Carnegie Mellon

Network Programming

15-213 / 18-213: Introduction to Computer Systems
215t Lecture, April. 4, 2012

Instructors:
Todd Mowry and Anthony Rowe

Carnegie Mellon

A Programmer’s View of the Internet

m Hosts are mapped to a set of 32-bit /P addresses
= 128.2.217.13

m The set of IP addresses is mapped to a set of identifiers
called Internet domain names

= 128.2.217.13 is mapped to www.cs.cmu.edu

m A process on one Internet host can communicate with a
process on another Internet host over a connection

Carnegie Mellon

Internet Connections

m Clients and servers communicate by sending streams of bytes
over connections:

= Point-to-point, full-duplex (2-way communication), and reliable

m A socket is an endpoint of a connection
= Socket address is an IPaddress:port pair

m A portis a 16-bit integer that identifies a process:

= Ephemeral port: Assigned automatically on client when client makes a
connection request

= Well-known port: Associated with some service provided by a server
(e.g., port 80 is associated with Web servers)

m A connection is uniquely identified by the socket addresses
of its endpoints (socket pair)

" (cliaddr:cliport, servaddr:servport)

Carnegie Mellon

Anatomy of an Internet Connection

Client socket address Server socket address
128.2.194.242:51213 :80

/ \

P
<

Connection socket pair

(128.2.194.242:51213, :80)
Client host address Server host address
128.2.194.242
51213 is an ephemeral port 80 is a well-known port

allocated by the kernel associated with Web servers

Carnegie Mellon

A Client-Server Transaction

1. Client sends request

[

Client
process

Server
process

Resource

)

4. Client 3. Server sends response 2. Server
handles handles
response request

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

m Most network applications are based on the client-server
model:
= A server process and one or more client processes
= Server manages some resource
= Server provides service by manipulating resource for clients
= Server activated by request from client (vending machine analogy)

Carnegie Mellon

Clients

m Examples of client programs
= Web browsers, £tp, telnet, ssh

m How does a client find the server?

® The IP address in the server socket address identifies the host
(more precisely, an adapter on the host)

= The (well-known) port in the server socket address identifies the
service, and thus implicitly identifies the server process that performs
that service.

= Examples of well know ports
= Port 7: Echo server
= Port 23: Telnet server
= Port 25: Mail server
= Port 80: Web server

Carnegie Mellon

Using Ports to Identify Services

Server host 128.2.194.242

Client host Service request for
128.2.194.242:80

(i.e., the Web server)
Client

Web server
(port 80)

v

Kernel

Echo server
(port 7)

Service request for
128.2.194.242:7

) (i.e., the echo server)
Client >

Web server
(port 80)

Echo server

(port 7)

Carnegie Mellon

Servers

m Servers are long-running processes (daemons)
" Created at boot-time (typically) by the init process (process 1)
® Run continuously until the machine is turned off

m Each server waits for requests to arrive on a well-known port
associated with a particular service
= Port 7: echo server
= Port 23: telnet server
= Port 25: mail server
" Port 80: HTTP server

m A machine that runs a server process is also often referred to
as a “server”

Carnegie Mellon

Server Examples
m Web server (port 80)

= Resource: files/compute cycles (CGl programs)
= Service: retrieves files and runs CGI programs on behalf of the client

m FTP server (20, 21) See /etc/services fora
= Resource: files comprehensive list of the port

® Service: stores and retrieve files mappings on a Linux machine

m Telnet server (23)

= Resource: terminal
= Service: proxies a terminal on the server machine

m Mail server (25)
= Resource: email “spool” file
= Service: stores mail messages in spool file

|ll

Carnegie Mellon

Sockets Interface

m Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of the
Internet protocols

m Provides a user-level interface to the network

m Underlying basis for all Internet applications

m Based on client/server programming model

10

Carnegie Mellon

Sockets

m What is a socket?
= To the kernel, a socket is an endpoint of communication

" To an application, a socket is a file descriptor that lets the
application read/write from/to the network

