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Dynamic Memory Allocation Dynamic Memory Allocation
m Programmers use Application
dynamic memory | e m Allocator n:\alntalns' heap as collection of variable sized
allocators (such as blocks, which are either allocated or free
. Heap
malloc) to acquire VM m Types of allocators
at run time. = Explicit allocator: application allocates and frees space
= F.or t.iata structures whose User stack = E.g, mallocand freeinC
size !5 only known at = Implicit allocator: application allocates, but does not free space
runtime. t Top of heap| = E.g. garbage collection in Java, ML, and Lisp

= Dynamic memory
allocators manage an

Heap (viamalloc) (brk ptr)

m Will discuss simple explicit memory allocation today

area of process virtual Uninitialized data (.bss)
memory known as the Initialized data (.data)
heap. Program text (. text)
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The malloc Package

#include <stdlib.h>
void *malloc(size_t size)
® Successful:

= Returns a pointer to a memory block of at least size bytes
(typically) aligned to 8-byte boundary

= If size == 0, returns NULL
® Unsuccessful: returns NULL (0) and sets errno
void free(void *p)
= Returns the block pointed at by p to pool of available memory
® p must come from a previous call tomalloc or realloc
Other functions
" calloc: Version of malloc that initializes allocated block to zero.
" realloc: Changes the size of a previously allocated block.
= sbrk: Used internally by allocators to grow or shrink the heap
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Assumptions Made in This Lecture

= Memory is word addressed (each word can hold a

pointer)
HEEEEEEEEEEEEEEEEEEE
— —
Allocated block Free block
(4 words) (3 words) D Free word

D Allocated word

malloc Example

void foo(int n, int m) {
int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof (int));
if (p == NULL) {
perror ("malloc") ;
exit(0) ;
}

/* Initialize allocated block */
for (i=0; i<n; i++)
plil = i;

/* Return p to the heap */
free(p) ;
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Allocation Example

maltoc() [ [ [T TTTTTTTTTTTTT]

pl

p2=matloc(s) [ [[[[TTTTTITTTITTT]

p3=maltoce) [ [ [ [ [[TTTTTTTTTIT]

free (p2) (I T I T T T T 1]

pa=maltoc [ [ [T TTTTTTTTTTTTT]




Constraints

m Applications
® (Canissue arbitrary sequence of malloc and free requests
" free request must be to amalloc’d block

m Allocators
= Can’t control number or size of allocated blocks
= Must respond immediately tomalloc requests
= j.e., can’t reorder or buffer requests
= Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory
= Must align blocks so they satisfy all alignment requirements
= 8 byte alignment for GNUmalloc (1ibc malloc) on Linux boxes
= Can manipulate and modify only free memory
= Can’t move the allocated blocks once they are malloc’d
= j.e., compaction is not allowed
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Performance Goal: Peak Memory Utilization

m Given some sequence of malloc and free requests:
" Ry Ry Ry, Ry

Def: Aggregate payload P,
®" malloc (p) resultsin a block with a payload of p bytes

= After request R, has completed, the aggregate payload P, is the sum of
currently allocated payloads

m Def: Current heap size H,
= Assume H, is monotonically nondecreasing
= i.e., heap only grows when allocator uses sbrk

Def: Peak memory utilization after k requests
= U,=(max,4P;) / H,
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Performance Goal: Throughput

m Given some sequence of malloc and free requests:
" Ry Ry Ry s Ry

m Goals: maximize throughput and peak memory utilization
" These goals are often conflicting

m Throughput:
® Number of completed requests per unit time
= Example:
= 5,000 malloc calls and 5,000 £ree calls in 10 seconds
= Throughput is 1,000 operations/second
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Fragmentation

m Poor memory utilization caused by fragmentation
= jnternal fragmentation
= external fragmentation
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Internal Fragmentation

m For a given block, internal fragmentation occurs if payload is
smaller than block size

Block
Internal Internal
fragmentation Eayload 7 fragmentation
m Caused by

= Overhead of maintaining heap data structures
= Padding for alignment purposes
= Explicit policy decisions
(e.g., to return a big block to satisfy a small request)
m Depends only on the pattern of previous requests
= Thus, easy to measure
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Implementation Issues

m How do we know how much memory to free given just a
pointer?

m How do we keep track of the free blocks?

m What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

= How do we pick a block to use for allocation -- many
might fit?

m How do we reinsert freed block?
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External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

pl=malloc(4) [ [ [[[T[T[TITITTT[T]
p2=mallec(s) [ [ [[[TTTTTIT[TTT[T]]
p3=malloc(6) [ [ [ [ [T[TTTTTTTTTT[]
free (p2) CLITTTTITTTITTTITTIT ]

p4 = malloc(6) Oops!(what would happen now?)

m Depends on the pattern of future requests
® Thus, difficult to measure
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Knowing How Much to Free

m Standard method
= Keep the length of a block in the word preceding the block.
= This word is often called the header field or header

® Requires an extra word for every allocated block

(T T T LT

PO

po = mattoc() [ [ [T [ [T s T [T ] T[]

block size payload

sreeeo) [ [ [T [ [TTTTTTTTTT]
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Keeping Track of Free Blocks Today

m Method 1: Implicit list using length—links all blocks m Basic concepts

T T~ T~ — m Implicit free lists

m Method 2: Explicit list among the free blocks using pointers

/_\.
IA T [ Tal T T el [ [T [2]]

