

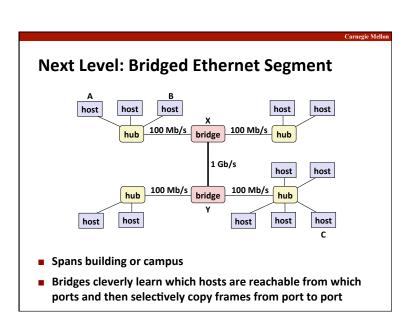
A Client-Server Transaction 1. Client sends request Client Resource process process 4. Client 2. Server 3. Server sends response handles handles response request Note: clients and servers are processes running on hosts (can be the same or different hosts) ■ Most network applications are based on the client-server model: A server process and one or more client processes Server manages some resource • Server provides *service* by manipulating resource for clients Server activated by request from client (vending machine analogy)

Computer Networks

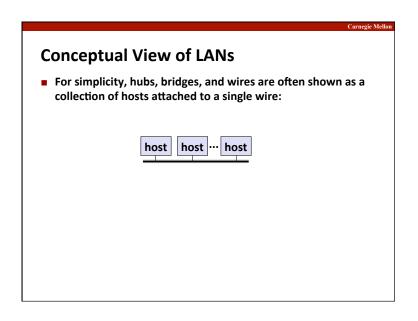
A network is a hierarchical system of boxes and wires organized by geographical proximity

SAN (System Area Network) spans cluster or machine room
Switched Ethernet, Quadrics QSW, ...

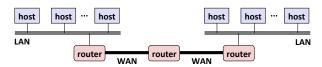
LAN (Local Area Network) spans a building or campus
Ethernet is most prominent example


WAN (Wide Area Network) spans country or world
Typically high-speed point-to-point phone lines

An internetwork (internet) is an interconnected set of networks

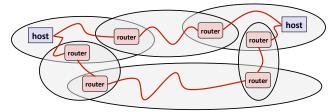

The Global IP Internet (uppercase "I") is the most famous example of an internet (lowercase "i")

Let's see how an internet is built from the ground up



Next Level: internets

- Multiple incompatible LANs can be physically connected by specialized computers called routers
- The connected networks are called an internet

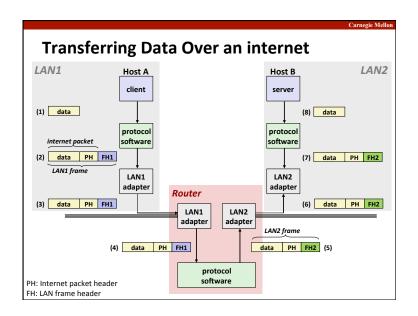

LAN 1 and LAN 2 might be completely different, totally incompatible (e.g., Ethernet and Wifi, 802.11*, T1-links, DSL, ...)

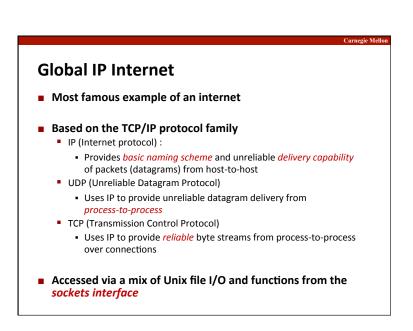
Carnegie Mellon

The Notion of an internet Protocol

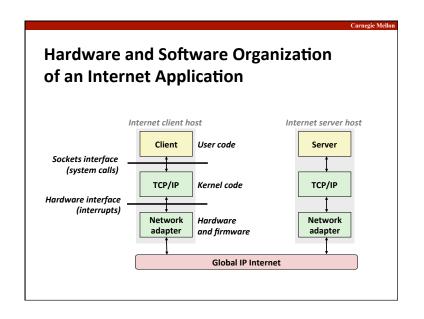
- How is it possible to send bits across incompatible LANs and WANs?
- Solution:
 - protocol software running on each host and router
 - smooths out the differences between the different networks
- Implements an internet protocol (i.e., set of rules)
 - governs how hosts and routers should cooperate when they transfer data from network to network
 - TCP/IP is the protocol for the global IP Internet

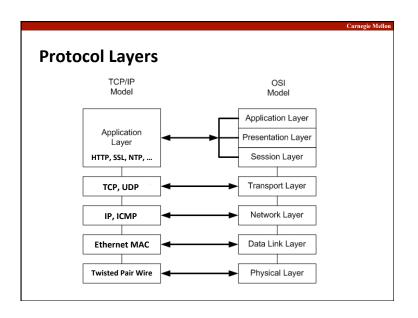
Logical Structure of an internet



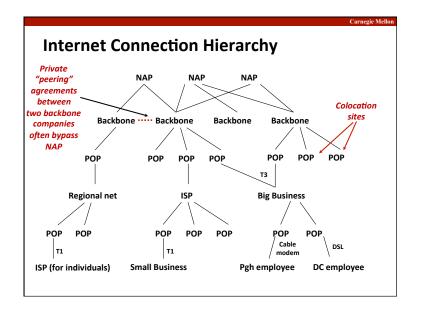

- Ad hoc interconnection of networks
 - No particular topology
 - Vastly different router & link capacities
- Send packets from source to destination by hopping through networks
 - Router forms bridge from one network to another
 - Different packets may take different routes

Carnegie Mello


What Does an internet Protocol Do?