= Remember: All Unix I/O devices, including networks, are
modeled as files

m Clients and servers communicate with each other by
reading from and writing to socket descriptors

Client l‘ ‘l Server

clientfd serverfd

m The main distinction between regular file I/O and socket
1/0 is how the application “opens” the socket descriptors

1"

Carnegie Mellon

Overview of the Sockets Interface

Client Server
(3\
socket socket
bind > open_listenfd
open_clientfd < l
listen
Connection l /
request
L connect ["TTTTTTTTTooC > accept <
v \4
Client / » rio writen Prio_readlineb¢
Server ! ! . .
Session Await connection
rio readlineb ¢ rio writen request from
next client
\4 v
close W [----- S »rio readlineb
\ 4
close

12

Carnegie Mellon

Socket Address Structures

m Generic socket address:
= For address arguments to connect, bind, and accept

= Necessary only because C did not have generic (void *) pointers
when the sockets interface was designed

struct sockaddr {
unsigned short sa family; /* protocol family */
char sa data[l4]; /* address data. */

};

sa family

~
Family Specific

13

Carnegie Mellon

Socket Address Structures

m Internet-specific socket address:

" Must cast (sockaddr in *)to(sockaddr *)for connect,
bind, and accept

struct sockaddr in {
unsigned short sin family; /* address family (always AF INET) */
unsigned short sin port; /* port num in network byte order */
struct in addr sin_ addr; /* IP addr in network byte order */
unsigned char sin zero[8]; /* pad to sizeof (struct sockaddr) */

sin port sin_addr

AF INET o|]o0o|j0O0jO0|]O0O|O0O]|]O0]|O

sa_family _ - J

Family Specific

sin family

14

Carnegie Mellon

Example: Echo Client and Server

On Client On Server

greatwhite> ./echoserveri 15213

linux> echoclient greatwhite.ics.cs.cmu.edu 15213

server connected to BRYANT-TP4.VLSI.CS.CMU.EDU
(128.2.213.29), port 64690

type: hello there

server received 12 bytes

echo: HELLO THERE
type: “~D

Connection closed

15

Carnegie Mellon

Echo Client Main Routine

#include "csapp.h"

/* usage: ./echoclient host port */
int main(int argc, char **argv)

{ Read input

int clientfd, port; .
line

char *host, buf[MAXLINE];

rio t rio;

host = argv[l]; port = atoi(argv[2]);
clientfd = Open clientfd(host, port);
Rio readinitb(&rio, clientfd);

Send line to printf ("type:"); fflush(stdout) ;
server \\Whij.e (Fgets (buf, MAXLINE, stdin) != NULL) {

Rio writen(clientfd, buf, strlen(buf))
» Rio_readlineb (&rio, buf, MAXLINE) ;

printf ("echo:") ;

Fputs (buf, stdout);

printf ("type:"); fflush(stdout)

Receive line
from server

Print server
response

}
Close(clientfd) ;

exit (0) ;

16

Carnegie Mellon

Overview of the Sockets Interface

Client Server

socket socket

'

bind > open_listenfd

open_clientfd< l

listen

. J
Connection l

request
connect [T TTTTTTToC g accept

17

Echo Client: open clientfd

int open_clientfd(char *hostname, int port) ({ |

int clientfd; This function opens a connection
struct hostent *hp; from the client to the server at
struct sockaddr in serveraddr; hostname:port
if ((clientfd = socket (AF_INET, SOCK STREAM, 0)) < 0) Create
return -1; /* check errno for cause of error */ socket
/* Fill in the server's IP address and port */ 3\
if ((hp = gethostbyname (hostname)) == NULL)
return -2; /* check h errno for cause of error */
bzero((char *) &serveraddr, sizeof (serveraddr)) ; Create
serveraddr.sin family = AF INET; address
bcopy ((char *)hp->h addr 1list[O0],
(char *) &serveraddr.sin addr.s_addr, hp->h length);
serveraddr.sin port = htons(port); J
/* Establish a connection with the server */
if (connect(clientfd, (SA *) &serveraddr,
sizeof (serveraddr)) < 0) Establish
return -1; connection

return clientfd;