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key
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Method 1: Implicit List

m For each block we need both size and allocation status

® Could store this information in two words: wasteful! /\ /\ /_\ /\
m Standard trick start  Unesed . X

Detailed Implicit Free List Example

= |f blocks are aligned, some low-order address bits are always 0 hOf |8/0 |16/1 | [ 32/0) ‘ ‘ ‘ ‘ ’ 16/1| | | |0/1|
. . . eap 0 L L ! A L
= |nstead of storing an always-0 bit, use it as a allocated/free flag 3 ; ; ; | | | | | |
® When reading size word, must mask out this bit 3 3 3 1 3 1 3 1 1 3
1 word
' Double-word Allocated blocks: shaded
Size | a a = 1: Allocated block ! aligned Free blocks: unshaded
a=0: Free block Headers: labeled with size in bytes/allocated bit
Format of
allocated and Payload Size: block size
free blocks Payload: application data
(allocated blocks only)
Optional
padding

20
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Implicit List: Finding a Free Block

m First fit:
= Search list from beginning, choose first free block that fits:

p = start;
while ((p < end) && \\ not passed end
((*p & 1) || \\ already allocated
(*p <= len))) \\ too small
p=p+ (*p & -2); \\ goto next block (word addressed)

= Can take linear time in total number of blocks (allocated and free)
= |n practice it can cause “splinters” at beginning of list
m  Next fit:
= Like first fit, but search list starting where previous search finished
= Should often be faster than first fit: avoids re-scanning unhelpful blocks
= Some research suggests that fragmentation is worse
m Best fit:
= Search the list, choose the best free block: fits, with fewest bytes left over
= Keeps fragments small—usually improves memory utilization
= Will typically run slower than first fit
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Implicit List: Freeing a Block

m Simplest implementation:
® Need only clear the “allocated” flag
void free_block(ptr p) { *p = *p & -2 }

® But can lead to “false fragmentation”

[al T T TaI'TTTal [ [ [2] [2[7]
p

free (p)

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it
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Implicit List: Allocating in Free Block

m Allocating in a free block: splitting

® Since allocated space might be smaller than free space, we might want
to split the block

[l T T Tal T T Tel [T [T [2[]
f

p

addblock (p, 4)
N N N
[a] T 1 Tal T T Tal T T T2 [2]]

void addblock (ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even
int oldsize = *p & -2; // mask out low bit

*p = newsize | 1; // set new length
if (newsize < oldsize)
* (p+newsize) = oldsize - newsize; // set length in remaining
} // part of block
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Implicit List: Coalescing

m Join (coalesce) with next/previous blocks, if they are free
= Coalescing with next block

logically

///’—‘\\\///’a\\\w//’—~\\\/’\\

[l T [ s« [ T [ [2] 210
e~ e P

[a] [T [al T T Tel [ [ [of [2]]

void free block (ptr p) {
*p = *p & -2; // clear allocated flag
next = p + *p; // £ind next block
if ((*next & 1) == 0)
*p = *p + *next; // add to this block if
} // not allocated

= But how do we coalesce with previous block?

24
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Implicit List: Bidirectional Coalescing Constant Time Coalescing
m Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
. Case 1 Case 2 Case 3 Case 4
® |mportant and general technique!
Allocated Allocated Free Free
Block being
‘4‘ ‘ ‘4l4l I I4|6‘ ‘ ‘ ‘ ‘sl“l I IAI freed Allocated Free Allocated Free
Header —— size | a a = 1: Allocated block
a =0: Free block
Format of . 5
allocated and Payload and Size: Total block size
ddi
free blocks LR Payload: Application data
(allocated blocks only)
Boundary tag —— Size a
(footer)
25 26
Constant Time Coalescing (Case 1) Constant Time Coalescing (Case 2)
m1 1 m1 1 m1 1 mi |1
ml 1 ml 1 ml 1 ml 1
n 1 n 0 n 1 n+m2 0
— —
n 1 n 0 n 1
m2 1 m2 1 m2 0
m2 1 m2 1 m2 0 n+m2 0
27 28
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Constant Time Coalescing (Case 3) Constant Time Coalescing (Case 4)
m1 0 ntml | 0 m1 0 n+mi+m2 | 0
ml 0 ml 0
n 1 n 1
n 1 n+ml 0 n 1
m2 1 m2 1 m2 0
m2 1 m2 1 m2 0 n+ml+m2 0
Disadvantages of Boundary Tags Summary of Key Allocator Policies
. m Placement policy:
m Internal fragmentation = First-fit, next-fit, best-fit, etc.

= Trades off lower throughput for less fragmentation

= |nteresting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search entire
free list

m Can it be optimized?
= Which blocks need the footer tag?

® What does that mean? L. A
m Splitting policy:

= When do we go ahead and split free blocks?

= How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
®" |mmediate coalescing: coalesce each time £ree is called

= Deferred coalescing: try to improve performance of £ree by deferring
coalescing until needed. Examples:

= Coalesce as you scan the free list formalloc

= Coalesce when the amount of external fragmentation reaches
some threshold
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Implicit Lists: Summary

m Implementation: very simple
m Allocate cost:
® linear time worst case
m Free cost:
® constant time worst case
= even with coalescing
m Memory usage:
= will depend on placement policy
= First-fit, next-fit or best-fit

m Not used in practice formalloc/free because of linear-
time allocation
= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators




