Carnegie Mellon Carnegie Mellon

Today

m Basic concepts
m Implicit free lists

Dynamic Memory Allocation:
Basic Concepts

15-213 / 18-213: Introduction to Computer Systems
18th Lecture, March. 27, 2012

Instructors:
Todd C. Mowry, Anthony Rowe

Dynamic Memory Allocation Dynamic Memory Allocation
m Programmers use Application
dynamic memory | e m Allocator n:\alntalns' heap as collection of variable sized
allocators (such as blocks, which are either allocated or free
. Heap
malloc) to acquire VM m Types of allocators
at run time. = Explicit allocator: application allocates and frees space
= F.or t.iata structures whose User stack = E.g, mallocand freeinC
size !5 only known at = Implicit allocator: application allocates, but does not free space
runtime. t Top of heap| = E.g. garbage collection in Java, ML, and Lisp

= Dynamic memory
allocators manage an

Heap (viamalloc) (brk ptr)

m Will discuss simple explicit memory allocation today

area of process virtual Uninitialized data (.bss)
memory known as the Initialized data (.data)
heap. Program text (. text)

Carnegie Mellon

The malloc Package

#include <stdlib.h>
void *malloc(size_t size)
® Successful:

= Returns a pointer to a memory block of at least size bytes
(typically) aligned to 8-byte boundary

= If size == 0, returns NULL
® Unsuccessful: returns NULL (0) and sets errno
void free(void *p)
= Returns the block pointed at by p to pool of available memory
® p must come from a previous call tomalloc or realloc
Other functions
" calloc: Version of malloc that initializes allocated block to zero.
" realloc: Changes the size of a previously allocated block.
= sbrk: Used internally by allocators to grow or shrink the heap

Carnegie Mellon

Assumptions Made in This Lecture

= Memory is word addressed (each word can hold a

pointer)
HEEEEEEEEEEEEEEEEEEE
— —
Allocated block Free block
(4 words) (3 words) D Free word

D Allocated word

malloc Example

void foo(int n, int m) {
int i, *p;

/* Allocate a block of n ints */
p = (int *) malloc(n * sizeof (int));
if (p == NULL) {
perror ("malloc") ;
exit(0) ;
}

/* Initialize allocated block */
for (i=0; i<n; i++)
plil = i;

/* Return p to the heap */
free(p) ;

Carnegie Mellon

Allocation Example

maltoc() [[[T TTTTTTTTTTTTT]

pl

p2=matloc(s) [[[[[TTTTTITTTITTT]

p3=maltoce) [[[[[[TTTTTTTTTIT]

free (p2) (I T I T T T T 1]

pa=maltoc [[[T TTTTTTTTTTTTT]

Constraints

m Applications
® (Canissue arbitrary sequence of malloc and free requests
" free request must be to amalloc’d block

m Allocators
= Can’t control number or size of allocated blocks
= Must respond immediately tomalloc requests
= j.e., can’t reorder or buffer requests
= Must allocate blocks from free memory
= j.e., can only place allocated blocks in free memory
= Must align blocks so they satisfy all alignment requirements
= 8 byte alignment for GNUmalloc (1ibc malloc) on Linux boxes
= Can manipulate and modify only free memory
= Can’t move the allocated blocks once they are malloc’d
= j.e., compaction is not allowed

Carnegie Mellon

Performance Goal: Peak Memory Utilization

m Given some sequence of malloc and free requests:
" Ry Ry Ry, Ry

Def: Aggregate payload P,
®" malloc (p) resultsin a block with a payload of p bytes

= After request R, has completed, the aggregate payload P, is the sum of
currently allocated payloads

m Def: Current heap size H,
= Assume H, is monotonically nondecreasing
= i.e., heap only grows when allocator uses sbrk

Def: Peak memory utilization after k requests
= U,=(max,4P;) / H,

Carnegie Mellon

Performance Goal: Throughput

m Given some sequence of malloc and free requests:
" Ry Ry Ry s Ry

m Goals: maximize throughput and peak memory utilization
" These goals are often conflicting

m Throughput:
® Number of completed requests per unit time
= Example:
= 5,000 malloc calls and 5,000 £ree calls in 10 seconds
= Throughput is 1,000 operations/second