18

Carnegie Mellon

Echo Client: open clientfd
(socket)

m socket creates a socket descriptor on the client
= Just allocates & initializes some internal data structures
" AF INET: indicates that the socket is associated with Internet protocols
" SOCK_STREAM: selects a reliable byte stream connection
= provided by TCP

int clientfd; /* socket descriptor */

if ((clientfd = socket (AF_INET, SOCK STREAM, 0)) < 0)
return -1; /* check errno for cause of error */

. <more>

19

Carnegie Mellon

Echo Client: open clientfd
(gethostbyname)

m The client then builds the server’s Internet address

int clientfd; /* socket descriptor */
struct hostent *hp; /* DNS host entry */
struct sockaddr in serveraddr; /* server’s IP address */

/* £ill in the server's IP address and port */
if ((hp = gethostbyname (hostname)) == NULL)

return -2; /* check h errno for cause of error */
bzero((char *) &serveraddr, sizeof (serveraddr)) ; Check

serveraddr.sin family = AF INET; this out!
serveraddr.sin port = htons (port); 4..___—————————__———————— !
bcopy ((char *)hp->h addr 1list[O0],

(char *) &serveraddr.sin_addr.s_addr, hp->h length);

20

Carnegie Mellon

A Careful Look at bcopy Arguments

/* DNS host entry structure */
struct hostent {

int h length; /* length of an address, in bytes */
char **h addr list; /* null-terminated array of in addr structs */

};

struct sockaddr_ in {

struct in addr sin_addr; /* IP addr in network byte order */

}; /* Internet address structure */
struct in_addr {
unsigned int s _addr; /* network byte order (big-endian) */

};

struct hostent *hp; /* DNS host entry */
struct sockaddr in serveraddr; /* server’s IP address */

bcopy ((char *)hp->h addr 1list[0], /* src, dest */
(char *) &serveraddr.sin _addr.s_addr, hp->h length);

21

Carnegie Mellon

Bcopy Argument Data Structures

struct hostent
h length h addr list

0
s_addr
struct
in_addr s_addr
struct sockaddr in
sin_ family sin port sin addr
AF_INET o o0;(0|0|]O0O]O0|O0]O

struct in_addr | 44r

22

Carnegie Mellon

Echo Client: open clientfd

(connect)

m Finally the client creates a connection with the server
= Client process suspends (blocks) until the connection is created

= After resuming, the client is ready to begin exchanging messages with the
server via Unix I/O calls on descriptor client£fd

int clientfd; /* socket descriptor */
struct sockaddr in serveraddr; /* server address */
typedef struct sockaddr SA; /* generic sockaddr */

/* Establish a connection with the server */

if (connect(clientfd, (SA *) &serveraddr, sizeof (serveraddr)) < 0)
return -1;

return clientfd;

23

Echo Server: Main Routine

int main(int argc, char **argv) {
int listenfd, connfd, port, clientlen;
struct sockaddr in clientaddr;
struct hostent *hp;
char *haddrp;
unsigned short client port;

port = atoi(argv[l]); /* the server listens on a port passed
on the command line */
listenfd = open listenfd(port)

while (1) {
clientlen = sizeof(clientaddr) ;
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
hp = Gethostbyaddr ((const char *)&clientaddr.sin addr.s_addr,
sizeof (clientaddr.sin addr.s_addr), AF_ INET) ;
haddrp = inet ntoa(clientaddr.sin addr);
client port = ntohs(clientaddr.sin port);
printf ("server connected to %s (%s), port %u\n",
hp->h name, haddrp, client port);
echo (connfd) ;
Close (connfd) ;