- Provides a naming scheme
 - An internet protocol defines a uniform format for *host addresses*
 - Each host (and router) is assigned at least one of these internet addresses that uniquely identifies it
- Provides a delivery mechanism
 - An internet protocol defines a standard transfer unit (packet)
 - Packet consists of header and payload
 - Header: contains info such as packet size, source and destination addresses
 - Payload: contains data bits sent from source host

Other Issues We are glossing over a number of important questions: What if different networks have different maximum frame sizes? (segmentation) How do routers know where to forward frames? How are routers informed when the network topology changes? What if packets get lost? These (and other) questions are addressed by the area of systems known as computer networking


NAP-Based Internet Architecture

NAPs link together commercial backbones provided by companies such as AT&T and Worldcom

Currently in the US there are about 50 commercial backbones connected by ~12 NAPs (peering points)

Similar architecture worldwide connects national networks to the Internet

Basic Internet Components Internet backbone: collection of routers (nationwide or worldwide) connected by high-speed point-to-point networks Network Access Point (NAP): router that connects multiple backbones (often referred to as peers) Regional networks: smaller backbones that cover smaller geographical areas (e.g., cities or states) Point of presence (POP): machine that is connected to the Internet Internet Service Providers (ISPs): provide dial-up or direct access to POPs

Carnegie Mell

Naming and Communicating on the Internet

Original Idea

- Every node on Internet would have unique IP address
 - Everyone would be able to talk directly to everyone
- No secrecy or authentication
 - Messages visible to routers and hosts on same LAN
 - · Possible to forge source field in packet header

Shortcomings

- There aren't enough IP addresses available
- Don't want everyone to have access or knowledge of all other hosts
- Security issues mandate secrecy & authentication

Firewalls • Firewalls • Hides organizations nodes from rest of Internet • Use local IP addresses within organization • For external service, provides proxy service 1. Client request: src=10.2.2.2, dest=216.99.99.99 2. Firewall forwards: src=176.3.3.3, dest=216.99.99.99 3. Server responds: src=216.99.99.99, dest=176.3.3.3 4. Firewall forwards response: src=216.99.99.99, dest=10.2.2.2

Evolution of Internet: Naming

Dynamic address assignment

- Most hosts don't need to have known address
 - Only those functioning as servers
- DHCP (Dynamic Host Configuration Protocol)
 - Local ISP assigns address for temporary use

Example:

- My laptop at CMU (wired connection)
 - IP address 128.2.213.29 (bryant-tp4.cs.cmu.edu)
 - Assigned statically
- My laptop at home
 - IP address 192.168.1.5
 - Only valid within home network

Carnegie Mellon

A Programmer's View of the Internet

- Hosts are mapped to a set of 32-bit IP addresses
 - **128.2.203.179**
- The set of IP addresses is mapped to a set of identifiers called Internet domain names
 - 128.2.203.179 is mapped to www.cs.cmu.edu
- A process on one Internet host can communicate with a process on another Internet host over a connection

Carnegie Mellon

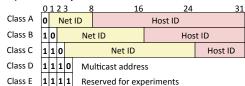
Dotted Decimal Notation

- By convention, each byte in a 32-bit IP address is represented by its decimal value and separated by a period
 - IP address: 0x8002C2F2 = 128.2.194.242
- Functions for converting between binary IP addresses and dotted decimal strings:
 - inet_aton: dotted decimal string → IP address in network byte order
 - inet ntoa: IP address in network byte order → dotted decimal string
 - "n" denotes network representation
 - "a" denotes application representation

IP Addresses

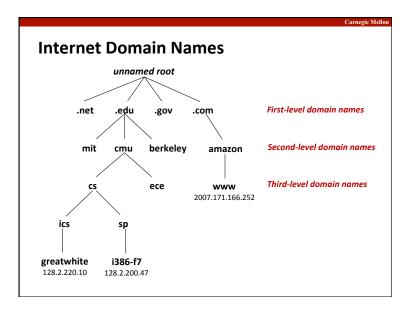
- 32-bit IP addresses are stored in an IP address struct
 - IP addresses are always stored in memory in network byte order (big-endian byte order)
 - True in general for any integer transferred in a packet header from one machine to another.
 - E.g., the port number used to identify an Internet connection.

```
/* Internet address structure */
struct in_addr {
    unsigned int s_addr; /* network byte order (big-endian) */
};
```


Useful network byte-order conversion functions ("I" = 32 bits, "s" = 16 bits)

hton1: convert uint32_t from host to network byte order
htons: convert uint16_t from host to network byte order
ntoh1: convert uint32_t from network to host byte order
ntohs: convert uint16_t from network to host byte order

Carnegie Mello


IP Address Structure

■ IP (V4) Address space divided into classes:

- Network ID Written in form w.x.y.z/n
 - n = number of bits in host address
 - E.g., CMU written as 128.2.0.0/16
 - Class B address
- Unrouted (private) IP addresses:

10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

Carnegie Mellon

Properties of DNS Host Entries

- Each host entry is an equivalence class of domain names and IP addresses
- Each host has a locally defined domain name localhost which always maps to the loopback address 127.0.0.1
- Different kinds of mappings are possible:
 - Simple case: one-to-one mapping between domain name and IP address:
 - greatwhile.ics.cs.cmu.edu maps to 128.2.220.10
 - Multiple domain names mapped to the same IP address:
 - eecs.mit.edu and cs.mit.edu both map to 18.62.1.6
 - Multiple domain names mapped to multiple IP addresses:
 - google.com maps to multiple IP addresses
 - Some valid domain names don't map to any IP address:
 - for example: ics.cs.cmu.edu

Domain Naming System (DNS)

- The Internet maintains a mapping between IP addresses and domain names in a huge worldwide distributed database called DNS
 - Conceptually, programmers can view the DNS database as a collection of millions of host entry structures:

```
/* DNS host entry structure */
struct hostent {
    char *h.name; /* official domain name of host */
    char **h_aliases; /* null-terminated array of domain names */
    int h_addrtype; /* host address type (AF_INET) */
    int h_length; /* length of an address, in bytes */
    char **h_addr_list; /* null-terminated array of in_addr structs
    */
};
```

- Functions for retrieving host entries from DNS:
 - gethostbyname: query key is a DNS domain name.
 - gethostbyaddr: query key is an IP address.

Carnegie Mello

A Program That Queries DNS

```
int main(int argc, char **argv) { /* argv[1] is a domain name */
    char **pp;
                                  /* or dotted decimal IP addr */
    struct in addr addr;
    struct hostent *hostp;
    if (inet_aton(argv[1], &addr) != 0)
       hostp = Gethostbyaddr((const char *)&addr, sizeof(addr),
                AF INET);
    else
        hostp = Gethostbyname(argv[1]);
   printf("official hostname: %s\n", hostp->h name);
    for (pp = hostp->h aliases; *pp != NULL; pp++)
       printf("alias: %s\n", *pp);
    for (pp = hostp->h addr list; *pp != NULL; pp++) {
       addr.s addr = ((struct in addr *)*pp)->s addr;
       printf("address: %s\n", inet_ntoa(addr));
```

Carnegie Mello

Using DNS Program

```
linux> ./dns greatwhite.ics.cs.cmu.edu
official hostname: greatwhite.ics.cs.cmu.edu
address 128.2.220.10

linux> ./dns 128.2.220.11
official hostname: ANGELSHARK.ICS.CS.CMU.EDU
address: 128.2.220.11

linux> ./dns www.google.com
official hostname: www.l.google.com
address: 72.14.204.99
address: 72.14.204.103
address: 72.14.204.104
address: 72.14.204.104
address: 72.14.204.104
inux> dig +short -x 72.14.204.103
iad04s01-in-f103.1e100.net.
```

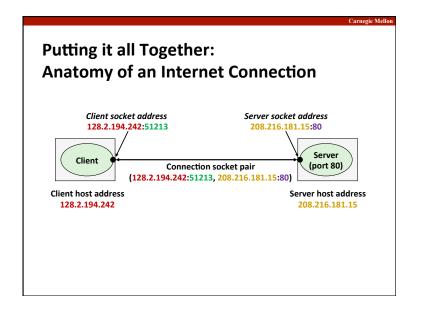
'arnegie Mellon

More Exotic Features of DIG

 Provides more information than you would ever want about DNS

```
linux> dig www.phys.msu.ru a +trace
128.2.220.10
linux> dig www.google.com a +trace
```

Querying DIG


 Domain Information Groper (dig) provides a scriptable command line interface to DNS

```
linux> dig +short greatwhite.ics.cs.cmu.edu
128.2.220.10
linux> dig +short -x 128.2.220.11
ANGELSHARK.ICS.CS.CMU.EDU.
linux> dig +short google.com
72.14.204.104
72.14.204.147
72.14.204.99
72.14.204.103
linux> dig +short -x 72.14.204.103
iad04s01-in-f103.1e100.net.
```

Carnegie Mello

Internet Connections

- Clients and servers communicate by sending streams of bytes over connections:
 - Point-to-point, full-duplex (2-way communication), and reliable.
- A socket is an endpoint of a connection
 - Socket address is an IPaddress:port pair
- A port is a 16-bit integer that identifies a process:
 - Ephemeral port: Assigned automatically on client when client makes a connection request
 - Well-known port: Associated with some service provided by a server (e.g., port 80 is associated with Web servers)
- A connection is uniquely identified by the socket addresses of its endpoints (socket pair)
 - (cliaddr:cliport, servaddr:servport)

Carnegie Mellor

Next Time

- How to use the sockets interface to establish Internet connections between clients and servers
- How to use Unix I/O to copy data from one host to another over an Internet connection