Carnegie Mellon

Fragmentation

m Poor memory utilization caused by fragmentation
= jnternal fragmentation
= external fragmentation

Carnegie Mellon

Internal Fragmentation

m For a given block, internal fragmentation occurs if payload is
smaller than block size

Block
Internal Internal
fragmentation Eayload 7 fragmentation
m Caused by

= Overhead of maintaining heap data structures
= Padding for alignment purposes
= Explicit policy decisions
(e.g., to return a big block to satisfy a small request)
m Depends only on the pattern of previous requests
= Thus, easy to measure

Carnegie Mellon

Implementation Issues

m How do we know how much memory to free given just a
pointer?

m How do we keep track of the free blocks?

m What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

= How do we pick a block to use for allocation -- many
might fit?

m How do we reinsert freed block?

Carnegie Mellon

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

pl=malloc(4) [[[[[T[T[TITITTT[T]
p2=mallec(s) [[[[[TTTTTIT[TTT[T]]
p3=malloc(6) [[[[[T[TTTTTTTTTT[]
free (p2) CLITTTTITTTITTTITTIT]

p4 = malloc(6) Oops!(what would happen now?)

m Depends on the pattern of future requests
® Thus, difficult to measure

Carnegie Mellon

Knowing How Much to Free

m Standard method
= Keep the length of a block in the word preceding the block.
= This word is often called the header field or header

® Requires an extra word for every allocated block

(T T T LT

PO

po = mattoc() [[[T [[T s T [T] T[]

block size payload

sreeeo) [[[T [[TTTTTTTTTT]

Carnegie Mellon Carnegie Mellon

Keeping Track of Free Blocks Today

m Method 1: Implicit list using length—links all blocks m Basic concepts

T T~ T~ — m Implicit free lists

m Method 2: Explicit list among the free blocks using pointers

/_\.
IA T [Tal T T el [[T [2]]

m Method 3: Segregated free list
= Different free lists for different size classes

m Method 4: Blocks sorted by size

= Can use a balanced tree (e.g. Red-Black tree) with pointers within each
free block, and the length used as a key

Carnegie Mellon

Carnegie Mellon

Method 1: Implicit List

m For each block we need both size and allocation status

® Could store this information in two words: wasteful! /\ /\ /_\ /\
m Standard trick start Unesed . X

Detailed Implicit Free List Example

= |f blocks are aligned, some low-order address bits are always 0 hOf |8/0 |16/1 | [32/0) ‘ ‘ ‘ ‘ ’ 16/1| | | |0/1|
. . . eap 0 L L ! A L
= |nstead of storing an always-0 bit, use it as a allocated/free flag 3 ; ; ; | | | | | |
® When reading size word, must mask out this bit 3 3 3 1 3 1 3 1 1 3
1 word
' Double-word Allocated blocks: shaded
Size | a a = 1: Allocated block ! aligned Free blocks: unshaded
a=0: Free block Headers: labeled with size in bytes/allocated bit
Format of
allocated and Payload Size: block size
free blocks Payload: application data
(allocated blocks only)
Optional
padding

20

Carnegie Mellon

Implicit List: Finding a Free Block

m First fit:
= Search list from beginning, choose first free block that fits:

p = start;
while ((p < end) && \\ not passed end
((*p & 1) || \\ already allocated
(*p <= len))) \\ too small
p=p+ (*p & -2); \\ goto next block (word addressed)

= Can take linear time in total number of blocks (allocated and free)
= |n practice it can cause “splinters” at beginning of list
m Next fit:
= Like first fit, but search list starting where previous search finished
= Should often be faster than first fit: avoids re-scanning unhelpful blocks
= Some research suggests that fragmentation is worse
m Best fit:
= Search the list, choose the best free block: fits, with fewest bytes left over
= Keeps fragments small—usually improves memory utilization
= Will typically run slower than first fit

Carnegie Mellon

Implicit List: Freeing a Block

m Simplest implementation:
® Need only clear the “allocated” flag
void free_block(ptr p) { *p = *p & -2 }

® But can lead to “false fragmentation”

[al T T TaI'TTTal [[[2] [2[7]
p

free (p)

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

Carnegie Mellon

Implicit List: Allocating in Free Block

m Allocating in a free block: splitting

® Since allocated space might be smaller than free space, we might want
to split the block

[l T T Tal T T Tel [T [T [2[]
f

p

addblock (p, 4)
N N N
[a] T 1 Tal T T Tal T T T2 [2]]

void addblock (ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even
int oldsize = *p & -2; // mask out low bit

*p = newsize | 1; // set new length
if (newsize < oldsize)
* (p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

Carnegie Mellon

Implicit List: Coalescing

m Join (coalesce) with next/previous blocks, if they are free
= Coalescing with next block

logically

///’—‘\\\///’a\\\w//’—~\\\/’\\

[l T [s« [T [[2] 210
e~ e P

[a] [T [al T T Tel [[[of [2]]

void free block (ptr p) {
*p = *p & -2; // clear allocated flag
next = p + *p; // £ind next block
if ((*next & 1) == 0)
*p = *p + *next; // add to this block if
} // not allocated

= But how do we coalesce with previous block?

24

Carnegie Mellon Carnegie Mellon

Implicit List: Bidirectional Coalescing Constant Time Coalescing
m Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of free blocks
= Allows us to traverse the “list” backwards, but requires extra space
. Case 1 Case 2 Case 3 Case 4
® |mportant and general technique!
Allocated Allocated Free Free
Block being
‘4‘ ‘ ‘4l4l I I4|6‘ ‘ ‘ ‘ ‘sl“l I IAI freed Allocated Free Allocated Free
Header —— size | a a = 1: Allocated block
a =0: Free block
Format of . 5
allocated and Payload and Size: Total block size
ddi
free blocks LR Payload: Application data
(allocated blocks only)
Boundary tag —— Size a
(footer)
25 26
Constant Time Coalescing (Case 1) Constant Time Coalescing (Case 2)
m1 1 m1 1 m1 1 mi |1
ml 1 ml 1 ml 1 ml 1
n 1 n 0 n 1 n+m2 0
— —
n 1 n 0 n 1
m2 1 m2 1 m2 0
m2 1 m2 1 m2 0 n+m2 0
27 28

Carnegie Mellon Carnegie Mellon

Constant Time Coalescing (Case 3) Constant Time Coalescing (Case 4)
m1 0 ntml | 0 m1 0 n+mi+m2 | 0
ml 0 ml 0
n 1 n 1
n 1 n+ml 0 n 1
m2 1 m2 1 m2 0
m2 1 m2 1 m2 0 n+ml+m2 0
Disadvantages of Boundary Tags Summary of Key Allocator Policies
. m Placement policy:
m Internal fragmentation = First-fit, next-fit, best-fit, etc.

= Trades off lower throughput for less fragmentation

= |nteresting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search entire
free list

m Can it be optimized?
= Which blocks need the footer tag?

® What does that mean? L. A
m Splitting policy:

= When do we go ahead and split free blocks?

= How much internal fragmentation are we willing to tolerate?

m Coalescing policy:
®" |mmediate coalescing: coalesce each time £ree is called

= Deferred coalescing: try to improve performance of £ree by deferring
coalescing until needed. Examples:

= Coalesce as you scan the free list formalloc

= Coalesce when the amount of external fragmentation reaches
some threshold

Carnegie Mellon

Implicit Lists: Summary

m Implementation: very simple
m Allocate cost:
® linear time worst case
m Free cost:
® constant time worst case
= even with coalescing
m Memory usage:
= will depend on placement policy
= First-fit, next-fit or best-fit

m Not used in practice formalloc/free because of linear-
time allocation
= used in many special purpose applications

m However, the concepts of splitting and boundary tag
coalescing are general to all allocators