Carnegie Mellon

Overview of the Sockets Interface

Client Server

socket socket

'

bind > open_listenfd

open_clientfd< l

listen

. J
Connection l

request
connect [T TTTTTTToC g accept

m Office Telephone Analogy for Server
= Socket: Buya phone
= Bind: Tell the local administrator what number you want to use
= Listen: Plug the phone in
= Accept: Answer the phone when it rings

25

Carnegie Mellon

Echo Server: open listenfd

int open listenfd(int port)
{
int listenfd, optval=1l;
struct sockaddr in serveraddr;

/* Create a socket descriptor */
if ((listenfd = socket (AF _INET, SOCK STREAM, 0)) < 0)
return -1;

/* Eliminates "Address already in use" error from bind. */
if (setsockopt(listenfd, SOL SOCKET, SO REUSEADDR,
(const void *) &optval , sizeof (int)) < 0)
return -1;

<more>

26

Carnegie Mellon

Echo Server: open listenfd (cont.)

/* Listenfd will be an endpoint for all requests to port
on any IP address for this host */

bzero((char *) &serveraddr, sizeof (serveraddr)) ;
serveraddr.sin family = AF INET;

serveraddr.sin addr.s_addr = htonl (INADDR ANY) ;
serveraddr.sin port = htons((unsigned short)port);

if (bind(listenfd, (SA *) &serveraddr, sizeof (serveraddr)) < 0)
return -1;

/* Make it a listening socket ready to accept
connection requests */

if (listen(listenfd, LISTENQ) < 0)
return -1;

return listenfd;

27

Carnegie Mellon

Echo Server: open listenfd
(socket)

m socket creates a socket descriptor on the server
" AF INET: indicates that the socket is associated with Internet protocols
" SOCK_STREAM: selects a reliable byte stream connection (TCP)

int listenfd; /* listening socket descriptor */

/* Create a socket descriptor */
if ((listenfd = socket (AF INET, SOCK STREAM, 0)) < 0)
return -1;

28

Carnegie Mellon

Echo Server: open listenfd
(setsockopt)

m The socket can be given some attributes

/* Eliminates "Address already in use" error from bind(). */
if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
(const void *) &optval , sizeof(int)) < 0)
return -1;

m Handy trick that allows us to rerun the server immediately
after we Kkill it
= QOtherwise we would have to wait about 15 seconds
= Eliminates “Address already in use” error from bind ()

m Strongly suggest you do this for all your servers to simplify
debugging

29

Carnegie Mellon

Echo Server: open listenfd
(initialize socket address)

m Initialize socket with server port number
m Accept connection from any IP address

struct sockaddr in serveraddr; /* server's socket addr */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */

bzero((char *) &serveraddr, sizeof (serveraddr)) ;

serveraddr.sin family = AF INET;

serveraddr.sin port = htons((unsigned short)port);

serveraddr.sin addr.s _addr = htonl (INADDR ANY) ;

m IP addr and port stored in network (big-endian) byte order

sin_port sin_addr

AF INET INADDR_AN*’ ojo0o|(0|]0|O0O|O0]O0]O

sa family
sin family
30

Carnegie Mellon

Echo Server: open listenfd

(bind)

m bind associates the socket with the socket address we just
created

int listenfd; /* listening socket */

struct sockadd:_in serveraddr; /* server’s socket addr */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */

if (bind(listenfd, (SA *) &serveraddr, sizeof (serveraddr)) < 0)
return -1;

3

Carnegie Mellon

Echo Server: open listenfd

(Listen)

m listen indicates that this socket will accept connection
(connect) requests from clients

m LISTENQ is constant indicating how many pending requests
allowed

int listenfd; /* listening socket */

/* Make it a listening socket ready to accept connection requests */
if (listen(listenfd, LISTENQ) < 0)
return -1;
return listenfd;

}

m We're finally ready to enter the main server loop that
accepts and processes client connection requests.

