connection request
clientfd on listening descriptor
listenfd
C°""e°“:" listenfd(3)
|request _____ Iy 2. Client makes connection request by
Client ps Server calling and blocking in connect
clientfd
listenfd (3)
® 3. Server returns connfd from
Client ® Server accept. Client returns from connect.
clientfd connfd (4) Connection is now established between
clientfdand connfd
36

Carnegie Mellon

Connected vs. Listening Descriptors

m Listening descriptor
= End point for client connection requests
= Created once and exists for lifetime of the server

m Connected descriptor
= End point of the connection between client and server

= A new descriptor is created each time the server accepts a
connection request from a client

= Exists only as long as it takes to service client

m Why the distinction?
= Allows for concurrent servers that can communicate over many
client connections simultaneously

= E.g., Each time we receive a new request, we fork a child to
handle the request

Carnegie Mellon

Echo Server: echo

m The server uses RIO to read and echo text lines until EOF
(end-of-file) is encountered.
= EOF notification caused by client calling close (client£fd)

void echo(int connfd)
{
size_t n;
char buf[MAXLINE] ;
rio_t rio;

Rio_readinitb(&rio, connfd);

while((n = Rio_readlineb(&rio, buf, MAXLINE)) '= 0) {
upper_case (buf) ;
Rio_writen (connfd, buf, n);
printf ("server received %d bytes\n", n);

Echo Server: Identifying the Client

m The server can determine the domain name, IP address,
and port of the client

struct hostent *hp; /* pointer to DNS host entry */
char *haddrp; /* pointer to dotted decimal string */
unsigned short client port;
hp = Gethostbyaddr ((const char *)&clientaddr.sin_addr.s_addr,
sizeof (clientaddr.sin_addr.s_addr), AF_INET);

haddrp = inet ntoa(clientaddr.sin_ addr);
client port = ntohs(clientaddr.sin port) ;
printf ("server connected to %s (%s), port %u\n",

hp->h name, haddrp, client_port);

38

Carnegie Mellon

Testing Servers Using telnet

m The telnet program is invaluable for testing servers
that transmit ASCII strings over Internet connections
® QOur simple echo server
" Web servers
= Mail servers

m Usage:
" unix> telnet <host> <portnumber>

® Creates a connection with a server running on <host>and
listening on port <portnumber>

40

10

Testing the Echo Server With telnet

greatwhite> echoserver 15213

linux> telnet greatwhite.ics.cs.cmu.edu 15213
Trying 128.2.220.10...

Connected to greatwhite.ics.cs.cmu.edu.
Escape character is '~]'.

hi there

HI THERE

Watching Echo Client / Server

hark

[l capturing from Microsoft - Wi
Ele Edit View Go Captwre Analyze Statistics Telephony Tools Help

BHRed BEXEE AP DT L QaaD| @#®® % B

Filter: | tcp.port eq 15213 ~ Bxpression.. Clear Apply
No. Time Source Destination Protocol Info 2o
1255 15.881493 128.237.252.163 128.2.220.10 TCP 55306 > 15213 [SYN] Seq=0 Win=65535 Len=0 Mss=1
| 1256 15.883817 128.2.220.10 128.237. TCP > 55306 [SYN, ACK] Seq=0 Ack=1 win=5840 L

TCP 55306 > 15213 1 wi

15213 > 55306
TCP 15213 > 55306
1816 22.112223 128. . TCP 55306 > 15213 9 win=65516 Len
2301 29.053184 128.237.252.163 TCP 55306 > 15213 =19 Ack=19 Win=6551
2302 29.055004 128.2.220.10 128.237.252.163 TCP 15213 > 55306 [PSH, ACK] Seq=19 Ack=43 win=5888 |
2316 29.253626 128.237.252.163 128.2.220.10 TCP 55306 > 15213 [ACK] Seq=43 Ack=43 win=65492 Len
|| 2382 30.229193 128.237.252.163 128.2.220.10 TCP 55306 > 15213 [FIN, ACK] Seq=43 Ack=43 win=6549 -

< i »

@ Frame 1799: 72 bytes on wire (576 bits), 72 bytes captured (576 bits)

@ Ethernet IT, src: Intel_e3:54:e6 (00:16:ea:e3:54:e6), DsT: Carnegie_20:00:64 (08:00:7F:20:00:64)

@ Internet Protocal, Srci 128.237.252.163 (128.237.252.163), Dst: 128.2.220.10 (128.2.220.10)

@ Transmission Control Protocol, src Port: 55306 (55306), Dst Port: 15213 (15213), seq: 1, Ack: 1, Len: 18
0000 08 00 7f 20 00 64 00 16 ea e3 54 e6 08 00 45 00
0010 00 3a 2¢ 7a 40 00 80 06 4 a5 80 ed fc a3 80 02
0020 dc 0a dS 0a 3b 6d f4 a4 99 6 75 de 71 6a 50 18
0030 3 ff 06 &b 00 00 68 65 72 65 20 60 73 20 61 20 .he re is’a
0040 6d 65 73 73 61 67 65 Oa message.

W >

.

@ | Microsoft: <live capture in progress > File: C...| Packets: 6950 Displayed: 13 Marked: 0 Profile: Default

43

Carnegie Mellon

For More Information

m W. Richard Stevens, “Unix Network Programming:
Networking APIs: Sockets and XTI”, Volume 1, Second
Edition, Prentice Hall, 1998

= THE network programming bible
m Unix Man Pages
® Good for detailed information about specific functions

m Complete versions of the echo client and server are

developed in the text
® Updated versions linked to course website
" Feel free to use this code in your assignments

42

Carnegie Mellon

Ethical Issues

m Packet Sniffer
= Program that records network traffic visible at node

® Promiscuous mode: Record traffic that does not have this host as
source or destination

m University Policy

Network Traffic: Network traffic should be considered private. Because of this,
any "packet sniffing", or other deliberate attempts to read network information
which is not intended for your use will be grounds for loss of network privileges
for a period of not less than one full semester. In some cases, the loss of
privileges may be permanent. Note that it is permissable to run a packet sniffer
explicitely configured in non-promiscuous mode (you may sniff packets going
to or from your machine). This allows users to explore aspects of networking
while protecting the privacy of others.

11