32

Carnegie Mellon

Echo Server: Main Loop

m The server loops endlessly, waiting for connection
requests, then reading input from the client, and echoing
the input back to the client.

main () {
/* create and configure the listening socket */

while (1) {
/* Accept(): wait for a connection request */
/* echo(): read and echo input lines from client til EOF */
/* Close(): close the connection */

33

Carnegie Mellon

Overview of the Sockets Interface

Client Server
(3\
socket socket
bind > open_listenfd
open_clientfd < l
listen
Connection l /
request
L connect ["TTTTTTTTTooC > accept <
v \4
Client / » rio writen Prio_readlineb¢
Server ! ! . .
Session Await connection
rio readlineb ¢ rio writen request from
next client
\4 v
close W [----- S »rio readlineb
\ 4
close

34

Carnegie Mellon

Echo Server: accept

m accept () blocks waiting for a connection request

int listenfd; /* listening descriptor */
int connfd; /* connected descriptor */
struct sockaddr in clientaddr;

int clientlen;

clientlen = sizeof (clientaddr) ;
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

m accept returns a connected descriptor (connfd) with
the same properties as the listening descriptor
(Listenfd)

m Returns when the connection between client and server is created
and ready for I/O transfers

m All 1/0 with the client will be done via the connected socket

m accept alsofillsin client’s IP address

35

Carnegie Mellon

Echo Server: accept lllustrated

listenfd (3)
1. Server blocks in accept,
Client Server waiting for connection request
clientfd on listening descriptor
listenfd
c°““e°t'f“ listenfd(3)
request . . 2. Client makes connection request by
Client Server calling and blocking in connect
clientfd
listenfd (3)
3. Server returns connfd from
Client) , & Server accept. Client returns from connect.
clientfd conn£d (4) Connection is now established between

clientfdand connfd

36

Connected vs. Listening Descriptors

m Listening descriptor
= End point for client connection requests
" Created once and exists for lifetime of the server

m Connected descriptor
= End point of the connection between client and server

= A new descriptor is created each time the server accepts a
connection request from a client

= Exists only as long as it takes to service client

m Why the distinction?
= Allows for concurrent servers that can communicate over many
client connections simultaneously

= E.g., Each time we receive a new request, we fork a child to

handle the request
37

Echo Server: Identifying the Client

m The server can determine the domain name, IP address,
and port of the client

struct hostent *hp; /* pointer to DNS host entry */
char *haddrp; /* pointer to dotted decimal string */
unsigned short client port;
hp = Gethostbyaddr ((const char *)&clientaddr.sin addr.s_addr,
sizeof (clientaddr.sin addr.s_addr), AF INET) ;

haddrp = inet ntoa(clientaddr.sin addr);
client port = ntohs(clientaddr.sin port);
printf ("server connected to %s (%s), port %u\n",

hp->h name, haddrp, client port);

38

Carnegie Mellon

Echo Server: echo

m The server uses RIO to read and echo text lines until EOF
(end-of-file) is encountered.
® EOF notification caused by client calling close (client£fd)

void echo(int connfd)
{
size t n;
char buf [MAXLINE] ;
rio t rio;

Rio readinitb(&rio, connfd);

while((n = Rio_readlineb(&rio, buf, MAXLINE)) !'= 0) {
upper_ case (buf) ;
Rio writen(connfd, buf, n);
printf ("server received %d bytes\n", n);

39

Carnegie Mellon

Testing Servers Using telnet

m The telnet program is invaluable for testing servers
that transmit ASCII strings over Internet connections
® Qursimple echo server
= Web servers
= Mail servers

m Usage:

" unix> telnet <host> <portnumber>

" Creates a connection with a server running on <host>and
listening on port <portnumber>

40

Testing the Echo Server With telnet

greatwhite> echoserver 15213

linux> telnet greatwhite.ics.cs.cmu.edu 15213
Trying 128.2.220.10...

Connected to greatwhite.ics.cs.cmu.edu.
Escape character is '*]'.

hi there

HI THERE

4

Carnegie Mellon

For More Information

m W. Richard Stevens, “Unix Network Programming:
Networking APIs: Sockets and XTI”, Volume 1, Second
Edition, Prentice Hall, 1998

" THE network programming bible

m Unix Man Pages
" Good for detailed information about specific functions

m Complete versions of the echo client and server are
developed in the text
= Updated versions linked to course website
= Feel free to use this code in your assignments

42

Carnegie Mellon

Watching Echo Client / Server

ﬁapturing from Microsoft - Wire

File Edit View Go Capture Analyze Statistics Telephony Tools Help
Beoed BEEXEE Aces»T L (EE QAQAD @#@M % B
Filter: | tcp.port eq 15213 | v Expression.. Clear Apply
| Source _________Destination __ Protocol Info ______ |

MNo. Time

1257 15.883897 128.237.252.163 128.2.220.10 TCP 55306 > 15213 [ACK] Seqg=l AcC win=65532 Len=0
1795 21.914380 128.237.252.163 128.2.220.10 TCP 55306 > 15213 [PSH, ACK] Seqg=l1 Ack=1 win=65532 '
1800 21.916474 128.2.220.10 128.237.252.163 TCP 15213 > 55306 [ACK] Seqg=l Ack=19 win=5888 Len=0 =
1801 21.916534 128.2.220.10 128.237.252.163 TCP 15213 > 55306 [PSH, ACK] Seqg=l Ack=19 win=5888
1816 22.112223 128.237.252.163 128.2.220.10 TCP 55306 > 15213 [ACK] Seq=19% Ack=19 win=65516 Len
2301 29.053184 128.237.252.163 128.2.220.10 TCP 55306 > 15213 [PSH, ACK] Seq=19 Ack=19 win=6551
2302 29.055004 128.2.220.10 128.237.252.163 TCP 15213 > 55306 [PSH, ACK] Seq=19 Ack=43 win=5888
2316 29,.253626 128.237.252.163 128.2.220.10 TCP 55306 > 15213 [ACK] Seq=43 Ack=43 win=65492 Len
2382 30.229193 128.237.252.163 128.2.220.10 TCP 553(06 > 15213 [FIN, ACK] sSeqg=43 Ack=43 wWin=6549 _

< | i |)

Frame 1799: 72 hytes on wire (576 bits), 72 bytes captured (576 bits) -

Ethernet II, Src: Intel_e3:54:e6 (00:16:ea:e3:54:e6), Dst: Carnegie_20:00:64 (0B:00:7f:20:00:64) F?
Internet Protocol, Src: 128.237.252.163 (128.237.252.163), Dst: 128.2.220.10 (128.2.220.10)

Transmission Control Protocol, Src Port: 55306 (55306), Dst Port: 15213 (15213), Seq: 1, ack: 1, Len: 18 %
0000 08 00 7f 20 00 64 Q00 16 ea 23 54 26 08 00 45 00 ve. odo. L.T...E.

0010 00 3a 2¢ 7a 40 00 80 06 f4 as 80 ed fc a3 80 02 L1280, L.,

0020 dc Oa dB8 0a 3b 6d f4 a4 99 6¢c 75 de 71 6a 50 18;m.. .Tu.qgjP.

0030 3f ff 96 8b 00 00 68 65 72 65 20 69 73 20 61 20 7 e he re is a

0040 6d 65 73 73 61 67 65 0Qa message.

~

@ Microsoft: <live capture in progress> File: C:... | Packets: 6950 Displayed: 13 Marked: 0 Profile: Default

43

Carnegie Mellon

Ethical Issues

m Packet Sniffer
" Program that records network traffic visible at node

" Promiscuous mode: Record traffic that does not have this host as
source or destination

m University Policy

Network Traffic: Network traffic should be considered private. Because of this,
any "packet sniffing", or other deliberate attempts to read network information
which is not intended for your use will be grounds for loss of network privileges
for a period of not less than one full semester. In some cases, the loss of
privileges may be permanent. Note that it is permissable to run a packet sniffer
explicitely configured in non-promiscuous mode (you may sniff packets going
to or from your machine). This allows users to explore aspects of networking
while protecting the privacy of others.

44

